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Abstract. For a cardinal p we give a sufficient condition @&, (involving ranks mea-
suring existence of independent sets) for:

Ru if a Borel set B C R x R contains a p-square (i.e. a set of the form A x A with
|A| = p) then it contains a 2%0_gquare and even a perfect square,

and also for

®:L if ¢ € Lw,,w has a model of cardinality p then it has a model of cardinality
continuum generated in a “nice”, “absolute” way.

Assuming MA +2N0 > u for transparency, those three conditions (@, ®; and ®L) are
equivalent, and from this we deduce that e.g. A 2No > Ny = ~®xy,, ], and also that
min{p : Qu}, if < 2R0 has cofinality N;.

We also deal with Borel rectangles and related model-theoretic problems.

a<w1[

Annotated content
0. Introduction. We explain results and history and include a list of notation.

1. The rank and the Borel sets. We define some version of the rank for a model,
and then Ao (k) is the first A such that there is no model with universe A, vocabulary of
cardinality < k and rank < «. Now we prove that forcing does not change some ranks of
the model, can only decrease others, and c.c.c. forcing changes little. If a Borel or analytic
set contains a Ay, (Rg)-square then it contains a perfect square (see 1.12); clearly this gives
something only if the continuum is large, that is, at least Aw; (Rg). On the other hand (see
1.13), if p = p0 < Aw; (No) then in some c.c.c. forcing extension of V: the continuum
is arbitrarily large, and some Borel set contains a p-square but no pt-square. Lastly (in
1.15), assuming MA holds we prove exact results (e.g. equivalence of conditions).

2. Some model-theoretic problems. When we restrict ourselves to models of
cardinality up to the continuum, Aw; (Rg) is the Hanf number of Ly, w (see 2.1).
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2 S. Shelah

Also (see 2.4) if ¢ € Ly, has a model realizing many types (say in the countable
set A of formulas; many means > Ao, (X)) even after c.c.c. forcing, then

{{p : p a complete A-type realized in M} : M | ¢}

has two to the continuum members.

We then (2.5) assume 1 € Ly, ,w has a two-cardinal model, say for (u, ), and we
want to find a (i, Rg)-model; we need A, (k) < p. Next, more generally, we deal with
X-cardinal models (i.e. we demand that PCM have cardinality A¢). We define ranks (2.8),
from them we can formulate sufficient conditions for a transfer theorem and compactness.
We can prove that the relevant ranks are (essentially) preserved under c.c.c. forcing as in
§1, and the sufficient conditions hold for X,,; under GCH.

3. Finer analysis of square existence. In 3.1, 3.2 we define for a sequence T' =
(T : n < w) of trees (i.e. closed sets of the plane) a rank, degsq, whose value is a bound for
the size of the square it may contain. We then (3.3) deal with analytic, or more generally
k-Suslin relations, and use parallel degrees. We then prove that statements on the degrees
are related to the existence of squares in k-Suslin relations in a way parallel to what we
have on Borel relations, using Aq (k). We then (3.7-3.11) connect it to the existence of
identities for 2-place colourings. In particular, we get results of the form “there is a Borel
set B which contains a p-square iff 1 < Ao (R)” when MA + Ao (Rg) < 2%0.

4. Rectangles. We deal with the problem of the existence of rectangles in Borel
and k-Suslin relations. The equivalence of the rank (for models), the existence of perfect
rectangles and the model-theoretic statements are more delicate here.

0. Introduction. We first review the old results (from §§1, 2). The main
one is

(%)1 it is consistent that for every successor ordinal o < wy, there is
a Borel subset of “2 x “2 containing an N,-square but no perfect
square.

In fact,
(¥)7  the result above follows from MA +2% > R, .

For this we define (Definition 1.1) for any ordinal « a property Pr,(A; k) of
the cardinals A, k. The maximal cardinal with the property of R, (i.e. for
every small cardinal, c.c.c. forcing adds an example as in (x);) is charac-
terized (as Ay, (Ng) where A\, (k) = min{\ : Pr,(); k)}); essentially it is not
changed by c.c.c. forcing; so in (x);:

(x)}  if in addition V = VF where P is a c.c.c. forcing then \,, (Rg) <
(Fu)".

We will generally investigate Pr, (\; k), giving equivalent formulations (1.1
1.6), seeing how fast A\,(k) increases, e.g. kT < Ay(k) < Duxa(k) (in
1.7, 1.8). For two variants we show: Pr2(\;x) (a < kT) is preserved by
rt-c.c. forcing, Prl (\; k1) = Pro(X\; k1) and =Pry(X; £7) is preserved by
any extension of the universe of set theory. Now Pr,, (A\;Rg) implies that
there is no Borel set as above (1.12) but if Pr,, (A;Xg) fails then some c.c.c.
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forcing adds a Borel set as above (1.13). We cannot in (x); omit some set-
theoretic assumption even for No—see 1.15, 1.16 (add many Cohen reals or
many random reals to a universe satisfying e.g. 2% = Ry; then, in the new
universe, every Borel set which contains an Ny-square also contains a perfect
square). We can replace Borel by analytic or even s-Suslin (using Pr,+(k)).
In §2 we deal with related model-theoretic questions with less satisfactory
results. By 2.1, 2.3, giving a kind of answer to a question from [Sh 49],

(x)2  essentially A = A, (Ng) is the Hanf number for models of sentences
in L, . when we restrict ourselves to models of cardinality < 280
(What is the meaning of “essentially”? If \,, (Rg) > 2%¢ this fails,
but if A, (Rg) < 2%0 it holds.)

In 2.4 we generalize it (the parallel of replacing Borel or analytic sets by
k-Suslin). We conclude (2.4(2)):

m

(x)3 ifep € Ly, o(11), 70 C 71 are countable vocabularies, A C {p(x) : ¢
L, .(70)} is countable and v has a model which realizes > A, (No
complete (A, 1)-types then |{(M]19)/=: M = ¢, ||[M| = A}
min{2*, 3} (for any \), as we have models as in [Sh a, VII, §4]
[Sh ¢, VIL, §4].

If we allow parameters in the formulas of A, and 2% < 2% then (x)3
holds too. However, even in the case 2* = 2% we prove some results in this
direction (see [Sh 262] or better [Sh e, VII, §5]). We then turn to three-
cardinal theorems etc., trying to continue [Sh 49] (where e.g. (N,,Ng) —
(2%, Rg) was proved).

We knew those results earlier than or in 1980/1, but failed in efforts
to prove the consistency of “ZFC + A, (Rg) > N,,” (or proving ZFC I
“Au; (Ng) = N,,”). By the mid-seventies we knew how to get consistency of
results like those in §2 (forcing with P, adding many Cohen reals, i.e. in
VP getting ()3 for A = (J.,)V). This (older proof, not the one used) is
closely related to Silver’s proof of “every I1;-relation with uncountably many
equivalence classes has 2% ones” (a deeper one is the proof of Harrington of
the Lauchli-Halpern theorem; see a generalization of the Lauchli-Halpern
theorem, a partition theorem on “~2, k large in [Sh 288, §4]).

In fact, about 88 I wrote down for W. Hodges proofs of (a) and (b) stated
below.

~—

v

(a) If, for simplicity, V satisfies GCH, and we add > X,, Cohen reals,
then the Hanf number of L, ., below the continuum is R, .

(b) If ¢ € Ly, (m1) and some countable A C {p(x) : ¢ € Ly, o(70)}
satisfies: in every forcing extension of V, 1 has a model which realizes 2%°

(or at least min{2%° X, }) complete A-types, then the conclusion of (*)3
above holds.
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Hodges had intended to write it up. Later Hrushovski and Velickovic
independently proved the statement (a).

As indicated above, the results had seemed disappointing as the main
question “is A,, (Ng) = R, ?” is not answered. But Hjorth asked me about
(essentially) (x); which was mentioned in [HrSh 152] and urged me to write
this down.

In §3 we define a degree of Borel sets of the form | J,, ., lim(7},) € “2x“2
measuring how close they are to having perfect squares, similarly we define
degrees for k-Suslin relations, and get results similar to earlier ones under
MA and nail the connection between the set of cardinalities of models of

Y € Ly, , and having squares. In §4 we deal with the existence of rectangles.

We can replace R? by R? without any difficulty.

In a subsequent paper [Sh 532] which we are writing, we intend to con-
tinue the present work and [Sh 202, §5] and deal with: consistency of the
existence of co-k-Suslin (and even II1-) equivalence relations with many
equivalence classes, relationship of )‘Sm )\S’J2 etc., and also try to deal with
independence (concerning 2.11 and 4.11(1)) and the existence of many dis-
joint sections.

I thank Andrzej Rostanowski for great improvement of the presentation
and pointing out gaps, and Andres Villaveces for more corrections.

NOTATION. Set theory: PA = {f : f is a function from B to A}, the set
of reals is “2; Sc(A) = [A]<" ={B C A:|B| < k}.

By a Borel set B we mean the set it defines in the current universe. A
u-square (or a square of size u) is a set of the form A x A, where A C “2
and |A| = p. A (p1, p2)-rectangle (or rectangle of size (p1,u2)) is a set of
the form A; x Aj, for some A; C “2 with |A;| = w; (for [ =0,1). A perfect
square is P x P with P C “2 perfect. A perfect rectangle is P; X Py with
P; C “2 perfect. Note that a perfect rectangle is a (2%, 2%0)-rectangle and
a perfect square is a 2%°-square.

P, Q denote perfect sets; P, Q denote forcing notions; P, @), R denote
predicates.

A k-Suslin set is {n € “2 : for some v we have (n,v) € lim(7")} for some
(2, k)-tree T' (see below). A k-Suslin relation (say an n-place relation) is
defined similarly.

For A = (A\¢ : ( < ((¥)), a A-tree is

T C U H "(A¢), ordered by n<av& /\ Ne Qe
n (<((*) ¢<C(*)

We usually let 7]l = (n¢[l: ¢ < ((x)).
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For a M-tree T we define

lim(7T {776 H n<w:>77[n€T}
¢<¢()
(where <7]< 1< ((*)In= < T 1 ¢ < ((*))) and
lim ™ ( {77 € H : (37 € im T)(Fk < w)
¢<¢(*)
N ncllkw) =t 1kw)) |-
¢<¢(*)

We will use mainly (2,2)-trees and (2, 2, k)-trees.
Let n ~, v mean that 7, v are sequences of ordinals, 1g(n) = lg(v) and

(VE)[n < k <lg(n) = n(k) = v(k)].
For a tree T as above, u C ((x) and n < w let

T(~nu) — {17 : (3k) (T € lim(T [u € H (A¢) & € H
<) ¢<¢)

& (¥C € u)(ne ~n ¢ rk>] }.

Let Fr, (A, i, k) mean that if F,, are n-place functions from A to A (for
a < k) then for some A € [A\]* we have

an, # Fyo(ag,...,an—1) for distinct ag,...,a, € A and a < k.

Model theory. Vocabularies are denoted by 7, so languages are denoted
by e.g. L, ¢(7), models are denoted by M, N. The universe of M is |M]|,
its cardinality ||[M]|. The vocabulary of M is 7(M) and the vocabulary of
T (a theory or sentence) is 7(T). RM is the interpretation of R in M (for
R € 7(M)). For a model M and a set B C M we have: a € cle.(B, M) iff
for some quantifier free ¢ = p(y,z1,...,2,) and by, ..., b, € B we have

M E la, by, ..., by) & (3<F2)p(x, by, ..., by).

Let cl,, (B, M) = cl.+(B, M) and cl(B, M) = cleo(B, M). (Note that if M
has Skolem functions then cley, (B, M) = cleo(B, M) for every B C |M]|.)
If k is an ordinal we mean || (needed just for phrasing absoluteness results;
that is, if we use a cardinal x in a universe V, and then deal with a generic
extension V', then maybe in V¥, k is no longer a cardinal but we like to
still use it as a parameter). Let T denote a theory, first order if not said
otherwise.

1. The rank and the Borel sets

DEFINITION 1.1. (1) For [ < 6, cardinals A > k, 6, and an ordinal «, let
Prfx()\; < Kk, ) mean that for every model M with universe A and vocabulary
of cardinality < 0, rk'(M; < k) > a (defined below), and let NPr!, (\; < , )
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be the negation. Instead of “< k™7 we may write s (similarly below); if xk =
0T we may omit it (so e.g. Prl,(\; k) means Prl (\; < kT, k)); if 0 =Ry, k =
N; we may omit them. Lastly, let AL (< &, 0) = min{\ : Prl (\; <k, 0)}.
(2) For a model M,
rk! (M; < k) = sup{rk'(w, M; < k) + 1 : w C |M| finite nonempty}
where k! is defined below in part (3).

(3) For a model M and w € [M]* := {u : u C |M] is finite nonempty},
we shall define below the truth value of rk'(w, M; < k) > o by induction on
the ordinal « (note that if cle,(w, M) = cla(w, M) for every w € [M]* then
for 1 = 0,1, k can be omitted). Then we can observe:

()0  a<B&rki(w,M;<k)>pg=rk'(w, M;<k)>a,

()1 rkl(w, M;<k)>6 (0 limit) iff Na<s rk! (w, M; < k) > a,

(*)2  rk'(w,M;<k) > 0iff we [M]* and no a € wis in cle,(w\ {a}, M).
So we can define rkl(w, M; < k) = « as the maximal « such that rk! (w, M;
< k) > a, and oo if this holds for every o (and —1 whenever rk'(w, M; < k)
7 0).

Now the inductive definition of rk'(w, M;< k) > o was already done
above for a = 0 (by (%)2) and « limit (by (*)1), so for a = 8+ 1 we let
(x)s  tk'(w, M;<k) > B+ 1 iff (letting n = |w|, w = {ag,...,an_1}) for

every k < m and a quantifier free formula ¢(zg,...,z,—1) (in the
vocabulary of M) for which M = ¢[ag,...,a,—1] we have:
CASE 1: [ = 1. There are a’, € M for m < n, i < 2 such that:

(a) k'({al, i < 2, m <n},M;< k) >3,

(b) M = p[ad, . .. 7@%—1] (for i = 1,2), so we can assume there is no
repetition in ay,...,a,_q,

(c) a # aj. but for m # k (such that m < n) we have a2, = al .

CAsE 2: [ =0. As for I =1 but in addition

(d) /\m Am = a?’n‘

CASE 3: I = 3. We give to k an additional role and the definition is

like case 1 but i < k; i.e. there are a!, € M for m < n, i < k such

that:

(a) for i < j < K we have rk!({al,,al, - m < n}, M;<r) >0,

(b) M = pla, . ..,al,_4] (for i < k; so we can assume there are no
repetitions in al, ..., al_;),

(c) fori < j <, @2 # aj. but for m # k (such that m < n) we have
Nij<r Gm = G-
CASE 4: | = 2. Like case 3 but in addition

(d) ay, = a2, for m < n.
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CASE 5: [ = 5. Like case 3 except that we replace clause (a) by

(a)~ for every function F' with Dom(F") = k and |Rang(F')| < &, for
some i < j < k we have F'(i) = F(j) and

rk'({al,,al, - m <n}, M;<rK)> 0.
CASE 6: [ = 4. Like case 4 (i.e. [ = 2) with (a)~ instead of (a).

We will actually use the above definition for I/ = 0 mainly. As the cardinal
AL (<R, Rg) = AL, (for I < 2) may increase when the universe of set theory
is extended (new models may be added) we will need some upper bounds
which are preserved by suitable forcing. The case [ = 2 provides one (and
it is good: it does not increase when the universe is extended by a c.c.c.
forcing). The case | = 4 shows how much we can strengthen the definition,
to show for which forcing notions lower bounds for the rank for [ = 0 are
preserved. Odd cases show that variants of the definition are immaterial.

CLAIM 1.2. (1) The truth of each of the statements P’ (\; < k,6), tk'(M;
<K) > a, rkl(w,M; < K) > « 1is preserved if we replace | =0,2,3,2,2,2,3,
5,4 byl =1,3,1,0,1,4,5,1,5 respectively (i.e. 2 - 4,3 -5 — 1,0 — 1,
2—-34—-53—-1,2—0,2— 1) and also if we decrease o, k,0 or
increase A (the last two only when M is not a parameter). So the corre-
sponding inequality on A, (< k, ) holds.

(2) Also rk'(wy, M; < k) > vk (wy, M; < k) for wy C wy from [M]*.

(3) Also if we expand M, the ranks (of w € [M]*, of M) can only de-
crease.

(4) If A C M is defined by a quantifier free formula with parameters
from a finite subset w* of M, M is M expanded by the relations defined
by quantifier free formulas with parameters from w*, M* = M*IA (for
simplicity M* has relations only) then for w € [A]* such that w € w*
we have rkl(w,M*;</<;) > rkl(w U w*, M;<k). Hence if w* = 0, then
rk! (M*; < k) > k' (M; < k)

(5) In 1.1(3)(x)2, if in the definition of cle, we allow any first order
formula, this means just expanding M by relations for any first order formula

p(T)-

(6) For | odd, rk'(w, M;< k) > (|7(M)| 4+ Ro)T implies rk'(u, M; < k)
= 00.

(7) AL (<k,0) increases (<) with o, 6 and decreases with k.

(8) There is no difference between | =4 and |l = 5.

Proof. Check [e.g. for part (8), we can use a function F' such that
(Va < k)(F(0) # F(1+ a)]. m
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Cram 1.3. (1) For I = 0, if « = rk'(M;<k) (<o0) then for some

expansion M+ of M by < Vg + |a| relations, for every w € [M|* we have

k! (w, MT; < k) < 1k (w, M; < k).

(2) Similarly for 1 = 2,4.
(3) If Vg is a transitive class of V1 (both models of ZFC) and M € Vy

is a model then:

(a) forl < 4:
(@) [tk (w, M; < &)]Vo < [tk (w, M; < &)V for w € [M]*,
(B) k' (M; < R)]Vo < ik (M < )]V,
(v) if L =0,1 then equality holds in («), (B),
(@) Pa(m)IYe < Pa(w)]V* if 1=0,1.

(b) Assume:

(i) for every f : k — Ord from Vi there is A € [K]" such that
fTA € Vg, or at least

(ii) every graph H on X from Vo which in V1 has a complete
subgraph of size k, has such a subgraph in Vo, which holds if
(i)t Vi = VE where P is a forcing notion satisfying the -
Knaster Condition.

Then forl = 2,3, in (), (B) (of (a)) above equalities hold, and
the inequality in (0) holds.

(c) Assume Vi = VE where P is k-2-linked. Then for | = 4,5, in
clauses (), (B) (of (a)) above we have equality, and the inequality
in (0) holds.

Proof. (1) For # < «, n < w, a quantifier free formula ¢ = ¢(zg,...

ooy, Tp—1) and k < n let

Rj = {{ag,...,an-1) : am € M for m < n and
3= rkl({ao, cey Qo1 b, My <k)}
Rg:f; = {(ao,...,an—1) € REM = ¢lao, ..., a,_1] and
for no ay. € |[M|\ {ao, ..., an_1} do we have
(a) M ): QD[CL(), .. '7ak'717allg7ak+17 cee 7an71]7
(8) Tk ({am = m < n} U{at}, M <r) = 8},
Mt =(M,... Ry, REE. . )pcamcwhene.

Check (or see more details in the proof of 1.10 below).

(2) Similarly.



Borel sets with large squares 9

(3) The proof should be clear (for (b), look at Definition 1.1, case 3; the
graph is {(4,7) : clause (a) there holds}). m 3

REMARK 1.4. (1) In 1.3(1) we can omit “a = rk'(M; < x)” but then we

must weaken the conclusion to
k'™ (w, MT; < k) <1k'(w, M;< k) or both are > a.

(2) Similarly in 1.3(2).

CoNCLUSION 1.5. (1) Pr) (A) & Prl ()\) < Prl (\) & P2 (\) «
P12 (\) & P2 (\).

(2) If a < kT then Pro(\; k) & Pri(\k) < Pri(\ k) © Pr2(\ k) <
Pr2 (A k) < Prd (A k).

(3) For a < k*, X (k) = ALF (k) for 1 = 0,2,4, and MO (k) < Ai(k) <
A2 (k).

(4) For a >kt and 1 = 0,2,4 we have \F1(rk) = A H (k).

Proof. (1) By (2).

(2) For o = k™ this follows from its holding for every a < ™. For v < 7
and [ = 0,2,4 we know that NPr! (\; k) = NPri (A k) by 1.3(1),(2), and
Prl (\; k) = PrH(\; k) by 1.2(1); together Pr,(\; k) < Prif'(\; k). Now
Pr? (\; k) = Pr>(\; k) = Prl(\; k) by 1.2(1); altogether we finish. (By 2.1
we know more.)

(3) Follows from part (2) and the definition.

(1) By 1.2(6). =5

CONVENTION 1.6. Writing Pr,()\; k) for @ < k7 (omitting [) we mean
[ = 0. Similarly A\, (< k,0) and so A\, (k) etc.

Cramv 1.7. Let 1 € {0,2,4}.

(1) NPrL+1(’i+a§H)~

(2) If a is a limit ordinal < k% (in fact, g < cf(a) < kT suffice) and
NPrg(Ag; k) for B < « then NPTL+1(E§<Q A3 K).

(3) If NPrl (\; k) then NPr! (At k).

(4) If NPt (11;5) for every p < X then NPt (\; k).

Proof. (1) Prove by induction on o < s, for & = 0 use a model in which
every element is definable (e.g. an individual constant) so rk(w; M) = —1
for w € [M]* and hence rk'(M) = 0 and consequently NPr!(k;x); for «
limit use part (2) and for a successor use part (3).

(2) Let My witness NPrg(Ag; k) for < a, i.e. tk'(Mg; k) < § and Mg
has universe \g and |7(M3)| < k. Without loss of generality (7(Mg) : 8 < «)
are pairwise disjoint and disjoint from {Pg : § < «a}. Let M have uni-
verse A 1= ) 5, Ag, Py" = Xg, and M|)\g expand Mg and [7(M)| <
o] + Y pca [T(Mp)| < k. By 1.2(3),(4), for w € [Ag]*, tk'(w, M;k) <
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vk (w, Mg; k) < B < a. But w € [|M|]* implies V<o w € [Ag]*. Clearly
rk(M; k) < a and hence NPerl()\; K).

(3) We define M such that each v € [A\,A\T) codes on {¢ : ¢ < 7}
an example for NPr,(|y];k). More elaborately, let M be a model with
universe A such that rk'(M;k) < a. Let 7(M) be {R; : i < i* < r},
R; an n(i)-place predicate (as we replace function symbols and individ-
ual constants by predicates), Ry is a O-nary predicate representing “the
truth”. For v € [A,AT) let f, be a one-to-one function from ~ onto A.
Define 77 = {R;,Q; : i < i* < k} where R; is n(i)-place and Q; is
(n(i)+1)-place. So |7F| < . We define a 7F-model M *: the universe is AT,
Ry+ = Rz]\/la wa+ = {<a0a--'aan(i)> P On(s) € [)" )‘Jr)a /\l<n(i) o) < A (3)
and (fa, (@0), -+, fanq (Qn(i)-1)) € RM} (so Qé\/ﬁ = [A\,AT)). Now note
that:

(a) for w € [A]*, rk'(w, M k) < rk'(w, M; k),

(b) if @ #w C v € [\, A) then 1k (w U {v}, M*+; k) < k' (f/[w], M; k)

easy to check). So if v < AT then

(
()1 vy <A = ok ({y}, Mt k) <tk({}, M; k) < 1K' (M; k),
(*)2  yeMAD) & B>k (M;r) = tk({y}, MT;k) < 8.

(Why (*)2? Assume not and let k¥ = 2, k2 = k* = k7. If (3, 1 i <
strictly increasing witnesses rk'({y}, M) > 8 + 1 for the formula Qg
then for some i < j < ! we have rkl({’yi,vj},MJr) > 3 and applyin
with {7;}, 7, here standing for w, ~ there we get rkl({fw (i)}, M)
hence 3 + 1 < rk'(M), a contradiction.)

Hence

v o
=

(x)s  rk"(M*;k) < k' (M;k)+1.

As k! (M k) < o, clearly M witnesses NPro1 (AT K).
(4) Like (3) .7

CONCLUSION 1.8. Remembering A, (k) = min{\ : Pr,(\; )} we have:

(1) for a a limit ordinal, Ao (k) < Ju(k) and even N2 (k) < 3o (k),

(2) forl even, (N (k) : 0 < a < 00) is strictly increasing, and for a limit
ordinal §, A\s(k) = sup,cs Aa(K),

(3) Mo(k) = Ai(k) = K, Aa(k) = kT, KT < A\u(kK) < KT and A\, (K) =
KT,

REMARK 1.9. A2 (k) < J,xa(k) is proved below essentially like the
Morley omitting types theorem (see [Mo], [CK] or [Sh a, VII, §5] = [Sh c,
VII, §5]).
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Proof (of Conclusion 1.8). (1) We prove by induction on « that for every
ordinal 3 < o, model M with |7(M)| < k, and A C |[M| with |A| > Jyxa(k),
and m,n < w, there is w C A with |w| = n such that rk*(w, M;k) >
w X B+ m.

For @ = 0 and « limit this is immediate. For « = v+ 1 (and M, A, 3, n,
m as above), applying the Erdés-Rado theorem we can find distinct a; € A
for ¢ < 3, x~(k)TT such that:

(a) for all 49 < ... <'y4n the quantifier free type (as,,...,a;,,,,) in M
is the same,

(b) for each k < m 4 n and every ip < ... < iptm—k < Jwx~(K), the
ordinal min{w x a,tk*({as, ..., ai,,, .}, M;x)} is the same.

By the induction hypothesis, in clause (b) the value is > w x . Hence we
can prove, by induction on k < m +n, that vk*({as,, ..., ai,,,. .}, M;K) >
wXy+k whenever ig < ... < iyin—k < Jwx~(x). For k = 0 this holds by the
previous sentence, for k+ 1 use the definition and the induction hypothesis,
for rk? note that by clause (b) without loss of generality 4; + k* < 4,4, and
a;,+¢ for ¢ <k are well defined. For k = m we are done.

(2) The sequence is increasing by 1.2(1), strict by 1.7(4), continuous
because, for limit &, as on the one hand M\;(x) > sup, .5 AL, (k) since A§(k) >
A (k) for a < 6, and on the other hand if M is a model with universe \ :=
SUP, <5 Aa(k) and |7(M)] < & then o < § = 1k (M; k) > k" (M [Aa; K) > «
hence 1k! (M; k) > 8. So Pro(); k) hence A > Xi(k) so sup, 5 AL (k) = A >
)\g; altogether, we are done.

(3) By [Sh 49] (for the last two clauses; the first two are trivial), will not
be really used here. m; g

Cram 1.10. (1) Assume P is a forcing notion satisfying the k*-c.c. If
Pr? (\;k) and a < k*, then this also holds in V.

(2) If P is a kt-2-linked forcing notion (or just: if p; € P for i < x*
then for some F : kt — k, F(i) = F(j) = pi, pj compatible), and o < k7
and Pr2 (\; k), then this holds in V.

REMARK 1.11. (1) NPr,(A; k) is of course preserved by any extension
as the ranks rk'(M; k), rk'(w, M; ) are absolute for I = 0,1 (see 1.3(3)).
But the forcing can add new models.

(2) So for a < K+ we have A\, (k) < M (k) < A2 (k), and a kT -c.c. forcing
notion can only increase the first (by 1.3(3)(a)(d)) and decrease the third by
1.10(1); a x*-2-linked one fixes the second and third (as it can only decrease
it by 1.10(1) and can only increase it by 1.3(3)(c).

(3) We can deal similarly with Pr!,(\; < &,8), here and in 1.3-1.8.

Proof (of Claim 1.10). We can concentrate on (1); anyhow let [ = {3,5}
(for part (1) we use [ = 3, for part (2) we shall use [ = 5, we shall return to
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it later). Assume Pr2 ()\; «) fails in VF. So for some p* € P and ag < a we
have

p" IFp “M is a model with universe A, vocabulary 7 of cardinality < k
and k' (M; k) = ag”.

Without loss of generality, every quantifier free formula ¢(zg,...,z,—1) is
equivalent to one of the form R(xq,...,zp-1), and 7 = {R,¢ : n < w,
¢ < K} with R, an n-place predicate. Note that necessarily ag < s¥,
hence |ap| < &.

As we can replace P by P[{q € P : p* < ¢}, we can assume p* is the
minimal member of P. Now for nonzero n < w, k < n, ( < k and 8 < ag
(or B = —1) we define an n-place relation R, ¢ g1 on A by

R, ¢ pr={(ao,...,an—1) : ay, € A with no repetitions and for some peP,
plFp “M = Ry ¢lao, ... an—1] & rkl({ao, cey o1t My R) =,
where “not rk*({ag,...,an_1}, M;k) > §+ 17 is witnessed by
¢ =Ry ¢ and k" }.

Let MT = (N\,...,Ruc ks Jn<wi<nrB<agk<n, SO MT is a model in V

with universe A\ and vocabulary of cardinality < k. It suffices to prove that

for 8 < ag,

®ﬁ if w= {ao, ey CLn_l} € [M+]*, M+ ’: Rn’4757;€[a0, . ,an_l]

then rk'({ao,...,an_1}, Mt;x) < 8

(note that by the choice of M and R, ¢ g, if w € [MT]* then for some

n,¢, 3,k we have M™ = R, ¢ 5 xlao, - - ., an—1]).

This we prove by induction on 3, so assume the conclusion fails, that is,

rkl({ao, .. ,an_l},M+;/<a) >06+1

(and eventually we shall get a contradiction). By the definition of rk? applied
to » = Ry gk, B and k we know that there are a, (for m <n, i < k™) as
in Definition 1.1(3), case [ = 3. In particular, M+ = R, ¢ gxlad, ..., a,_4].
So for each i < k™ by the definition of R, ¢ g necessarily there is p; € P
such that

pilFp “M = R, clab, ..., ak 4], rkl({aé, ad L Mik) =0
and k' ({ad,...,a’ _},M;k) # B +1 is witnessed by
¢ =R, and k.

For part (1), as P satisfies the k*-c.c., for some ¢ € P, ¢ IFY = {i :
pi € Gp} has cardinality ™7 (in fact, p; forces it for every large enough 7).
Looking at the definition of the rank in V¥ we see that ((af,...,a’,_;):i €
Y) cannot be a witness for “the demand for rk*({ai?,...,a }, M;r) > f3
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for Ry, ¢ holds” for any (or some) iy € Y, so for part (1),
(*)  qlrp “k3({ad,...,a,_1,al}, M;x) < 8 for some i # j in Y

(as the demand on equalities holds trivially).

As we can increase ¢, we can assume that ¢ forces a value to those i, j,
hence without loss of generality for some n(x) = n+1 < w, ((*) < xk and
B(x) < (8 and for k(x) < n + 1 we have

glkp “tk*({ap, ..., a}_y,al}, M; k) = B(x), and
rk®({al, ... al_y,al}, M;k) # B(x) + 1 is witnessed by
© = Ry(s),c)(Tos - -+, ) and k(*)”.
Hence by the definition of Ry, (.)¢(«),8(x),k(+) We have

M Ry, ¢(4),600) k(0) [0, - - - a1, 0]
As (*) < B, by the induction hypothesis ®g.) holds and hence

rk3({a6, R afz—lv ai}’ M+; H) < /8(*)7
but this contradicts the choice of @, (m < n,i < k) above (i.e. clause (a)
of Definition 1.1(3), case [ = 3). This contradiction finishes the induction
step in the proof of ®g, hence the proof of 1.10(1).

For part (2), we have (p; : i < k) as above. In VP if Y = {i :
pi € Gp} has cardinality T, then ((a},...,a’_;) : i € Y) cannot wit-
ness rk®({ag, ..., an_1}, M;k) > 3+ 1 so there is a function FO : ¥ — &
witnessing it; i.e.

IFp “if Y| = kT then
ieY&jeY &i#j&Fi) = F°(j) =
ﬁ > rk5({aé,. "aaiz—l} U {a%,.. . 7azz—1}aM; K)”'

If Y| <k, let F°:Y — k be one-to-one. Let p; < ¢q; € P, ¢; IF F°(i) = ;.
As P is /{* 2-linked, for some function F': k% — x we have (Vi,j < k™)
(F1(i) = F'(j) = ¢i,q; are compatible in P). We now define a function F'
from Y to k by F(i) = pr(vy;, F*(i)) (you can use any pairing function pr
on k). Soif i < j < k* and F (i) = F(j) then there is ¢; ; such that P =
“qi < qi,j & q; < q;;7, hence g; ; Ikp “0k°({af, ..., a\_1,al}, M;K) < 37,
so possibly increasing ¢; ;, for some 3; ; < 8, (;.; < K, and k; ; <n we have
4i,j I ‘trk‘a({aéa ce 7a£1717 ai:}a M§ '%) ﬁz NE and rk5({a07 AR n 1 ak})
Bi,j + 1 is witnessed by ¢ = Ry41,¢,,(Z0,...,2,) and k; ;7.
Hence by the definition of RnH,Q,j,Bi,j,k- - we have

2,7

M ): Rn+1a<i,j,6i,j7ki,j [af), sy a;;z—lv ai];
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but 8; ; < 3 and hence by the induction hypothesis
rk5({aé7 LR aiL—l? ai}, MJFS '%) < ﬁiJ‘

So F contradicts the choice of ((af,...,al,_;) : i < k1), i.e. clause (a)~ of
Definition 1.1, case 5. m; 1g

CLAIM 1.12. Let B C “2x“2 be a Borel or even analytic set and Pr,, (\).

(1) If B contains a A-square then B contains a perfect square.

(2) If B contains a (A, \)-rectangle then B contains a perfect rectangle.

(3) We can replace analytic by k-Suslin if Pr+(\; k). (This applies to
X1 sets which are Ri-Suslin.)

Proof. You can apply the results of Section 2 to prove 1.12; specifically,
2.1(1)=(2) proves parts (1), (2) and 2.5(1) proves part (3); those results of
§2 say more, hence their proof should be clearer.

However, we give a proof of part (1) here for the reader who is going to
read this section only. Suppose that B C “2 x “2 is a Borel or even analytic
set containing a A-square. Let T be a (2,2, w)-tree such that

B = {(no,m) € “2x“2: (30 € “w)[(no,n,0) € lim(T)]},

and let {n, : @ < A} C “2 be such that the square determined by it is
contained in B and a < f < XA = ny # ng. For o, 8 < A let F(o, ) € “w
be such that (94,73, F (o, 3)) € im(T). Define a model M with universe
A and vocabulary 7 = {Ry, 1, v, Quow : V0,1 € 72 and v € “”w} where
each R,, ,, . is a binary predicate, (),,,, is a unary predicate and

M, ={a<Xivgan.&vaF(a,a)},
RY L, ={(a,B) € Xx X:vg<an.&viang&vaF(a,B)}.

By Pr,, (\) we know that k(M) > w;.
A pair (u, h) is called an n-approzimation if u C "2, h: u X u — "w and
for every v < w; there is w € [A]* such that:

(@®1) u={naln:acw}and nyln # ngln for distinct o, § € w,
(@2) 1k (w, M) > 7,
(®5)  Fla, B)n = h(naln,nsln) for a, f € w; hence
M |= Ry 1nngin,h(nanng il O]
for a, B € w.

Note that ({()},{(((),()),())}) is a 0-approximation. Moreover,

(%)o  if (u, h) is an n-approximation and v* € w then there are m > n and
an m-approximation (u,h™) such that:

i) veu\{r'} = @AwHw<arvt eut),



Borel sets with large squares 15

(i) (32v)(v* <vt € ut) (where 322 means “there are exactly 2
I‘,S”)

(i) v € ut = v|n € u and

(iv) if v1,v9 € u™ then

[R(v1In,valn) < ht (v, 1) or (v1]n = van = v* & vy # 1))

[Why? For each v < w; choose w., satisfying (®1), (®2) and (®3) for v +1,
now apply the definition of rk° (if w, = {a) : I < |w,|}, v* < Moy and
k < |w,| we apply it to k) to get wl = w, U {a,} satisfying (1), (®2)
and (@3) for 7, then choose m, € (n,w) such that (n,[m, : a € wl) is
with no repetitions. Lastly, as there are only countably many possibilities
for (mey, {nalm : & € wi }, {(na My, ms ey, Fon §)Ims) o, f € wi}) for
v < w1, there is a value taken for uncountably many ; let v* be one of them.
Choose m = m-, ut = {na[m : o € wl} and define A to satisfy (©3).]
Repeating the procedure of (%) |u| times we get

(%)1  ifu={y 1<k} C™2 (no repetition) and (u, h) is an n-approxima-
tion then there are m, u* = {y;" : 1 < 2k} and h™ such that (u™, hT)
is an m-approximation for some m > n and:

(1) v vy, v < VQEH, vy # I/Z_H,

(i) if I < k and i < 2 then h(vy,v) < bt (v3;,v5),,) and

(ii) if Iy # la, l1,lo < k, 4,7 < 2 then h(v,,v,) < h+(’/;ll+z‘7’/;lz+j)'
Consequently, we have
(¥)2  there are sequences (n; : i < w) C w and ((u;, h;) : i € w) such that

n; < Mit+1, (ui, h;) is an n;-approximation and (u;, h;), (wiy1,hit1)

are like (u,h), (u™, h™) of (x);.

Now, let (n; : i < w) and ((u;, h;) : i € w) be as in (). Define
P={ne“2:(View)(nn; €w)}.

By ()1 for (#it1,hit1) we know that P is a perfect set. We claim that
P x P C B. Suppose that n',n" € P and 1’ # n". Then n'[n;.) # 1" 1404
for some i(x) < w and the sequence (h;(n'[n;,n"n;) : i(x) < i < w)
is <-increasing and (as (u;, h;) are approximations) (n'[n;,n" n:, hi(n'[n;,
n”In;)) € T is increasing for i € [i(x),w). The case n’ = n’’ € P is easier.
The claim is proved. m; 12

THEOREM 1.13. Assume NPr,, (\) and A < pu = uXo. Then for some
c.c.c. forcing notion P, |P| = p and IFp“2% = 1" and in V¥ we have

(x)  there is a Borel set B C “2 x “2 such that:

(a) it contains a \-square, i.e. there are pairwise distinct ne, € “2 for
a < A such that (na,ng) € B for a, f < A,
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(b) let V |= A¥ = X\i; B contains no A\ -square, i.e. there are no
Na € “2 (for a < \]) such that [a # B = 1o # 1] and (Na,mp) €
B for a, 8 < \T,

(¢) B contains no perfect square.

Actually, B is a countable union of closed sets.

Proof. STAGE A. Clearly for some a(x) < w; we have NPri(*)()\).
Let M be a model with universe A and a countable vocabulary such that
k' (M) < a(x), say with <M the usual order. Let functions ™, kM with
domains

A" = {u:u C A\ uis finite and u # 0}
be such that if v = {ag,...,an_1} € [A]* is increasing for definiteness
and 8 = 1k%(u, M) (< (%)) then oM (u) is a quantifier free formula in
the vocabulary of M in the variables xzg,...,z,_1 for simplicity saying
r9 < ¥1 < ... < xp_1, KM (u) is a natural number < n = |u| such that
oM (u), kM (u) witness rk'(u, M) # §+ 1 (the same definition makes sense
even if 3 = —1). In particular,

M= M) a,.. Jocu-

We define the forcing notion P. We can put the diagonal {(n,7n) : n €
“2} into B so we can ignore it. We want to produce (in VF) a Borel set
B =, <., Bn, with each B,, (C “2 x “2) closed (in fact perfect), so B,, is
lim(7;,) for some (2,2)-tree T,,, By is the diagonal, and 77 = (1, : @ < p) as
witnesses to 280 > 1 and such that {n, : a < A} gives the desired square. So
for some 2-place function g from A to w, a # 8 = (14, 1p) € lim(Ty(q,4)), all
this after we force. But we know that we shall have to use M (by 1.12). In
the forcing our problem will be to prove the c.c.c., which will be resolved by
using M (and rank) in the definition of the forcing. We shall have a function
f which puts the information on the rank into the trees to help in not having
a perfect square. Specifically, the domain of f is a subset of

{(u,h): Al € w)(u e ['2]*) and h:u x u — w}

(the functions h above are thought of as indexing the B,’s). The function
f will be such that for any distinct ag,...,an—1 < A, if (N, [l 1 t < n)
are pairwise distinct, v = {14, [l : t < n}, h(na, [, M0, 1) = g(ay, as) and
(u,h) € Dom(f) then rk'({oy : I < n},M) = fo(u,h), and fi(u,h) is
Doy [l, where k = kM ({ay = t < n}), fa(u,h) = oM ({ay : | < n}) writing
the variable as x,, v € u, and f(u,h) = (fo(u,h), f1(u,h), f2(u,h)). (Note
that f is a way to say J, 1im(7},) contains no perfect square; essentially it
is equivalent to fixing an appropriate rank.) All this was to motivate the
definition of the forcing notion P.
A condition p (of P) is an approximation to all this; it consists of:
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(1) uP = u|p], a finite subset of p.

(2) n? = n[p] < w and 72 = nu[p] € "P12 for a € wulp] such that
a# B =k # .

(3) mP = (m¥ : 1 < nP) is a strictly increasing sequence of natural
numbers with last element m? ) =M = m[p] and for m < mlp|, we have
th = tm[p] C Uzgn[p](l2 x 12) which is downward closed (i.e., (vp,v1) €
t;?n N (l2 X l2) & k < | = (l/o,l/l)”{? = (I/Ork,yl [k‘) € tfn), also (<>, <>) € t%
and defining < naturally we have:

if (no,m) €2, N('2x'2) and I < n?
then (Jvg, v1)[(n0,m) < (vo, 1) € £, N (12 x 1H12)].
(4) A function fP = f[p] whose domain is a subset of

{(u,h) : for some I < n[p], v C'2, |u| >1, his a 2-place
function from u to m[p] such that [n € u = h(n,n) = 0]
and [n,v € u= (n,v) €ty I}
and f? is such that
fP(u, h) = (f5 (u, h), f1 (u, h), f3 (u, h)) € [=1, a(x)) X w X Ly o (7(M)).

(5) A function g = ¢” with domain {(o, ) : «,  from u?” N A} such
that g(a,a) = 0 and a # 3 = [0 < g(, 8) < mP and (n5,7m5) € 7, 5 N
(MP)2 x ™MP)2)],

(6) tg = {(n,n) :m e ™2},

() Ifu C 12, |u| > 1, fP(u,h) = (8%, 0%,¢*), and | < I(x) < nP, e; are
functions with domain w (for ¢ = 0,1) such that (Vo)[p € u = p < €;(0) €
{)2]) and (Vo € u)[eo(0) = e1(0) < 0 # 0*], v = Rang(eg|u) URang(e; [u),
and h(n,v) = h'(e;(n),ei(v)) for n # v in uw and fP(u',h') = (', 0',¢") (so
is well defined) then 3 < *.

(8) If I <nP, w C uwP N A is nonempty, the sequence (n2[l : a € w) is
with no repetitions and h is defined by h(n%[l,n5[1) = g*(a,3) < mj for
a # [ from w (and h(n2[l,nE[l) = 0) and u = {nE [l : o € w} then fP(u,h)
is well defined, f5(u,h) = ™ (w), fF(u,h) = nE |l where a is the k™ (w)th
member of w and f5(u, h) = rk'(w, M); of course in f%(u, h) = o™ (w) the
variable x,, in f3(u, h) corresponds to #|qnw| if 741 = v (see last clause of
@, below).

(9) If (u, h) € Dom(fP) then for some w and I, fP(u,h) is as in (8).

(10) If 1y # m2 are in '2 with [ < nP and (11, 72) € t2, with 0 < m < mP
then for some a; # as from u? N X we have gP(ai, ) = m and 7y I 7k,
n2 N4,

The order is the natural one (including the following requirements: if
p < g then n? < n? mP < m4, mP = mi[(nP + 1), u? C u?, nin? = nk
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for a € wP, t?, =t N Uzgn[p](l2 x 12) for m < mP, gP = g9[uP and fP =
fa1{(u,h) € Dom(f?) : u C ""22}, so if (u,h) ¢ Dom(fP) with u C »"22
then (u, h) ¢ Dom(f9)).

Ezplanation. The function fP of a condition p € P carries no additional
information. It is determined by the functions g?, o™, kM and the rank.
Conditions (8), (9) are to say that
®p ifwo,wr STANUP, I <nP,u={nE[l:acw}={nhll:acw}

(no repetitions) are nonempty and h : u X u — mP is such that [if
either a, 8 € wy or «, 3 € wy then h(nE]l, ng ) = g*(a, )], then
K (1w, M) = 1k (w1, M), oM (wo) = oM (wr), K (1wg) = kM (),
and if o, B; € w; for i = 0,1 and 14, [l = 14, [, 1, [l = np, [l then
ap < a1 = fo < b

Moreover, condition (7) gives no additional restriction unless f§ (u, h) =
—1. Indeed, suppose that v C 2, |u| > 1,1 < I(¥) < nP, e; : u — 2, h,
0* € u, v and h' are as there and f§(u,h) > 0. As fP(u',h’) is defined we
find w C ANwuP and ap, a1 € w (ag # 1) such that v’ = {NL]l(x) : a € w},
R (BT (+), 5 l(*)) = gP(a, B) < my and e;(0*) = &, [I(*) (for i = 0,1).
Looking at w \ {ap}, w \ {a1} and (u, h) we see that

o0 = k¥ (w\ {ar}). ¥\ fa0}) = oM (w\ {au))
k' (w\ {a1}, M) = f2(u,h) > 0.
By the definition of the rank and the choice of o™, kM we get rk' (w, M) =
f&(u, h) and hence f5(u',h'") < f5(u,h).

If f8(u,h) = —1 then clause (7) says that there are no respective eg, e

introducing a ramification.

STAGE B. P satisfies the c.c.c. Let p' € P for i < wyq; let ufp’] = {al :
I < |u[p']|} increasing, so with no repetltlon We can assume that lu[p?]|
does not depend on i, nor do n[p?], na%, mP, <t£1 cm < mP'), g*' (aj,,aj,),
flp'], and for a nonempty v C |u[p]| such that A,c, a] < A, k! ({a} :
levy, M),pM({al: 1 €v}), kM ({a} : 1 € v}) and the truth value of al > X
does not depend on i. Note that writing ¢[w]| we always assume that ¢

carries information on the order of w.
Also by the A-system argument, without loss of generality,

i1 i2 . . i 1
aj, =ap, &i' #i* =1 = lg&/\all = aj,.
(2]
We shall show that pY, p! are compatible by defining a common upper
bound g¢:
(i) n?=nlp'|+1.
(ii) u? = {aj : I < |u[p’]], @ < 2}.
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(i) 72, is: nZ; AOY if i = 0, nZ; ML) = ng; A1) ifi =1 and af # al.

(iv) mlg] = m[p®] +2 x [N ufp”] \ ulp')|2, m? = mP" " (mlg]).

(v) g2 D gPo UgP' is such that g? assigns new (i.e. in [m?, m?)) distinct
values to “new” pairs (a, 3) with a # 3, i.e. pairs from (A x \) N (u? x u?) \
u?” x uP’ \up1 X uP'.

(vi) The trees tZ, (for m < m|q]) are defined as follows. If m = 0 see
clause (6); if m < m[p°], m > 0 then

td = tf,(; U {(ngfl,ng%) : e € {0,1} and distinct 11,1y < |u[p°]|
satisfying gpo(a?I,a?2) =m};
and if m € [m[p°],m[q]), m = g%(, B) and o # 3 then
th = {41 n510) : 1 < n}.

(vii) If m € [m[p°],m[q]) then m = g%(«,3) for one and only one pair

(a, 3), and for this pair we have a # 3, {a, 8} € u[p®] and {«, B} Z u[p!].
(viii) The function f? is determined by ¢g? and clauses (8), (9) of stage A.

Of course we have to check that no contradiction appears when we de-
fine f? (i.e. we have to check @, of the Explanation inside stage A for
q). So suppose that wo,w; € ANulg], I < nlg], u,h are as in &y. If
wo C ulp’] (for some i < 2) then g?(c, ) < m[p°] for a, B € wp and therefore
gw; x w1] € m[p°]. Consequently, either w; C u[p’] or wy C wup!]. If
I = n? then necessarily wy = w; so we have nothing to prove. If [ < n? then
(u,h) € Dom(fpo) (and = fpl) and clause 8 of stage A applies.

If wy is contained neither in u[p®] nor in u[p!] then g4(a, B) € [m[p°], m[q])
for some a, 3 € wp, hence | = n4, and so since {nd[l : o € wo} = {NL|l :
a € wy }, clearly wy = wy, so we are done.

‘]

Next we have to check condition (7). As we remarked (in the Explanation
inside stage A) we have to consider cases of (u, h) such that f%(u,h) = —1
only. Suppose that u, | < I(x) < n%, e;, h, o* € u, v’ and h' are as in
(7) (and f9(u,h) = —1). Let w C u[g] N A and ap,a; € w be such that
u' = {ndll(x) : @ € w}, e(0*) =, 1l(x) (for i = 0,1). If w C up’] for
some i < 2 then we can apply clause (7) for p’ and get a contradiction (if
[(x) = n? then {nZ[n? : a € w} are already distinct). Since @ € w\ {ag, a1}
implies g%(c, g) = g%(a, 1) (by the relation between h and h') we are
left with the case w \ {ag,c1} C u[p®] Nupt], ap € u[p®] \ ulp'], a1 €
u[p'] \ u[p°] (or conversely). Then necessarily ag = a, and oy = a, for
some ko, k1 € [0, [u[p®]]). Now k1 = kM (w \ {ao}) = M (w \ {a1}) = ko by
the requirements in condition (7). We see that for each i < wy,

M M (w\ {ao})[w\ {ao, a1} U {a}, }],
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and this contradicts the fact that ™ (w \ {ag}) and o) witness rk*(w \
{Oé()}, M) =-L

STAGE C. |P| = i hence IFp“2®0 < ;7. We shall get equality by clause
(7) at stage E below.

STAGE D. The following subsets of P are dense (for m,n < w, a < p):
I, ={peP:mlp]>m}, I2={peP:n”>n}
T2 ={peP:aculp)}

Proof. Let p € P and ap € p \ u[p] be given. We shall find ¢ with
p<gqe€e I;l[p] an IZ[M N Igo; this clearly suffices. We may assume that
ulp] # 0 and ap < A. We make the following definitions:

(a) n? =nP+1, m? =mP+2- | ANulp]|, m? = mP *(m?), u? = u? U{ap}.
(b) For o € uP we let ng = 7% "(0), and ng, € "*+V2 is the sequence
constantly 1.

(c) g7 is any 2-place function from u? N A to m? extending g such that
g7(a,0) = 0, g?(a, B) # 0 for a # § and
9'(a, B) = g*(e/, ') & (e, B) # (o, )
= (o,B) e v x uP & (!, 3') € uP x uP.
(d) 4, is defined as follows:
(o) if m < mP, m # 0 then t4, =P U {(no"(0),n1 ~(0)) : (no,m1) €
tp N (MPl2 x 7lP12)},
(B) if m € [mP,m?), m = g%(e, B), a # 3 then t& = {(nd [, n3l) :
[ < ni}.
(e) f? extends fP and satisfies (7)—(9) of stage A (note that f? is deter-
mined by ¢9).
Now check (similarly to stage B).
STAGE E. We define some P-names:

(a) na = U{nh : p € Gp} for a < A,
(b) T, =U{t8, : p € Gp} for m < w,
() g=U{g":peGr}

Clearly it is forced (IFp) that:

(o) g is a function from {(a, 8) : a, 3 < A} to w. [Why? Because I3 are
dense subsets of P and by clause (5) of stage A.]

(B) N € “2. [Why? Because both Z2 and Z3 are dense subsets of P.]

(7) z7a # np for a # B (< p). [Why? By clause (2) of the definition of
peP]
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(6) Tm € U<, ("2 x 12) is an (2,2)-tree. [Why? By clause (3) of the
definition of p € P and density of Z}, , 72 ]

() (ﬂmﬂﬂ) € lim(Ig(a”g)) ={(vo,v1) €92 x“2: (VI <w)((rll,v1[l) €
Lya,0)} (for o, f < A). [Why? By clause (5) of the definition of p € P and
(B) + (8) above.]

(Q) If a, B are < A then (na,ns) & lim(7,;,) when m # g(a,3) (and
m < w). [Why? By clauses (2)4(10) of the definition of P if m # 0, and
clause (5) if m = 0.]

Note that by (¢) above, the Borel set B = UJ,, ., im(T\,) € “2 x “2
satisfies requirement (x)(a) of the conclusion of 1.13. Moreover, by (vy) we
have IFp “2%0 > 17 completing stage C (i.e. IFp “2%0 = p”).

STAGE F. We want to show (x)(c) of the conclusion of 1.13. Let Py =
{p € P : ufp] C A}. Clearly P\ < P. Moreover, g,T,, B are Py-names.
Since “B contains a perfect square” is a X2-formula, so absolute, it is enough
to prove that in VP the set B contains no perfect square.

Suppose that a Py-name T for a perfect tree and a condition p € P are
such that

plFp, “lim(T) x lim(T) C B”.

We then have (a name for) a function m : lim(7') x im(7) — w such
that

p ”‘pA “f No, M € hm(I) then (770, 771) S Im(nmm)”-
By shrinking the tree 7' we may assume that p forces (IFp, ) the following:

“if 0o, n1,no,ny € im(T) and noll = ng [l # n1ll = Ny [l
then m(no, 1) = m(ng, n1)”-

Consequently, we may think of m as a function from 7' x T to w (with
the convention that if vy,1 € T are <-comparable then m(vy, 1) = 0 and
™) av € T = m(n"(1),n"(1 1)) = m(v, 1) and if Ig(r1) = lg(v2)
then (v1, V2) € Tm(l/171/2))'

Choose an increasing sequence (n; : i € w) of natural numbers and
sequences (p; : i € w) C Py, ((t;,m;) : ¢ € w) such that:

WDpo<pr<...<pi<pip1 <.,

(2) t; C "i=2 is a perfect tree (ie. [p <v € t; N"Z2 = n € t;], () € to,
ne™>2nt; = \,,n" (1) € t;]) and m; : (t; N"12)? - w,

(3) t; C tiy1 is an end extension (i.e. t; = ("Z2) Nt;;1) such that each
node from ¢; N ™2 ramifies in ¢;,; (i.e. has <-incomparable extensions),

(4) Di H—px “T'N niZ9 — ti & mr(tz N ni2)2 =m;”’,

(5) n[pi] > n; and m[p;] > max Rang(m;).



22 S. Shelah

Since p; IFp, “(10,1) € Tiniwo,n)” for vo,v1 € ;N ™2 we easily see (by
clause (8) of the definition of P, stage A) that (¢;,N"™2,m;) € Dom(f?). By
clause (7) (of the definition of P) (and 1.2(2) + clause (8) of the definition
of P) we deduce that

gi+l (tl_l,_l N le‘+127 mz—i—l) < fol(tz N ni27 ml)

for each i < w, and this gives a contradiction (to the ordinals being well
ordered).

STAGE G. To prove (x)(b) of Theorem 1.13 we may assume that V =
“ANo = Ny < u”. Let Py, = {p € P : u[p] € \i} < P. Note that the
rest of the forcing (i.e. P/P),) is the forcing notion for adding u Cohen
reals so for v C p \ A; the forcing notion P, is naturally defined, as also
is Py,uv. By stages C, E we know that VFPA |=“2% = \;” and by stage
F we have VP21 |= “the Borel set B does not contain a perfect square”.
Suppose that after adding ; Cohen reals (over VFA1) we have a A\ -square
contained in B. We have \{-branches g, (o < A\]), each is a P,,_-name for
some countable v, C '\ A;. By the A-system lemma we can assume that
a# B = vaNug =v*. Working in VErxue we see that P\~ is really the
Cohen forcing notion and g, is a P, \,+-name. Without loss of generality,
v =[A1, A1 +w), Vo = 0" U{A\1 +w+ a} and all names g, are the same
(under the natural isomorphism). So we have found a Cohen forcing name
7 € VPri+e such that

if ¢y, ¢1 are (mutually) Cohen reals over AVARSERE
then VP [eo, e1] = (10,7) € B& 1 # 1.

But the Cohen forcing adds a perfect set of (mutually) Cohen reals. By
absoluteness this produces a perfect set (in VF*1) whose square is contained
in B. Once again by absoluteness we conclude that B contains a perfect
square in VP already, a contradiction. m; 13

REMARK 1.14. Note that if B is a subset of the plane (“Yw,“w) which
is G5 (i.e. (<., Un, Un open, without loss of generality decreasing with n)
and it contains an uncountable square X x X (so X C “w is uncountable)
then it contains a perfect square. Why? Let

X' ={neX:(Wn)Fv)(veX&vin=nn}.
Let
K = {(u,n) : for some [ called I(u,n), v C ‘w, and
nreuknan e“w&rvav e“w= (n,V)eU,
andneu&nan €“w= (v,n") e Uy,},
K" ={(u,n) € K : for some v = (v, : ¢ € u) we have v, € X', p<v,}.
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Then

(a) K’ # 0, in fact if n1,...,n, € X' are pairwise distinct and n < w,
then ({m;[l:i=1,...,m},n) € K for any [ large enough,

(b) if (u,n) € K’ as exemplified by 7 = (v, : 0 € u) and p* € u,
V'€ X'\ {vp}, V'l = vy« |l then for any I € (I,w) and n’ > n large enough,
we have ({v,[l' 1o cu} U{V' '}, n') € K'.

The following depends on §3:

THEOREM 1.15. Assume MA and 2%° > A, (No) or 2% > p. Then: there
is a Borel subset of the plane with a p-square but with no perfect square iff
n < )\wl (NQ)

Proof. The first clause implies the second by 1.12. If the second clause
holds, let u < Ao(Np) and o < wi. By 3.2(6) letting n, € “2 for i < p
be pairwise distinct we can find an w-sequence of (2,2)-trees T such that
(ni,m;) € U,, im(T,) for 4, j < p and degsq(T) = a (just use A = {(n;,n;) :
i,j < p} there). By 3.2(3) the set |J,, lim(7},) contains no Aq41(Xo)-square.

"5

Fact 1.16. Assume P is adding pu > x Cohen reals or random reals and
k> 2%, Then in V¥ we have

(%) there is no Borel set (or analytic) B C “2 x “2 such that

(a) there are n, € “2 for a < k such that o # B = 1o # ng) and

(Ma,mg) € B for a,f <k,
(b) B contains no perfect square.

Proof. Straightforward as in the (last) stage G of the proof of Theorem
1.13 (except that no relevance of (7) of stage A there).

Let P be adding (r, : a < u), and assume p € P forces that a Borel
set B and (1, : @ < k) are as in clauses (a), (b) above. Let 1, be names in
P, = P[{Zg : B € o}, and B be a name in P, = P[{rs: 3 € v} where v,
vg are countable subsets of x. Without loss of generality, (v, : a < (2%0)7)
is a A-system with heart v and otp(v, \ v) = otp(vg \ v). In VF» we have
B and 2% = (2%)V 50 we can assume v = ) and otp(v,) does not depend
on a.

Without loss of generality, the order preserving function f, g from v,
onto vg maps 7, to ng. So for Q = Cohen in the Cohen case we have a name
7 such that IFGonen T‘I(I) € “2isnew”, IFcohenxCohen “(7(r1);7(r2)) € B”,
and we can finish easily. The random case is similar. m; 14 -

CONCLUSION 1.17. (1) For k € (Ry,R,,) the statement (), of 1.16 is
not decided by ZFC +2% > N, (i.e. it and its negation are consistent with
ZFC).

(2) 1.16 applies to the forcing notion of 1.13 (with u instead of 2%0).
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Proof. (1) Starting with a universe V satisfying CH, Fact 1.16 shows
the consistency of “yes”. As by 1.7(1) we know that A, (No) > N, and
R,, > k (by assumption), Theorem 1.15 (with the classical consistency of
MA +2% > R, ) gives the consistency of “no” (in fact, in both cases it
works for all £ simultaneously).

(2) Left to the reader.

2. Some model-theoretic related problems. We turn to the model-
theoretic aspect: getting Hanf numbers below the continuum, i.e. if ¢ €
L, « has a model of cardinality > A, (Xg) then it has a model of cardinality
continuum. We show that Pr,,, (\) is equivalent to a statement of the form “if
Y € Ly, «, has a model of cardinality A then it has a model generated by an
“indiscernible” set indexed by “2” (the indiscernibility is with respect to the
tree (¥=2,4,N, <ix, <1g), where < is being initial segment, 7 N v = maximal
o with o < n & o < v, <)k is lexicographic order, n <i v iff 1g(n) < lg(v)).
This gives sufficient conditions for having many nonisomorphic models and
also gives an alternative proof of 1.12.

We also deal with the generalization to A-models, i.e. fixing the cardi-
nalities of several unary predicates (and point to A-like models).

CLAIM 2.1. The following are equivalent for a cardinal X:

(1) Pry, ().

(2) If ¥ € Ly, o has a model M with |R™| > X\ (R is a unary predicate)
then v has a model of cardinality continuum; moreover, for some countable
first order theory T with Skolem functions such that 7(v) C 7(T1) and a
model My of Ty and a,, € R™ for n € “2 we have:

(x)o My |= 9,
(¥)1 My, a, (n €“2) are as in [Sh a, VII, §4] = [Sh ¢, VII, §4], i.e.:

(a) My is the Skolem hull of {a, : n € “2} andn # v = a, # a,,

(b) for everyn<w and a first order formula ¢ = @(xg,...,Tp_1)
€ L(Ty) there is n* < w such that for every k € (n*,w),
N0y---,Mn—1 € “2 and vy, ...,Vp_1 € “2 satisfying

N itk =vinlk and N\ nwlk #mlk
m<n m<l<n
we have

My = “olayy, ... an, ) = @lavy, .- au, ,]”.

Note that necessarily a, ¢ Skolem hullys, {a, : v € “2\{n}}.
(c) a, € RM1.
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REMARK 2.2. In (2) we can replace the assumption by “If ¢ € Ly, o
has, for every ' < A, a model M with |[RM| > )\ then ...” (and still the
new version of (2) is equivalent to (1)).

Proof (of Claim 2.1). (1)=-(2). Just as in [Sh 37] + [Sh 49]: we can
assume ||[M|| = X\ and moreover |M| = A. Let M; be an expansion of M
by names for subformulas of %, a pairing function, and then by Skolem
functions. Let T be the first order theory of M;. There is (see [Ke71]) a set
I' of countably many types p(z) such that M; omits every p(z) € I'" and if
Mj is a model of Ty omitting every p(z) € I" then M/ is a model of ¢ (just
for each subformula A, _ ¥n(Z) of ¥, we have to omit a type; we can use
1-types as we have a pairing function). Let us define

Y = {v C “>2: v is finite nonempty, its members are
pairwise <-incomparable and v C "2 U ™12 for some n},
Z={(v,o(...,2pn,...)pev) v €Y, @ a formula in T} with the set of free
variables included in {z, : n € v} and for every o < w; there are
ay € RM for 1) € v such that: [ # v from v = af # a], rko({a%‘ :
nev},M)>aand M = ¢[...,a5,.. Jyev}-

We say for (v, @) € Z (I = 1,2) that (va,p2) € succ(vy, 1) if for some
n € vy (called n(vy,v2)) we have ve = (vy \ {n}) U{n"(0),n"(1)}. For i < 2
define the function h; : v1 — ve by h;(v) is v if v # n and h;(v) = n () if
v =1n. We demand, for i =0, 1,

Y2 F Sol(- c ey xhi(,,), .. ')1/61)1'

Choose inductively ((v;,¢;) : I < w) such that (viy1,@i41) € succ(vy, ¢p) is
generic enough, i.e.

(®)1  if ¢ = p(zo,...,xk-1) € L(T1) then for some | < w and all m €
[l,w) and ng,...,Nk—1 € v, we have either

om F QO(xnov e vxmcq) or  m - _‘90(557707 s 7"1377k71)’

(®)2  for every p(z) € I' and every function symbol f = f(zo,...,Zn_1)
(note: in T; a definable function is equivalent to some function
symbol), for some | < w, all m € [l,w) and all ng,..., 7, € vm
there is ¢(x) € p(z) such that

Om = ﬂf‘/}(f(mno)? SRR f(xnnfl))'

It is straightforward to carry out the induction (to simplify you may demand
in (®)1, (®)s just “for arbitrarily large m € [l,w)”, this does not matter and
the stronger version of (®)1, (®)2 can be obtained (replacing the “~2 by a
perfect subtree 7" and then renaming a,, for n € lim(T) as a,, for n € ©2)).
Then define the model by compactness.



26 S. Shelah

(2)=-(1). If not, then NPr,, (), hence for some model M with vocabu-
lary 7 having |7| < Xg and of cardinality A we have a(x) := rk”(M) < w;.
Let ¥a(s) € Luw, ,w(7) be as in 2.3 below, so necessarily M |= ¢q(«). Apply to
it clause (2) which holds by our present assumption (with R = X), 50 ¥
has a model M; as there (so M1 [= ¢4 (x)). But {a, : n € “2} easily witnesses
rk%(M;) = oo, and moreover, for every nonempty finite w C {a, : n € “2}
and an ordinal a we have rk° (w, M) > «. This can be easily proved by induc-
tion on «a (using (x)q(b) of (2) (and n # v € “2 = a,, # a, of (x)1(a))). w1

FAcT 2.3. (1) For every a < kt and vocabulary T with |t| < k there is
a sentence Yo € L+ ,[7] (of quantifier depth o) such that for any T-model
M,

M =4, iff tk°(M;<Xo) =a.

(2) For every a < 0%, 1 € {0,1} and vocabulary T with |t| < 0 there is
a sentence 1 € Lo+ ,(32%)[7] (32" is the quantifier “there are > r many”)

such that for any T-model M: M = !, iff vk"(M; < k,0) = a.
Proof. Easy to check. my 3
Hence (just as in [Sh a, VIII, 1.8(2)]):

CONCLUSION 2.4. Assume T is a countable vocabulary. If 1 € Ly, o(T),
R is a unary predicate, 7o C 7, A C {p(z) : ¢ € Ly, w(70)} is countable and
for some transitive model V1 of ZFC (maybe a generic extension of 'V or
an inner model as long as Y, A € Vi and Vi |= “¢ € Ly, (1), A C{p(z) :
© € Ly, (10)}”) we have

Vi E “Pry, (M), and v has a model M with
A< [{{p(2) : M E pla], p(z) € A} :a € RMY.
Then:

(1) We can find a model N of v with Skolem functions and a, € RN
for a < 2% such that for each a < 2% the type po, = {*p(z) : N E
tolas] and p(z) € A} is not realized in the Skolem hull of

{ag : B < 2% and B # a}.

(2) So UM/~ : M =1, ||M| = A} > min{2*, Do}; really {(M|70)/~ :
M = and M has cardinality \} has cardinality > min{2*, Jy}. Moreover,
we can find such a family of models no one of them embeddable into another
by an embedding preserving to(x) for ¢ € A. may

A natural generalization of 2.1 is
CLAIM 2.5. (1) For cardinals X > k > X the following are equivalent:
(a) Pro+(As k).
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(b) If M is a model, T(M) countable, R, Ry € T(M) unary predi-
cates, |RY| < k, A < |RM| then we can find My, M1, a, (n € “2)
such that:

(i) My is a model of the (first order) universal theory of M (and
is a T(M)-model),
(ii) a,, € RM for n € “2 are pairwise distinct,
(ili) M, is the closure of {a, : n € “2} U My under the functions
of My, so
() My also includes the individual constants of M; in gen-
eral | M| = 20,
(B) if T(M) has predicates only then |Mi| = {a, : n € “2} U
|M0|a
(iv) My is countable, My C M, My C My, My = clpy (Mo N
Ry, RY™ = RO (C RYY); in fact, we can have:
(%) (M1, ¢)cem, s a model of the universal theory of
(M7 C)C€M07

(v) for every n < w and a quantifier free first order formula ¢ =
o(xoy. .. Tn_1) € L(T(M)) there is n* < w such that for
every k € (n*,w) and ng, ..., Mp—1 € “2, Vg,...,Vn_1 € ¥2

satisfying
N itk =vinlk and N\ nulk #mlk
m<n m<l<n

we have

.

Ml ): “cp[ano,"-aanan = (10[011’07""a/l’n71] )

we can even allow parameters from My in ¢ (but k depends
on them).

(2) For cardinals A > k > Xq the following are equivalent:
(a)" Pr,, (A k).
(b)" Like (b) above, but we omit “My C M”.
REMARK 2.6. (1) See 4.6, 4.7 how to use Claim 2.5.
(2) In (b), if M has Skolem functions then we automatically get also:

(i)™ M is a model of the first order theory of M,
(iii)* M; is the Skolem hull of {a, : n € “2} U M,
(iv)t Mo < M, My < My, My countable (and R} = Ry C R,
(v)T clause (v) above holds even for ¢ any (first order) formula of
L (T(M)).
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Proof. (1)(a)=(b). Like the proof of 2.1(1)=-(2), applied to (M, ¢) .c gar,
but the set MyN Ré\/[ is chosen by finite approximation, i.e. (letting Y be as
there and 7 = 7(M)) we let

Z={(v,0(...,2Tp,.. . Jnev, A) 1 v €Y, ¢ a quantifier free formula
in L, . (7) with set of free variables included in {z, : n € v}
and parameters from A, A is a finite subset of Réw ,
and for every ordinal o < k™ there are a, € RM fornew
such that [ # v from v = a; # ay] and
rk({a; :n€v},M)>aand M = ¢[...,a;, .. |y}

We need the “for every a < xT” here because we want to fix elements of
R}, and there are k possible choices.

—(a) = =(b). Like the proof of 2.3; assume NPr,(\;k), a < kT, let
M witness it, choose Ry = «a + 1, R = \; without loss of generality,
T(M) ={Rn¢:n <w, ( <K}, Ry is n-place, in M every quantifier free
formula is equivalent to some R, ¢. Let R’ . := {(i0,...,%n-1,0,() : M =
Ry, ¢(igs- - yin—1), {i0,-..,in—1} is with no r7epetition, increasing for simplic-
ity, and rk({ig,...,in—1}, M; k) = B, with rk({ig,...,in—1}, M;r) 2 B+ 1
being witnessed by ¢({ig,...,in—1}) = Rnc, k({i0,...,in-1}) = k} where
the functions ¢, k are as in the proof of 1.13. Let M be (A, <, R, Ry,
R:L,k)ne((],w),k<n expanded by Skolem functions.

So assume toward a contradiction that (b) holds, hence for this model
M there are models My, My and a, € M; for n € “2 as required in clauses
(i)—(v) of (b) of claim 2.5. Choose a nonempty finite subset w of “2 and
and ¢ such that letting w = {no, ..., Pm—1} with a,, <M* qa,,,,, we have

(a) Ml |: R;L,k(ano’ oo 7a77m717ﬂa C)a

(8) B € Ry™ (C ),
(7) f minimal under those constraints.

Note that there are m, ng,...,7m—1, 8 and ¢ such that («) holds: for every
nonempty w C “2, as M; is elementarily equivalent to M there are 3,  as
required in (). Now () implies ¢ € R, but RY* = R}, so clause (8)
holds too, and so we can satisfy () too as the ordinals are well ordered. Let
¢ =p(xo,...,Tm-1,0,(); note that the parameters are from Réwl (as M is
elementarily equivalent to M) and hence from Ry C M, and clause (v) (of
(b) of 2.5) applies to ¢" and (1o, . .., Nm—1), giving n* < w. We can find 7, €
“2, M), # Mk, M In* = ni[n*, and easily for w’ = {n, ..., Nm_1,7; } we can find
B < B, (" < wand k such that My = Ryg1p (Gngs -5 @,y a5 8'5,C7);
then if 5 > 0 we get a contradiction to clause () above. If 5 = 0 we use
clause (i) to copy the situation to M and get a contradiction.
(2) Similar proof. my 5
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NOTATION 2.7. Let A denote a finite (or countable) sequence of pairs
of infinite cardinals ((A¢;k¢) : ¢ < ((*)) such that k¢ increases with ¢, so
e.g. \¥ = <<)\§B,FJEB) : ¢ < (9(x)). We shall identify a strictly increasing
Ro= (k¢ : ¢ < (%)) with ((Keq1ik¢) : ¢ < (%)) .

Let R, Ro,Qo, .-, R¢(x)—1,Q¢(x)—1 be fixed unary predicates and R =

(B¢, Q¢) : ¢ < ((%)).

A A-model M is a model M such that R, R¢,Q¢ € 7(M) are all unary
predicates, |Ré‘/"| = A, |Qé\4| = k¢ for ¢ < ((x), Qg/[ - Ré\/[ and (Rg‘[ (<
((x)) are pairwise disjoint, and RM = Ue<ern Réw.

For a € R™ let ((a) be the ¢ such that a € Réw (e.g. Réw = A\ Ue<¢ Aes
kel = A¢). For a A-model M we say that a € cl (A, M) if AU {a} C
M and for some n < w, and quantifier free formula ¢(z1,y1,...,y,) and
bi,...,b, € A we have

M = @(a,by,...,by) & (35"z)p(x, b1, ..., by).

DEFINITION 2.8. (1) For [ < 6, A as in Notation 2.7, and an ordinal
o let Prl (X;0) mean that for every A-model M with |7(M)| < 6 we have
rk! (M, \) > o (and NPr! (X, 8) is the negation; if 6 is omitted it means ro;
remember A = ((A¢,k¢) @ ¢ < ((x))) where the rank is defined in part (2)
below.

(2) For a A-model M, rk'(M,\) = sup{rk'(w, M, \) +1 : w € [RM]*}
where the rank is defined in part (3) below and:

(a) if ¢(*) is finite, then
[RM]* = {w : w a finite subset of RM not disjoint from any Ré‘/f I3
(B) if ¢(*) is infinite, then
[RM]* = {w : w a finite nonempty subset of RM}.

(3) For a A-model M and w € [RM]* we define the truth value of
“rk!(w, M;\) > o by induction on a:

e CASE A, a=0:
rk!(w, M;)) > a iff noa € wn RM belongs to Cliog oy (W \ {a}, M).
e CASE B, « is a limit ordinal:
rk!(w, M;\) > a iff rk'(w, M;)\) > g for every ordinal § < a.
e CASE C, a = 4+ 1. We demand two conditions:
() exactly as in Definition 1.1(3)(*)s except that if [ = 2,3,4,5
we use kK = Iizr(ak),
(B) if ¢ < ((*) and w N Ré\/[ = () then rk'(w U {a}, M;6) > § for
some a € Ré\/[.
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CLAIM 2.9. The parallel of the following holds: 1.2 (+ statements in 1.1),
also 1.3 (use o < k¢ ), 1.5(2) (for a < k'), 1.10 (satisfying kg -c.c.) and we
adopt 1.6.

Cram 2.10. If « is a limit ordinal and A\¢ > 3o (ke) for every & < &(x)

then Pry ().

Proof. Use indiscernibility and Erdés-Rado as in the proof of 1.8(1).

In more details, the induction hypothesis on « is, assuming ((¥) < w:
if AC RM and Nece AN Ré\/[| > Juxa then for every 8 < a, k < w
and every m = (m¢ : ¢ < ((x)) where m¢ € (0,w) for some w C A we
have /\dwﬁRéVI] = m¢ and rk(w; M, \) > w x § + k. Then for a = v + 1,
choose distinct ag € AN Ré‘/" (i < 3wxy+m+m) and use polarized partition
(see Erdés, Hajnal, Maté, Rado [EHMR]) on ({a$ : i < Juyxa) : ¢ < C(%)).

For ((x) infinite use A € RM such that wa = {¢ : AN Ré\/f # (0} is finite
nonempty and ( € wq = |[AN Ré‘4| > J.xa, and proceed as above. my 19

Cram 2.11. Let ((x) < w, K§ < ... < K, and AE = ((Rgq1Kg) 1 €<
((x)) (fore <w).

(1) If Pr,(A") for n < w, and for some § < k& there is a tree T € 9> (k%)
of cardinality < kg with > ﬁ‘&*) 0-branches, then:

® every first order sentence which has a \"-model for each n, also has a
XY -model,

®"  if T is a first order theory of cardinality < k§ and every finite T C T
has a A\"-model for each n then T has a A\*-model.

(2) So if A° = A for e < w are as above then we have K& -compactness
for the class of AY-models, where

(®) a class & of models is Kk-compact whenever for every set T of < k
first order sentences, if every finite subset of T has a model in K
then T has a model in R.

(3) In part (1) we can use A" with domain wy, if w, C w1 and ((x) =
Hwn :n < w}.

Proof. Straightforward if you have read [Sh 8], [Sh 18], [Sh 37] or will
read the proof of 2.12 below (only that now the theory is not necessarily
countable, no types omitted, and by compactness it is enough to deal with
the case of ((*) finite). my 13

CLAIM 2.12. Let ((¥) < wy and \¢ = ((Kgy1rkE) + & < C(%)) for each
e <wi (and kg strictly increasing with §). If Pr.(\%) for every e < wy, and
ﬁz’l < 2% and 1 ﬁLwl,w7 and for each & < wy there is a A\*-model satisfying
1, then there is a \**-model satisfying .
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Proof. For simplicity, again as in [Sh 8], [Sh 18], [Sh 37], let M. be a
A°-model of 9 for € < w;. By expanding the M,’s by a pairing function and
giving names of subformulas of ¢ we have a countable first order theory T
with Skolem functions, a countable set I" of 1-types and M such that:

(a) MT is a A*-model of T omitting each p € I,
(b) if M is a model of T omitting every p € I' then M is a model of 1.

Now as in the proof of 2.1 we can find a model M+ and a% for ¢ < ((*) and
n € “2 such that:

(a) M is a model of T.

(8) aC ERC andn#yiac#ac

() For every first order formula ¢(xo,...,2n—-1) € Ly o, (7(T)) and ordi-
nals €(0),...,{(n—1) < (%), there is k < w such that if ng,...,7,-1 € “2,
1/0, ey Up—1 €92, (i [k : I < n) is with no repetitions and 7; [k = v [k then

tE (e, Y) = ela”, . alY).

( ) If U(mg,...,xn_l) is a term of 7(T) and ((0),...,¢(n — 1) < (%),
and p € I" then for some k < w and any g, ..., 0n_1 € 2 pairwise distinct
there is ¢(z) € p(x) such that

(*) o <am €¥2= M = —p(a?, ... a7 )

’ "7'n. 1
(i.e. this is our way to omit the types in I").
(e) If €(0),...,¢(n — 1) < (%), o(xg,...,2n—1) is a term of 7(T), and
m < n, then for some k < w, we have

(%) it oy n—1 €92, Vo, Un—1 € Y2, Mk = vilk, (MKl < w) is
without repetitions and ((I) < {(m) = n = v; then

M+':Qg(m)( (%(()0)7'--7 ginll)))&QC( )( ( zg(()O)a'-'v 5&”11)))
= o(aSl”, .. aS" V) = o(aSV, .. allm ).

Now choose Y¢ C “2 of cardinality A" and let M* be the 7(M)-reduct

of the Skolem hull in M+ of {af : ¢ < ((+) and n € Y¢}. This is a model as
required. mg 19

CONCLUSION 2.13. If Vo = GCH, V = V¥ for some c.c.c. forcing
notion P then e.g.

(*) Zf NwXS < 2N07 <NOaNa)>Nu}+w> - <Nwan+wan+w+w> (See [Sh 8])a
1.e., letting
5‘0 = <(N07 Nw)a (Nwa Nw+w)>a 5\1 = <<Nw7 Nw—i—w)v (Nw+w7 Nw—i—w—l—w»,

for any countable first order T, if every finite T' C T has a \0-model
then T has a A\'-model.
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(o) (e 1 € SE(x)) — (R 1 € S E(x)) if N i{¥ < kg and K < K <
. < K)lg(*) < 2% (and versions like 2.11(1)).

Proof. By 2.10 if A = ((Ag, ke) : € < (¥)) with A¢ > I, (k) then

Pr,,(\) (really A\¢ > Ty (ke) for k depending on n only suffices, see [EHMR]).
Now c.c.c. forcing preserves this and we apply 2.11. Similarly we can use
6+-c.c. forcing P and deal with cardinals in the interval (6,2%) in VF. my 13

REMARK 2.14. We can say parallel things for the compactness of (32%),
for A singular < 2*¢ (or § + |7| < A < number of #-branches of T), e.g. we
get the parallel of 2.13.

In more details, if Vo = VP where P satisfies the #T-c.c. then

(¥)  in VF for any singular A € (0, 2%) such that V |= “\ is strong limit”
we have

(®) the class {(X\, <,R¢...)¢c<p : Re an ne-relation, (A, <) is A-like}
of models is f-compact, and we can axiomatize it.

There are also consistent counterexamples, see [Sh 532].
The point of proving (x) is
®  for a vocabulary 7 of cardinality < 6, if we let Tk be a first order

theory with Skolem functions 7(72%) (but the Skolem functions are
new), then the following are equivalent for a first order T C L, .,(7):

(a) T has a A-like model.
(b) The following is consistent: T U TS* U {o (... ,x;‘l(l),yn(l), c )<k =

n(l n(l
ol... ,a;,,l( ),yn(l), ik Vool(.. .,xm( ),yn(l) o) > yn s n(l) < w,
n € “2, and for some j < w, (n[j : | < k) is with no repetition,

. . n(l
mlj =wlj,n(l) <n=mn=y}U {U("'vxm()vyn(l)w--) < Yn:
n(l) <n and n € “2}.
3. Finer analysis of square existence

DEFINITION 3.1. (1) For an w-sequence T = (T}, : n < w) of (2, 2)-trees,
we define a function degsq (square degree). Its domain is

pfap = pfaps = {(u,¢g) : (In)(u € [*2]*, g is a 2-place function
from u to w)}

and its values are ordinals (or co or —1). For this we define the truth value
of “degsqr(u,g) > «” by induction on the ordinal «.

CASE 1, a = —1:
degsqr(u,g) > —1 iff (u,g) € pfaps and n,v € u = (n,v) € Ty(,.)-
CASE 2, « is limit:

degsqr(u,g) > a iff degsqp(u,g) > B for every 5 < a.
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CASE 3, a = 4 1: degsqs(u, g) > « iff for every o* € u, for some m,
u* C ™2, g* and functions hg, hy, we have:
o h;:u— u*,
o (Vn € u)n<hi(n),
e (Vn € u)lho(n) = hi(n) & n # 07],
e u* = Rang(hg) U Rang(hq),
e g* is a 2-place function from u* to w,
e g*(hi(n),h;(v)) = g(n,v) for i < 2 and n,v € u,
e degsqp(u*, g*) > B (so (u*,g*) € pfap).
(2) We define degsqz(u,g) = « iff
for every ordinal 3, degsq(u,g) > < < «

(so = —1,a = 0o are legal values).
(3) We define degsq(T') = (J{degsqs(u,g) + 1 : (u,g) € pfaps}.

CrLAIM 3.2. Assume T is an w-sequence of (2,2)-trees.

(1) For every (u,g) € pfapg, degsqr(u,g) is an ordinal, oo or —1. Any
automorphism F of (“2,<) preserves this (it acts on T too, i.e.

degsqr(u, g) = degsqp 1, ymew) (F(u),go F1)).

(2) degsq(T) = oo iff degsq(T) > wy iff there is a perfect square contained
inJ,, <., im(T,) iff for some c.c.c. forcing notion P, Ikp“(J,, ., im(T},) con-
tains a A, (No)-square” (so those properties are absolute).

(3) If degsq(T) = au(*) <wy then |, im(T},) contains no An(x)+1(Ro)-
square.

(4) For each a(*) < wy there is an w-sequence T = (T, : n < w) of
(2,2)-trees with degsq(T) = a(*).

(5) If T = (T, : n < w) is a sequence of (2,2)-trees then the eristence
of an Ny-square in |, ., im(T},) is absolute.

(6) Moreover, for a(*) < w1 we have: if 1 < Ay)(Ro) and A, B are
disjoint subsets of “2x“2 of cardinality < u, then some c.c.c. forcing notion
P adds T as in (4) (i.e. an w-sequence T = (T}, : n < w) of (2,2)-trees with

degsqr(T') = a(x)) such that
AC |Jim[f(Tn)], B | lm[f(T,)] = 0.

nw nw

n<w

nw

Proof. Easy.

E.g. (3) Let A = Aqpy41(Ro), assume {n; : i < A\} € ¥2,[i < j =
ni # n;] and (n;,m;) € U, im(T,), and let (n;,m;) € Um(Ty, ,,)). For
(u, f) € pfaps where u = {1y, ..., v,—1} (with no repetition, <jx-increasing)
let Rey 5y = {(@0,...,0-1) : g < X and vy <, for | <k and f(v,vm) =
9(Mays Nay, ) for I,m < k}. Let M = (X, Ry, ) (u, f)eptap- Clearly if we have
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ag,...,ap—1 < A and n such that (n,, [n : 1 < k) is with no repetition, and

g(naz(l) ) naz(z)) = f(ﬂam) In, Nev(2) In) then R(u,f)(O‘Oa o1,...,0p-1) and we
can then prove

rk({ao, ..., ak—1}, M) < degsqp(u, f)

(by induction on the left ordinal). But M is a model with countable vocab-
ulary and cardinality A\ = Ay(4)4+1(No). Hence by the definition of Ay(.)41
we have tk(M) > a(x) + 1, so a(*x) + 1 < rk(M) < degsq(T) < a(x) (by
the previous sentence, an earlier sentence and a hypothesis respectively).
Contradiction.

(4) Let w; C [~1,a(x)) be finite # 0, w; € wiy1 and [—1,a(x)) =
U< wi and let
W ={n:nis a (strictly) decreasing sequence of ordinals, possibly empty}.
We choose, by induction on i < w, n; and an indexed set {(u’, fi, al) :
x € X;) such that:

(a) n; <w, ng =0, n; <mniqq,
(b) X; is finite inc}uding Uj<? X, ‘
~(c) for z € X;, uy, € ™2, f; is a 2-place function from ug to w and
ol € w;, ‘

(d) for some z € X;, ul, = {0y, },

(e) h; is a function from X; into W and h; C h;y1,

(f) | Xo| =1, and hg is constantly (),

(g) if x € X; then ot = !, the function v — v|n; is one-to-one from
ugfi onto uf, and v € ui™ = v[[ni,nit1) = O, m,,,) and n,v € uit' =
it m,v) = fa(ning, ving), 4 '

(h) for some z = z; € X;, B = i € w41 Nal, and p* = pf € ul, and
Y; € W such that h;(z;) <7; we can find y = y; such that:

(@) Xit1 =X, Uy}, i € X,
(8) aytt =3,

(7) the function v — v[n; is a function from w}t! onto w}

sMi41

!, almost
one-to-one: p* has exactly two predecessors, say oY, 04, and any
other ¢ € ul, \ {¢*} has exactly one predecessor in u;",
(0) for v, € ugtt if (v,m) # (of,05) and (v,m) # (08, ¢f) then
fzjl(na V) = f:’é(nrnza anz‘),
(€) hiv1=hiU{(y:, i)},
(i) if 21,29 € Xj and ul Nuf, # 0 then ul, Nul, = {04},
Hifze X;, B€wna, o € ul, and h(z) <7 € W then for some
Jj € (i,w) we have z; =z, 3; = 3, 0* < ¢} and 1 =7,
. 1 1 . 2 2
(k) the numberslf;jl(g?f 05 ), [t (08, 0] ) are distinct and do not
belong to | J{Rang(f%) : z € X;}.
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There is no problem to carry out the definition. We then let
T, ={(n,v): fi(n',v') =n for some i <w, = € X; and 1/, € u’,
and (n,v) = (n'|1,v']1) for some | < n;}
and T = (T, : n < w). Now it is straightforward to compute the rank.

(5) By the completeness theorem for L., ,(Q) (see Keisler [Ke71]).
(6) By the proof of 1.13. m3.2

Now we turn to k-Suslin sets.

DEFINITION 3.3. Let T' be a (2,2, k)-tree. Let set(1') be the set of all
pairs (u, f) such that

(3n = nfu, f))uC"2& f 1 uxu—"k&nv € u= (v, f(n,v)) €T

We want to define degsq,(z) for x € set(T'). By induction on the ordinal «
we define when degsqp(x) > a:

CASE 1. o = —1:
degsqp(u, f) > a iff  (u, f) € set(T).
CASE 2. o limit:
degsqp(u, f) > a iff degsqp(u, f) > 3 for every 5 < a.

CASE 3. a = B+ 1: degsqp(u, f) > « iff for every n* € u, for some
m > n(u, f) there are (u*, f*) € set(T) and functions hg, h; such that
degsqp(u*, f*) > 3 and:

(i) n(u*, f*) = m,

(ii) h; is a function from u to ™2,
(ili) n < hi(n) for i < 2,
(iv) for n € u we have ho(n) # hi1(n) © n=n",
(v) for m # m2 € u, i <2 we have f(n1,m2) < f*(hi(m), hi(n2)),
(vi) for n € u* we have f(nln,nn) < f*(n,n).

Lastly, degsqr(u, f) = a iff [ < a < degsqp(u, f) > (] for every ordinal £.
Also let degsq(T') = degsar ({0}, {< (. () >}).

Cram 3.4. (1) For a (2,2,k)-tree T and (u, f) € set(T), degsqr(u, f) is
an ordinal or infinity or = —1, and similarly for degsq(T). All are absolute.
Also degsq(T) > k™ implies degsq(T) = oo and similarly for degsqy(u, f).

(2) degsq(T) = oo iff Fp “prjlimT (= {(n,v) € “2 x “2 : for some
0 € “k, \peo(n,vin,oln) € T}) contains a perfect square” for every
forcing notion P including a trivial one, i.e. VE = V iff =p “prjlim(T)
contains a 2%°-square” for the forcing notion P which is adding X Cohen
reals for A = )\i+(/ﬁ) iff for some P, IFp “prjlim(T) contains a .+ (No)-
square”.
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(3) If a(x) = degsq(T) < k™, then prjlim(T) contains no Agxy41(k)-
square.

Proof. (1) Easy.

(2) Assume that degsq(T) = oo, and note that o* = {degsqp(u, f) :
(u, f) € set(T) and degsqp(u, f) < oo} \ {oo} is an ordinal so (u, f) €
set(T) & degsqp (u, f) > a* = degsqp(u, f) = oo (in fact, any ordinal o >
sup{degsqr(u, f) + 1 : (u, f) € set(T)} will do). Let set>*(T") = {(u, f) €
set(T) : degsqp (u, f) = oo}. Now

(%)1  There is (u, f) € set>(T).

(x)2  Forevery (u, f) € set>(T) and ¢ € u we can find (u™, fT) € set®>(T)
and for e=1,2, h, : u—u™ such that (Vneu)(n < he(n)), (Vn,veu)
(f(n,v) @ fF(he(n), he(v)), (V0 € w)[h1(n) = ha(n) < n = el.

[Why? As degsqp(u, f) = 0o it is > a* 4+ 1 so by the definition we can find
(ut, f*) and hq, he as above but only with degsqr(u™t, fT) > o*, and this
implies degsq(u™, f1) = oo.]

(x)3  For every (u,f) € set™(T) with u = {n, : 0 € "2} € (™)2 (no
repetition) we can find ny > ny and (u™, f1) € set®>(T') with ut =
{n,: 0 € ™12} C ("2)2 (no repetitions) such that:

(1) 0 € "2 = g Ay,
(ii) for 01,02 € n+127 01 fﬂ 7£ 02 [n = f(nglfnvn@ fn) < f+(779177792)7
(ifi) for 0 € "2, f(ngrns Motn) < f(1,M0)-
[Why? Repeat (*) 2™ times.]

So we can find (n, : n € "2) and f, by induction on n such that (n, :
0 € ™2) is with no repetition, degsqr({n, : ¢ € "2}, fn) = oo, and for
each n clauses (i)-(iii) of (¥)3 hold, i.e. 91,00 € "2, o1In # 02ln =
Jn(Mortns Noztn) < fr+1(Ngy,M0,) and for o € ™12 we have f,(1g1n, Motn) <
fnr1(ng,m,) and of course {n, : 0 € ™2} C *n)2 with k,, < kyy1 < w.

So we have proved that the first clause implies the second (about the forc-
ing: the degsq(7') = oo is absolute so holds also in V¥ for any forcing notion
P). Trivially the second clause implies the third and fourth. So assume the
third clause and we shall prove the first. By 1.8, A2, (k) is well defined (e.g.
< Je+), but A2 (k) = A2, (k) by 1.5(3). Let P be the forcing notion adding
A%, (k) Cohen reals. By 1.11(2) in VP, A+ (k) < A%, (k) < 2%, and so there
are pairwise disjoint 7; € “2 for i < A+ (k) such that (n;,7;) € prjlim(7T")
for i,j < A.+(k). Lastly, we prove that the fourth clause implies the first
in VP. By part (3) of the claim proved below, for every a < x we get
=[a = degsq(T)] as Ao (k) < A+ (k). Hence degsq(T) > k™, but by part (1)
this implies degsq(7") = oco.

(3) Just like the proof of 3.2(3). m3 4
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We shall prove in [Sh 532]
CLAIM 3.5. Assume a(x) < kT and X < Xy ().

(1) For some c.c.c. forcing notion P, in V¥ there is a r-Suslin subset
A = prjlim(T) (where T is a (2,2, k)-tree) such that

(%) A contains a A-square but degsq(T') < a(x).
(2) For given B C (“2 x “2)V of cardinality < \ we can replace (x) by
(%)’ AN(“2x92)V =B but degsq(T) < a(x).

REMARK 3.6. The following says in fact that “colouring of pairs is
enough”, say for the Hanf number of L, ., below the continuum; for clari-
fication see 3.8.

CrLAM 3.7 (MA). Assume X\ < 2% and a(x) < wy is a limit ordinal,
A < p= Aa()(Ro). Then for some symmetric 2-place function F' from X to
w we have

($)auF  for no 2-place (symmetric) function F' from p to w do we have:

(%) for every n < w and pairwise distinct By, ..., Bn—1 < p there
are pairwise distinct g, ..., 0,1 < A such that

N\ F'(Br: 1) = Flon, o).
k<l<n

REMARK 3.8. (1) This is close to Gilchrist—Shelah [GcSh 491).

(2) The proof of 3.7 says that letting R,, = {(a, ) : F(a,8) = n} and
N = (A, Rp)n<w, we have rk(N) < a(x).

(3) So 3.7 improves §2 by saying that the examples for the Hanf number
of L, » below the continuum being large can be very simple, speaking only
about “finite patterns” of colouring pairs by countably many colours.

Proof (of Claim 3.7). Let M be a model of cardinality A with a countable
vocabulary and rk'(M) < (). We can assume that it has universe \,
relation < and individual constants ¢, for o < w. Let kM, M be as in the
proof of 1.13.

Let P be the set of triples (u, f, w) such that:

(a) u is a finite subset of A,

(b) f is a symmetric 2-place function from u to w,

(c¢) w is a family of nonempty subsets of u such that

(d) if @ € u then {a} € w,

(e) if w = {ap,...,an,_1} € W (increasing enumeration), k = kM (w),
acu\wand (V)[l <n&l #k = fla,a) = f(au,ar)] then w U {a}
belongs to w, (Vm # k)(a < oy < ag, < ap) and k = kM (wU {a} \ {ax})
and M = oM (w)[ag, ..., Qr_1,0, kg1, 0n_1),
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(f) if w' = {af,...,al,_;} C u (increasing enumeration, so with no
repetition), i = 0,1, and (VI < k <n)[f(a?,a) = f(a},a})] then v’ € w
& wl € w and if w' € w then M (w°) = M (w!), kM (w°) = kM (w!) and
k! (w®, M) = k' (w', M).

The order is the natural one.

It is easy to check that:

@1 P satisfies the c.c.c.,
@o  forevery a < A\, Lo = {(u, f,w) € P:a € u} is dense.

Hence there is a directed G C P not disjoint from L, for every a < A.
Let F' = J{f : (u, f,w) € G for some u, w}. We shall show that it is as
required. Clearly F' is a symmetric 2-place function from A to w; so the only
thing that can fail is if there is a symmetric 2-place function F’ from p to w
such that (xx) of 3.7 holds. By the compactness theorem for propositional
logic, there is a linear order <* of y such that

(%)) for every n < w and By <* ... <* B,—1 from p there are g < ... <
ay—1 < A such that /\k<l<n F' (B, 01) = F(ag, ap).

Let

W = U{w : (u, f,w) € G for some u, f}.

Let N = (A, Ry)n<w where R, = {(a, 8) : F(a,3) = n}, so rk'(w, N) for

w € [A]* is well defined; in fact, we can restrict ourselves to formulas of the

form 90($07 cee 7377171) = /\l<k<n F(xl’xk) = Cm(l,k)- Let N’ = (:U’a R;z)n<w

where R), = {(«a, ) : F'(a, ) = n}. Now first note that

®1 if w € W then 1k’ (w, N) < rk*(w, M)

(this is the role of clause (e) in the definition of P; we prove it by induction

on rk*(w, M) using the same “witness” k™). Secondly,

®2 {a} e W fora <A

(this is the role of clause (d) in the definition of P). Hence we conclude (by

1.1(2), ®1, ®2) that

®3 rk*(N) < a(x).

Lastly,

®s  ifag < < amorare <, Bo << Bret <A Npcrom F (ks i)
= F(Bk, 3;) and {Bo, ..., Bm_1} € W then k' ({ag, ..., m_1}, N') <
rkl({ﬁ()’ s 7ﬁm—1}a N)

(again it can be proved by induction on rk' ({3, ..., Bm_1}, N), the choice of
N’ and our assumption toward a contradiction that (xx) of the claim holds).
Now by ®3, @4 and 1.1(2) (and ®3) we have rk*(N’) < rk'(N) < a(x), but
this contradicts | N'|| = = Aa()(Ro). m3.7
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CramM 3.9 (MA). If A\, u, F are as in 3.7 (i.e. ()5, r holds) then some
Borel set B C “2 x “2 (actually of the form |, _. 1m(T,)) has a A-square
but no p-square.

n<w

REMARK 3.10. (1) The converse holds too, of course.
(2) We can use “all A < p”.

Proof (of Claim 3.9). We can assume cf(\) > R (otherwise combine
w examples). Let F' be a symmetric 2-place function from A to w such that
(*)a,p, - For simplicity let f* : w — w be such that (Yn)(3*°m)(f*(m) = n).
We define a forcing notion P as in 1.13 except that we require in addition
for p € P:

X1 f*(gp(a,ﬁ)):F(a,ﬂ),

®e if o/ # [, " # 37 are from P, k < w, 2, [k = 0P, 1k # ng, Tk =
ng,, [k both not constantly 1 then F(o/, ") = F(a”,3"),

®s  if n,v € "PI2 then for at most one m < m[p] we have (n,v) € t7,,

® ifn<w n>1n <x...<x NMn_1 are pairwise distinct members
of "2 and k < 1 = (ng,m) € tz(k ) then for some pairwise distinct

ag, ..., 0,—1 from u[p”], we have
N F (kD) = Flaw, a).
k<l<n
We have

©1  ifa < B < A, then there is a unique n < w such that (14, 75) € im T),.

Thus (J,,c,, Tn contains a A-square. In proving that it does not contain a
p-square we apply (), 7. For this the crucial fact is

®2  ifn<w,no,...,nu-1 € “2 are distinct, (9, m) € im(T} s ) then for

some pairwise distinct aq, ..., an_1 < A,
N\ (kD) = Fag, o).
k<l<n

Instead of “Z2 is dense” it is enough to show

@3 for some p € P, p Ik “the number of o < A such that a € u? for some
qc QP s\, m3g9

Similarly we can show

CrAM 3.11 (MA). Assume Rg < A < 2%, Then the following are equiv-
alent:

(a) For some symmetric 2-place functions F,, from p to w (for p < X)
we have

(¥)(F,:u<xy  for mo 2-place function F' from \ to w do we have:
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(%) for every n < w and pairwise distinct By, ..., Bn—1 < A
there are p < X and pairwise distinct ag,...,0n—1 < p
such that

N\ F'(Br.B) = Fu(on, ).
k<l<n
(b) Some Borel subset of “2 x“2 contains a p-square iff p < \ (in fact,
B is an F, set).

4. Rectangles. Simpler than squares are rectangles: subsets of “2 x “2
of the form Xy x Xj, characterized by pairs of cardinals (\g, A\;) where
A = | Xi]. So we would like to define ranks and cardinals which character-
ize their existence just as rk'(w, M; k), AL (k), degsqz(—), degsqy(—) have
done for squares. Though the demands are weaker, the formulation is more
cumbersome: we need two “kinds” of variables, one corresponding to A\g and
one to A;. So the models have two distinguished predicates, Ry, Ry (corre-
sponding to Xo, X; respectively), and in the definition of rank we connect
only elements from distinct sides (in fact, in §3 we already concentrate on
2-place relations explaining not much is lost). This is very natural as except
for inequality nothing connects two members of X, or two members of X;.

DEFINITION 4.1. We define Prrcla(/\l,)\g;<m, 90,91),rkrcl((w1,w2),M,
A1, A2; K, 0p,01) as in 1.1 (but w; € [RM]* and |R}M| = X)), replacing rk by
rkre ete. Let A = (A1, A2) and w = (wyq, wa).

(1) For I < 6, cardinals A = (A1, A2) with A1, A2 > K and 0 = (6p,01) with
fp < 61 < A1, A9, and an ordinal «, let Prrcé()\; < K, ) mean that for every
model M with vocabulary of cardinality < 6y such that /\?:1 |RM| = \;,
RM N RY = (), FM is a 2-place function with range included in 6; = Q™
we have rkrcl(l\J_; < k) > a (defined below).

Let NPrrcl, (X; < k,0) be the negation. Instead of < k1 we may write &;
if K = «95r we may omit fg; _if 0 = Ng, & = Ny, we may omit them. We
may write 0o, 01 instead of 6 = (0o, 01) and similarly for \. Lastly, we let
Arc!, (1,0) = min{\ : Prrc, (A, \; <k, 0)}.

(2) For a model M,

rkrc! (M; < k) = sup{rkrc' (@, M; < k) + 1 : @ = (wy, ws) where
w; C Rf\/l are finite nonempty for ¢ = 1,2 and
(3c € QM) (Va,b)[a € wy & b € wy = F(a,b) = |}
where rkrc is as defined in part (3) below.

(3) For a model M and

w € [M)® :={a: 1= (u,us),u; C RM are finite nonempty and
(Je)(Va,b)[a € uy & b € us = F(a,b) = c|}
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we shall define the truth value of rkrc! (w, M; < k) > « by induction on the
ordinal a (for I = 0,1, k can be omitted). If we write w instead of wy, ws
we mean w; = wN RM, wy = wNRY (here R N R} = () helps). Then we
can note

()0 a < pB&rkeci (@, M; < k) > 3 = rkec (@, M; < k) > a,
()1 rked' (@, M;<rk) > 6 (6 limit) iff  /\ rkec'(w, M; <k) > o,
a<d
(¥)2  rkrc (@, M;<r) >0 iff @ e [M]%.
So we can define rkrc! (w, M; < k) to be the maximal a such that rkrc' (@, M;
< k) > a, and oo if this holds for every a (and —1 if rkrc! (@, M; < &) # 0).

Now the inductive definition of rkrc! (@, M; < k) > a was already done
above for a = 0 and « limit, so for a« = 8+ 1 we let

(x)3  rkrc'(w, M;<k) > B+ 1 iff (letting w = wy Uws, n = |w|, w =

{ag,...,an_1}), for every k < n and quantifier free formula

(20, 1) =
/\ ZT; 7é .fj & /\{R1<LL‘1) A Rg(l‘j) A (,01'7]‘(1'1',1‘]') : R1<ai) & R2<a]’)}
1<J

(in the vocabulary of M) for which M E ¢[ag,...,an—1] we have:
CASE 1: [ = 1. There are a}, € M for m < n, i < 2 such that:

(a) rkec'({al, :i < 2, m <n},M;<k) > j3,
(b) M = @[qé, ...,al_4] (for i = 1,2), so there is no repetition in

ap,...,al_y and [af, € RM & a,, € RM] for j = 1,2,

(c) a? # al but if m < n and (a, € RM & ap ¢ RM) then
0 1
ad =a.,

(d) if a,, € RM and a,,, € R3! then for any 4, j (€ {1,2}) we have
FMai al )= F™(am,,am,)-

mi? 'ma

CASE 2: | =0. As for [ =1 but in addition

(e) /\m Am = agn‘

CASE 3: [ = 3. The definition is like case 1 but ¢ < k; i.e. there are

at, € M for m < n, i <  such that:

(a) for i < j < K we have rkrc! ({al, ,al, - m < n}, M;< k) >0,

b) M ab,...,al_4] (for ¢ < k; so there are no repetitions in

Plag n—1

aby...,ak_q), A

(c) fori < j <, al # a but if m < n and (a,, € RM & a, ¢ RM)
then a}, = al,,

(d) if&m1 € RY and an,, € R} then for any i,7, FM(al, ,af, ) =
FY(am,,am,).
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CASE 4: [ = 2. Like case 3 but in addition
(€) am = a2, for m < n.
CASE 5: [ = 5. Like case 3 except that we replace clause (a) by

(a)~ for every function H with Dom(H) = k and |Rang(H)| < &, for
some ¢ < j < Kk we have H(z) = H(j) and

rkrc! ({al,,a, :m < n}, M;< k) > .

CASE 6: | = 4. Like case 4 with (a)~ instead (a).
(4) For M as above and ¢ € QM we define rkrcl(M, ;< K) as

sup{rkrc! (w, M; < k) +1: @ € [M]® and
(Va € wy1)(Vb € we)[F(a,b) = c|}.

(5) Let Prrdl (), k,60) mean rkrc'(M,c; < k,0) > « for every M for

some ¢ € M when M is such that [RY| = Ay, [RY| = A, |7(M)| < 6y,

: RM x RM — QM and |QM| = 6,. Let NPrrd', (), k,0) mean its
negatlon and Ard’ . (k,0) be the minimal \ such that Prrdl LA N K, 0).

REMARK 4.2. The reader may wonder why in addition to Prrc we use
the variant Prrd. The point is that for the existence of the rectangle X; x Xo
with F[(X; x X5) constantly ¢*, this constant plays a special role. So in our
main claim 4.6, to get a model as there, we need to choose it, one out of 61,
but the other choices are out of . So though the difference between the two
variants is small (see 4.5 below) we actually prefer the Prrd version.

CrAa 4.3. The parallels of 1.2 (+statements in 1.1), also 1.3, 1.5(2),
1.6, 1.10 hold. m
CrLAIM 4.4. (1) If w; € [RM]* fori=1,2 then
w x rkre! ((wy, wy), M; k) > 1k (wy Uws, M; k).
(2) If RM = RY (abuse of notation) then rkrc' (M; < k) > tk'(M; k).
(3) If My = Ay = A then Pro(\ k) = Prreg (M, A2 K, k). =

Cram 4.5. Ard, (k,0) = \c,(k,0) if o is a successor ordinal or cf(a)
> 0.

CLAIM 4.6. Assume k < 0 < A1, Ao. Then the following are equivalent:

(A) Prrdls (A1, Ao s, 6).

(B) Assume M is a model with a countable vocabulary, |RM| = X\, forl =
1,2, PM =k, QM =0, FM is a 2-place function (really just F[(RM x R
interests us), the range of F[(RM x R is included in Q™ and G is a
function from [RM]* x [RM]* to PM. Then we can find 7(M)-models Mo, N
and elements c*, a,, b, (for n € “2) such that:
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(i) N is a model with the vocabulary of M (but functions may be
interpreted as partial ones, i.e. as relations),

(ii) a,, € RY andb, € RY are pairwise distinct and F™ (a,,b,) =
¢ (€ N),

(iii) My is countable, My C M, c* € QM My is the closure of
(Mo N PMYU {c*} in M, in fact for some M} < M we have
My = closure of PMo U {c*}, ¢* € M},

(iv) My C N, PMo = PN,

(v) IN| = {o(ay,b,,d) : o is a T(M)-term, n € “2, v € “2 and
CZ c MO}7

(vi) for {m : 1l < I(x)},{vm : m < m(x)} C “2 (both without
repetitions nonempty) there is d* € PMo such that if d C PMo
and quantifier free formulas ¢y, are such that

N ): /\ Plm [amvbum?cﬂ
I<l(*),m<m(x)
then for some {a; : 1 < 1(*)} € RM and {b,, : m < m(*)} C
R (both with no repetition) we have
M = /\ P1mlar, bm, d]
I<l(x),m<m(x*)
and G({a; : I < 1(*)}, {bm : m < m(x)}) = d*,

(vii) for every quantifier free first order ¢ = @(x,y,z20,...) €
L(T(M)) and dy, ... € My there is k < w such that for every
N1, N2, V1, V2 € Y2 such that 1Tk = ok and v1 [k = volk we
have

N = olay, by, d1,...] = @lan,, by,, di,.. ],

(vi)* for every n < w, first order p = @(xg,...,Tn_1) € L(T(M))
quantifier free and ds,ds, ... € My there is n* < w such that
for every k € (n*,w), no,m € “2, vy,v1 € “2 satisfying

nolk =mlk and wvolk =11k

we have

N E play,, by, da, . ..] = @lan,, by, ,da, .. .,],

(viii) if ¢ is an existential sentence in T(M) satisfied by N then ¢
1s satisfied by M.
(B)~ Like (B) without (vii)™, (viii).
Proof. (B)” =(A). Toward a contradiction assume NPrrd, + (A1, Ag; k).

Hence there is a model M’ witnessing it, so |7(M')| < k. So ¢ € QM =
rkre! (M’ ¢; k) < k't (note that Prrd was defined by cases of rkrc(M, ¢, k).
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Let {gi(x,y) : i < k} list the quantifier free formulas in Ly, ., (7(M"))
with free variables z,y. Let {u; : i < x} list the finite subsets of k. For ¢ €
_QM and ao, . . . Q%) —1 € R{w ,boy ooty bm(*)fl € Ré\/[ (a= <a0, e ,al(*),1>,
b= (bo,...,bm()—1) and we set an 147 = by) let

Ccab = I‘kI‘Cl(({ao, ) al(*)—l}a {b07 SRR bm(*)—l})? M/7 &) /i),

and let k. ; 5, ¢.ap be witnesses for rkre! (@, b), M, ¢; K, 0) Qegpt+ 1. Let
i(c,a,b) < r be such that ¢, 5 is a conjunction of formulas of the form
©j (1, Yym) for j € w45 We define M:

e the universe is |M’|,

e the function FM /, relations R} ,, R, /, QM /, pM /, the pairing function
on ordinals,

e R, = {(i,a,b) : a € R}, b € R} and if |u;| > n then M = ¢;a,b]
where j is the nth member of u;},

e let H. be one-to-one from w x rkrc(M’, ¢; k,0) x K into k,

e we define the function G:

GC((_I, l_)) = H(chg((_l, l_))? GC,I (C_L’ l_))v GC,2((_17 l_))) = H(kc,&,57 Qe a,bs ic,é,f))'

Now we can apply statement (B)~ of 4.6 which we are assuming and get
My, N, c*, ay, b, (for n € “2) satisfying clauses (i)—(vii) there. So ¢* € M, C
M’ N N, hence 3* = rkrc(M’,c; k) satisfies 8* < oo, even < kT. Clearly
1rk1rcl(N7 c* k) < B*.

Consider all sequences

(= L<1(*)), (Um s m < m(x)),di,d, (pr,m = L <1(x),m < m(x)),
(ag : L < U(%)), (b : m < m(x)))

which are as in clause (vi) of (B).

Among those tuples choose one with a* = rkre'({a; : I < (%)}, {bm :
m < m(*)}, N,c*; k) minimal. Let this rank not being > a* + 1 be exempli-
fied by ¢ and k < I(*) + m(x), so by symmetry we can assume k < [(x).

Choose k* < w large enough for clause (vi) of (B) to hold for all formulas
¢(z,y) appearing in {¢;(z,y) : j € u;. ;} where i.. ;5 = Ge- 2(a, b) and
(mlk* = 1 < U(x)), (vmlk* : m < m(x)) are with no repetition. Choose
M(x) € 2%\ {n} such that ) [k* = n,[k*. Now apply clause (vi) of (B)~
to 77/ = <"7! 1< l(*)>7 v = <Vm tm < m(*)>7 /\m (Pl(*),m(xl(*)axm)v /1ad,'
By the choice of ¢, these clearly satisfy rkrc'({a) : 1 < I(%)}, {0, : m <
m(x)}, N, c*;k,0) < rkrc'({ag 0 1 < 1(%)}, {bm : m < m(¥)},N,c*;k,0) =
o, but this easily contradicts the minimality of o*.

(A)=(B). As in the proof of 2.5, 2.1 (with a fixed c¢).

(B)=(B)~. Trivial. my ¢
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DiscussiON 4.7. (1) When applying 4.6(A)=-(B), or 2.5 we can use M
which is an expansion of (H(x), €, <*) by Skolem functions, P = k, x large
enough, so for n,v € “2, N, , := cly (Mo U {ay,a,}) is a model of ZFC, not
well founded but with standard w and more: its {i : i < k} is a part of the
true . In [Sh 532] we will have (as in 2.1) My C N, My < M, My < N, .,
and if N, , E “p(n,v), v,n are (essentially) in “2, ¢ € M is a k-Suslin
relation”, then V |= ¢(n,v).

(2) We can give a rank to subsets of A\; X Ay and have parallel theorems.

CrLAmM 4.8. If ¢ € “2 x “2is \/,_y s, each p; is k-Suslin, ¢ contains
a (A1, Ag)-rectangle, and Prrd,£++1(/\1, A2;0) then ¢ contains a perfect rec-
tangle.

Proof. Let p;(n,v) = (30)((n, v, 0) € im(T};)) where T; is a (2, 2, k)-tree.
Let M be (H(x), €, <}, (Ti : i < 0),h, T, A1, A, Ry, R2, Q,n)n<., expanded
by Skolem functions, where QM = 6 and, for some 7, € “2 for i < \;
pairwise distinct and v; € “2 for j < Ay pairwise distinct, R} = {n; :
i < A} and R = {v; : j < A\2}; finally, let 7, h be functions such that
(i, v, T(iyvy)) € im(Th(y,,0;))- So let N, Mo, c*, a, (for n € “2), by, (for
n € “2) be as in clause (B) of 4.6. Now M has elimination of quantifiers, so
there are quantifier free formulas ¢!, () saying (in M) that x € R; & z(n)
= 1, and let H,(z,y) be such that x € RM &y € RY = (T(z,y))(n) =
H,(z,y) € k = PM.

So for 7 € “2 we can define 0, € “2 by o}(n) =1 & N |= ¢, (ay),
and a}] € “2 by afi(n) =14 N E ¢2%(b,), and we define, for n,v € “2, a
sequence oy, € “>(PMo) C“>k by 0y, ,(n) = Hp(ay, by).

Now A := {0} : 7 € “2} and B := {07 : n € “2} are perfect and for
n,v e Y2, (01,0727, op,v) € im(T'), hence A x B is a perfect rectangle inside

n
prjlim(7). my g

Fact 4.9. (1) Assume that ¢ C “2 x “2 is 01-Suslin, k < 61 and 0 =
cf(S<x(01), C). Then ¢ can be represented as \/,_, pi with each ; k-Suslin.

(2) If o is co-r-Suslin, then it can be represented as \/,_,.+ pi with each
@; k-Borel (i.e. can be obtained from clopen sets by unions and intersections
of size < K).

Proof. (1) Easy.

(2) Let = be represented as prjlim(7) with T" a (2,2, k)-tree.

Now ¢(n,v) iff T(,,) = {e : for some n, (nin,vin,0) € T} is well
founded, which is equivalent to the existence of & < k™ and f : T, (nw) — QO
such that g1 < 02 € T = f(01) > f(02). For each a < k™, this property is
k-Borel. 49
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CONCLUSION 4.10. If ¢ is an N, -Suslin subset of “2 x “2 containing a

(Ardy, (R,), Ardy, (Ry,))-rectangle then it contains a perfect rectangle. (Note:
R,, can replaced by k if cf(S<x,(k),C) =k, e.g. Xy, by [Sh g, IX, §4].)

CONCLUSION 4.11. (1) Forl < 6, Prrcl(x*, (27 )F; k).
(2) If V=VE P ccc and Vo = GCH then Prrc,, (R, R3).

Proof. (1) For a model M, letting (A1, \2) = (xT, (25" )*) choose (for
= 1,2) a nonempty sequence @™ from RM for i < )\m, with {a" : i < A\, }
pairwise disjoint. For (7, j) € Ay X )\2 let (3;,; = rkre(ay, a3, M) with witnesses
kM(a},a3), oM(af,a3) for —rkrc! (aj,a3, M) > Bij. As Xy = (2*)* and
|T(M)| < K, for some By C Ay with |Bz| = A2 and for every i < A; the
following does not depend on j € Bs:
KM (ala2). o (@l a2).
Similarly, there is By C Ay with |B;| = A\; (= k™) such that for j =
min(By) the values kM (af,a?), o (aj,a?) are the same for all i € By;
but they do not depend on j € By either. So for (i,j) € By X B2 we
have kM(aZ,af) = k*, pM(al, j2) = @*. Let k* “speak” about a!, for
deﬁmteness only. Choose dlstlnct ic in By (for ¢ < k). We can assume

rkre! (@l at, M) < rkec'(al ,al, M).

z ? ]7 z bl ]7
Now aC give contradiction to rkrc’ (a} a;, J, M) # Big.j-
(2) This can be proved directly (or see [Sh 532]) through preservation by
c.c.c. forcing notion of ranks which are relatives of rkrc similarly to 1.10.

REMARK 4.12. (1) If T is an (w,w)-tree and A x B C lim(7") with
A, B C “w uncountable (or just not scattered) then lim(7") contains a per-
fect rectangle. Instead of lim(7") (i.e. a closed set) we can use a countable
intersection of open sets. The proof is just like 1.17.

(2) We can define a rank for (2, 2, k)-trees measuring whether prjlim(7")
C “2 x“2 contains a perfect rectangle, and similarly for (w,w)-trees T mea-
suring whether lim(7") contains a perfect rectangle. We then have theorems
parallel to those of §1. See below and in [Sh 532].

The use of “w below is just notational change.

DEFINITION 4.13. For an (w,w)-tree T' we define a function degrc, (rect-
angle degree). Its domain is rcpr(7) := {(u1,uz) : for some | < w, uy,uy are
finite nonempty subsets of ‘w and ¢ a function from u; X us to w such that
(no,m) € T for n; € wu;}. Its value is an ordinal degrep(uy,ug) (or —1 or

o0). For this we define the truth value of degrc,(ui,ue) > a by induction
on the ordinal .

Case 1, a = —1:

degrep(uy,ug) > —1 iff  (uq,us9) is in repr(T).
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CASE 2, « limit:
degrep(uy,ug) >« iff  degrep(uy,us) > 3 for every 5 < a.

CASE 3, a = 8+ 1: degrep(ug, ug) > aiff for k € {1,2} and n* € uy we
can find [(x) < w and functions hg, hy such that Dom(h;) = u3 Uwus, [n €
ur Uug = 1 2 hi(n) € "Ow], ho(n*) # ha(n®), n € iy = ho(n) = ha(n)
and letting u} = Rang(ho|u;) U Rang(hq [u;) we have degrep(ud, ul) > 8.

Lastly, define: degreq(uo, u1) = a iff A\ g[degrep(uo,u1) > 8 < a > f]
(v an ordinal or 00).

Also degre(T) = degrer({()},{()})-

CrLAa 4.14. Assume T is an (w,w)-tree.

(1) For every (ug,uy) € repr(T), degrep(ug,uy) is an ordinal or oo or
—1; if f is an automorphism of (¥~ w,<) then

degrey (uo, u1) = degrep(py (f(uo), f(u1)).

(2) degre(T) = oo iff there is a perfect rectangle in Um(T) iff wy <
degrep(ug, uq) for some (ug,u1) (so those statements are absolute).

(3) If degre(T) = a(x) < wy then lim(T') contains no (Arcy(.)+1(No),
Arcq(x)+1(Ro))-rectangle.

(4) If T = (T, : n < w) is a sequence of (w,w)-trees, degre(T,,) < a(x*),
and A = U, ., im(7T},) then A contains no (Arca(x)+1(No), Arcq )41 (Ro)-
rectangle.

(5) In part (4) we can replace w by any infinite cardinal 6.

Proof. (1)—(3) Left to the reader.

(4) Follows from part (5).

(5) Let A = Arcqy41(0), T = (T; : i < ), degre(T;) < a(*) and
A = ;o im(T;). Let {1, : a < A} x{vg: B <A} € A where a < § =
N # Np & Vo # Vg, and for simplicity {n, : @« <A} N{vg: B <A} =10.

We define a model M, with universe z—(((QNO)ﬂ and relations: all those
definable in (H((2%)1), €, <*, Ry, Ra,9,T,1)i<o where RM = {n, : a < A},
R ={vs: B < A} and g(na,vg) = min{i < 0 : (n4,vp) € lim(T})}.

Next we prove
(x) if w; € [RM]* for | = 1,2, then

rkre({wy, wo), M) < min{degrcy, ({na [k : o € ur }, {vglk : f € ua}) :
ur Cwi, uz Cway ur 0, ug £ 0, k< w,

(Na Tk : o € uy) is with no repetitions,

n<w

(vglk : B € ug) is with no repetitions}.

We prove (*) by induction on the left side of the inequality. Now by the
definitions we are done. my 14
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CrLAIM 4.15. (1) For each a(x) < wy, there is an w-sequence T = (T}, :
n < w) of (w,w)-trees such that:

(@) for every p < Arcy)(No), some c.c.c. forcing notion adds a
(1, p)-rectangle to |J,, ., im(Ty,),
(8) degre(T,) = a(s).

(2) If NPrreg v (A1, A2; No) then for some (w,w)-tree T', some c.c.c. fore-
ing notion adds a (A1, A\2)-rectangle to im(T) such that a(x) = degre(T)
(consequently, if Prrcy(.)(ANp, A1;Rg) then there is no (A}, \])-rectangle in
lim(T)).

(3) Moreover, we can have for the tree T' of (4): if pu < Arcy(y)(Ro)
and A, B are disjoint subsets of “2 x “2 of cardinality < u, then some
c.c.c. forcing notion P adds an automorphism [ of (“~w,<) such that A C
Hm™[f(T)] and B N Um*[f(T)] = 0 (the lim* means closure under finite
changes).

Proof. We define the forcing for part (2) and postpone the others to
[Sh 532].

(2) It is enough to do it for successor a(x), say B(x) + 1. It is like 1.13;
we will give the basic definition and the new points. Let M be a model as in
Definition 4.1 with |RM| = \; and rkrc' (M) < a(*), so tkre' (M) < (k). We
assume that R} are R3! are disjoint sets of ordinals. For nonempty a; C R}
(I < 2; no repetition inside @), let ™ (ay,as), kM (a,a2) € Rang(a;) U
Rang(dy) be witnesses to the value of rkrc! (ay, s, M) which is < a(x).

We define the forcing notion P: a condition p consists of:

(1) @ = (ub,ul) and uP = u.[p] is a finite subset of RM for e < 2.

(2) n? = np] < w and N2 = n4[p] € "Plw for a € uP such that
a# B eul =k # .

(3) 0 <mP < wand 2, C (J{'w x 'w : I < nP} is closed under initial
segments and such that the <-maximal elements have length n? and () € 7.

(4) The domain of f? is {u = (uy,us) : for some | = I(u1,u2) < n? and
m = m(u1,uz) < mP we have u. C t?Nlw and if ay € uy, g € ug, nB 1€ u
and nf,, [l € up then g¥(on, a2) = m} and fP(u) = (f5(a), f{(u), f5(w)) €
a(x) X (u1 Uug) X Ly, o(T7(M)).

(5) A function g : uf x ub — {0,...,mP — 1}, m? < w.

(6) 5, N o = {(,17) - 0 € u B € uf and m = g7(a, B)}.
(

) IEQ#u. CteNlw, fP(ur,us) = (8%, 0%, ¢*), I <I(x) < nP, for
0,1 a function e; . has domain u., [(VI)(0 € ue = 0<e€;(0) €EN (*) )}
[Q* ¢ ue & 0 € U = 60,5(@) = 61,5(@)]7 [Q* €U = € 5( ) 7é €1 E(Q )} and

fP(eo1(ur)Uer,1(ur), ep2(uz)Ues a(uz)) = (4,0, ¢") (so well defined) then
B < pr.
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(8) If I < nP, u. C uP are nonempty for ¢ = 1,2, the sequence (n2 [l :
a € u.) is with no repetition, and u. = {72l : o € u.} and fP(uf,ub) is
well defined, then f5(u},ub) = oM (uy,u2), fF(u},ub) = nP|l where « is
kM (uy,uz) and f5(u),ub, h) = rkre(u, ug, M).
(9) If (u),uh) € Dom(fP) then there are [, uq, ug as above.
(10) if (n1,m2) € tP, N (™2 x "2) then for some oy € uf, ay € ub we have
gP(ar,az) =mand n I8, m2 Ik . myy

REMARK 4.16. We can generalize 4.13-4.15 to Suslin relations.
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