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Hausdorff’s theorem for posets that satisfy the
finite antichain property

by

Uri A b r a h a m (Be’er Sheva) and Robert B o n n e t (Chambéry)

Abstract. Hausdorff characterized the class of scattered linear orderings as the least
family of linear orderings that includes the ordinals and is closed under ordinal summations
and inversions. We formulate and prove a corresponding characterization of the class of
scattered partial orderings that satisfy the finite antichain condition (FAC).

Consider the least class of partial orderings containing the class of well-founded or-
derings that satisfy the FAC and is closed under the following operations: (1) inversion,
(2) lexicographic sum, and (3) augmentation (where 〈P,�〉 augments 〈P,≤〉 iff x � y
whenever x ≤ y). We show that this closure consists of all scattered posets satisfying the
finite antichain condition.

Our investigation also sheds some light on the natural (Hessenberg) sum of ordinals
and the related product and exponentiation operations.

1. Introduction. The title of our paper refers to the well-known anal-
ysis of the scattered linear orderings made by Hausdorff [5]: Let Hlinear

be the closure of the class of well-ordered sets under inversions and well-
ordered summations. Then Hlinear consists exactly of all linear scattered
orderings (all definitions and needed preliminaries will be given below). We
relax the requirement on linearity and obtain a corresponding result con-
cerning the class of partially ordered sets that satisfy the finite antichain
condition (FAC—every set of pairwise incomparable points is finite). Pre-
cisely, we shall prove the following theorem in Section 3.

Define H as the closure of the class of all FAC well-founded posets under
lexicographic sums, inverses, and augmentations of the orderings. Then H
is exactly the class of all scattered FAC posets.
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In this formulation, the theorem is not an extension of Hausdorff’s the-
orem because it (necessarily) allows augmentations, but we provide a finer
investigation of the ranks of the posets involved and then obtain the theorem
of Hausdorff as a particular case.

The proof is very elementary and should be accessible to readers with
only a basic background in set theory. We therefore give all necessary defi-
nitions and some known results in the sequel of this introduction.

On posets. We recall here some definitions of elementary notions: posets,
scattered posets, embedding, augmentation, etc. We recall some elementary
facts. For example, an augmentation of a well-quasi-order (wqo) is wqo, and
an augmentation of a scattered wqo is scattered.

If P is a partially ordered set (poset) then P , or more formally |P |,
denotes the universe of the ordering, and ≤P (or ≤ when no confusion can
arise) denotes the ordering itself. We write a < b for a ≤ b and a 6= b.

We say that a and b are incomparable (a ⊥ b) when a 6≤ b and b 6≤ a. An
antichain is a set of pairwise incomparable elements. The Finite Antichain
Condition (FAC) for a poset P is the property that any antichain in P is
finite.

If P is a poset, then P ∗ denotes it inverse ordering, that is, |P | = |P ∗|
and for every p and q, p ≤P∗ q iff p ≥P q.

For any poset P and x ∈ P we define

(≤ x) = {y ∈ P | y ≤ x}, (⊥ x) = {y ∈ P | y ⊥ x}.
(< x), (≥ x), and (> x) are defined similarly. We may write (≤ x)P , (< x)P

etc. for emphasis.

1. We say that P is a subposet of Q if the universe of P is a subset of
the universe of Q and whenever p1 <

P p2 then p1 <
Q p2.

2. If P is a subposet of Q such that for any p1, p2 ∈ |P | we have p1 <
P p2

iff p1 <
Q p2, then P is said to be the restriction of Q to |P |, and we write

P = Q¹|P |.
3. If P is a subposet of Q but they both have the same universe, then

we say that Q augments P . We denote by aug(P ) the set of all possible
augmentations of P . Clearly, every augmentation of a FAC poset satisfies
the FAC as well.

4. A poset is well-founded if it has no infinite decreasing sequence. P
is well-founded iff there is a rank function for P , that is, an ordinal-valued
function r : P → Ord such that r(p) = sup{r(x) + 1 | x <P p} for every p
in P .

5. A transitive and reflexive relation is called a quasi-ordering . If every
antichain is finite and every decreasing sequence is finite then the quasi-
ordering is said to be a well-quasi-ordering . This is a very familiar term
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and a useful notion, but since we prefer to use partially ordered sets (rather
than quasi-orderings) we will not use it, and hence our rather long (but
self-explanatory) FAC well-founded poset terminology.

6. Let P and Q be two posets; an embedding of P into Q is a one-to-one
function f from the universe of P into the universe of Q such that for every
a, b ∈ P , a <P b iff f(a) <Q f(b). We say that P is scattered if there is no
embedding of Q (the chain of rational numbers) into P .

7. Given two posets P and Q we define the sum P + Q as the poset
obtained by putting every member of P below every member of (a disjoint
copy of) Q. The perpendicular sum P ⊥ Q is defined by taking disjoint copies
of P and of Q and making members of P incomparable to members of Q.
The Cartesian product P × Q is the partial ordering obtained by defining
(a, b) ≤ (a′, b′) iff a ≤P a′ and b ≤Q b′.

8. The lexicographic ordering P · Q is obtained, roughly speaking, by
replacing each point in Q with a copy of P . This operation corresponds,
more generally, to that of lexicographic sum

∑
q∈Q Pq obtained by replacing

each point q in Q with a copy Pq of P . More formally, this lexicographic
sum is the set

⋃
q∈|Q| |P | × {q} endowed with the ordering 〈p, q〉 ≤ 〈p′, q′〉 if

and only if q <Q q′, or q = q′ and p ≤Pq p′.
9. If X is a set of ordinals, then Sup(X) denotes the least ordinal that

is strictly greater than all ordinals in X, while sup(X) is the least ordinal
that is ≥ than all ordinals in X. That is, Sup(X) = sup{α+ 1 | α ∈ X}.

An initial segment I of a poset P is a subset of |P | such that for every
p ∈ I, (≤ p) ⊆ I. We denote by I(P ) the set of all initial segments of P .

Lemma 1.1. Let P be a poset. Then the following are equivalent :

1. P is a FAC well-founded poset.
2. For every infinite sequence 〈pi | i ∈ ω〉 of points from P there are

i < j with pi ≤P pj.
3. Any augmentation of P is well-founded.
4. The ordered set 〈I(P ),⊆〉 is well-founded.

We will not prove the lemma (see Chapter 4 of Fräıssé [4]) but only
comment that Ramsey’s theorem can be used.

Lemma 1.2 (Bonnet and Pouzet 1969). The following are equivalent for
any poset P .

1. P is scattered and satisfies the FAC.
2. Every augmentation of P is scattered.

P r o o f. (See [2] and Fräıssé [4, Chapter 7].) We prove only one direction,
namely that 1 implies 2. Suppose that P = 〈|P |, <〉 is scattered and satisfies
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FAC, but P ′ = 〈|P |, <′〉 is a non-scattered augmentation of P . We first
prove the following claim:

Suppose that S ⊆ |P | is such that the restriction P ′¹S is isomorphic
to Q. Then there is q ∈ S such that the restriction of P ′ to (⊥ q)P ∩ S
contains a copy of Q.

Indeed, as P is scattered and S is not an infinite antichain, there are
a <P b in S that are consecutive elements of S, i.e. there is no c ∈ S
satisfying a <P c <P b. Further, a <′ b and the open interval (a, b)<

′
:=

{c ∈ |S| | a <′ c <′ b} is order-isomorphic to Q. Also, for c ∈ (a, b)<
′
,

we have c ⊥ a or c ⊥ b in P . Let Da = {c ∈ (a, b)<
′

: c ⊥ a} and
Db = {c ∈ (a, b)<

′
: c ⊥ b}. Then Da ∪Db is a partition of (a, b)<

′
into two

sets and hence one of the sets is not scattered in <′ and contains a copy of
Q. This proves the claim.

By repeatedly applying the claim, one obviously gets an infinite antichain
of P , which is impossible.

Note that the class of FAC scattered posets contains the class of FAC
well-founded posets and is closed under lexicographic sums, inverses, and
augmentations of the orderings (that follows from 1.2).

On ordinals. We recall some elementary facts concerning ordinal oper-
ations that we shall use and then proceed to investigate the Hessenberg
based operations on the ordinals (which we believe to be new, despite their
simplicity). Several textbooks in set theory can be consulted; for example
Sierpiński [8], Fräıssé [4], or Lévy [7].

The Cantor normal form of an ordinal α,

α = ωα(0)m(0) + . . .+ ωα(i)m(i) + . . .+ ωα(l)m(l),

is determined by a non-empty decreasing sequence α(0) > α(1) > . . . >
α(l) ≥ 0 of ordinals, and a sequence of natural numbers m(i) ≥ 0. (Except
for α = 0, it is possible to demand that each m(i) > 0, but there are
occasions where it seems to be convenient to allow for m(i) = 0.)

Each ωα(i) with m(i) > 0 is called here a block of α, and the least block is
called the tip of α. So, for example, if α = ωω2+ω7 +ω35, then tip(α) = ω3,
and if α = ω + 5 then tip(α) = 1.

The ordering of two ordinals can be determined by their coefficient series:
Suppose that α1 and α2 are two ordinals. By allowing m(i) = 0 we can
assume that they have the same sequence of exponents

α(0) > . . . > α(l) ≥ 0.

Let m1(i) and m2(i) for i ≤ l be the respective coefficients of α1 and α2.
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Then α1 < α2 iff

〈m1(0), . . . ,m1(l)〉 ≺ 〈m2(0), . . . ,m2(l)〉
where ≺ is the lexicographic ordering of sequences of natural numbers.

Definition. The natural sum (or Hessenberg sum) of two ordinals is
defined by adding the coefficients of their normal forms as though these
were polynomials in ω. For example, if α = ωω+ω8+ω73 and β = ωω +ω7 +
ω2 + ω04 then α⊕ β = ωω+ω8 + ωω + ω74 + ω2 + 4.

Carruth [3] characterized α ⊕ β as the maximal order type of A ∪ B,
where A and B are sets of ordinals of order type α and β. We indicate a
proof:

Relying on the criterion given above for the ordering of ordinals, one can
see that the two-place function α⊕β is strictly increasing in both arguments.
This can be used to prove that if A, B are sets of ordinals of order type α
and β respectively, then tp(A ∪ B) ≤ α ⊕ β (here tp(X) is the order type
of X). Indeed, define a function f by setting

f(γ) = tp(A ∩ γ)⊕ tp(B ∩ γ)

for every γ ∈ A∪B. Then f : A∪B → α⊕β is order preserving, and hence
tp(A ∪B) ≤ α⊕ β.

On the other hand, α⊕ β (as a set of ordinals) is clearly the order type
of the union A ∪ B of two disjoint sets of ordinals with tp(A) = α and
tp(B) = β. This proves Carruth’s characterization.

The natural presentation of α⊕ β as the union A ∪ B as above has the
following property: If γ < α⊕ β then γ = tp(A ∩ γ)⊕ tp(B ∩ γ). So

(1) If γ < α⊕ β, then γ = α0 ⊕ β0 where α0 ≤ α and β0 ≤ β
(and α0 < α or β0 < β). (Do not be tempted to think that if α < γ < α⊕β
then γ = α⊕ β0 for some β0 < β.)

The following remarks are for completeness, since we shall not use them
in this paper. As Fräıssé [4, Chapter 7.2] remarks, for any two ordinals α
and β we have

σ = Sup
α′<α, β′<β

α′ ⊕ β′ < α⊕ β.

The following, however, is easy to prove:

If α is limit and tip(α) ≤ tip(β) then α⊕ β = Sup
α′<α

α′ ⊕ β.

It follows from this that, for limit ordinals α and β,

α⊕ β = max{Sup
α′<α

α′ ⊕ β, Sup
β′<β

α⊕ β′}.
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Definition. The natural sum operation is used to define a product
operation α� β on the ordinals by the following relations:

α� 0 = 0,

α� (β + 1) = (α� β)⊕ α,
α� β = Sup{α� γ | γ < β} for limit β.

We say that α � β is the Hessenberg based product of α and β. As usual,
parentheses may be deleted. For instance, α ⊕ (β � γ) ⊕ δ is denoted by
α⊕ β � γ ⊕ δ.

The operation � is not the same as the Hessenberg operation α⊗β which
is obtained from the normal forms of α and β viewed as polynomials and
multiplied accordingly. In particular, α ⊗ β is commutative, but � is not.
For example,

ω ⊗ 2 = 2⊗ ω = ω + ω,

ω � 2 = ω ⊕ ω = ω + ω, 2� ω = Sup{2� n | n < ω} = ω.

The function α�β is strictly increasing in the right variable, continuous
in the right variable, and non-decreasing in the left variable. α⊗β is strictly
increasing in both coordinates, but it is not continuous. We always have
(prove by induction on β)

αβ ≤ α� β ≤ α⊗ β,
where αβ is the usual ordinal multiplication. Strict inequalities are possible;
for instance, with α = ω + 1 and β = ω + 2, we have: αβ = ω2 + ω2 + 1,
α� α = ω2 + ω + 1, α� β = ω2 + ω2 + 2, and α⊗ β = ω2 + ω3 + 2.

We now recall a well-known formula for the product of ordinals, and show
that a similar result also holds for the Hessenberg based product. For this
we decompose any ordinal β into its infinite parts and the finite (possibly
empty) tip.

Lemma 1.3. If β = β0 + k where β0 is limit or 0 and k ∈ ω, then for
any α with Cantor normal form α = ωα(0)m(0) + . . . + ωα(l)m(l) (where
m(0) > 0),

αβ = ωα(0)β0 + αk = ωα(0)β0 ⊕ αk,(2)

α� β = ωα(0)β0 ⊕ α� k.(3)

Hence if β = β0 + 0 is a limit ordinal then αβ = α� β = ωα(0)β.

P r o o f. We only prove (3), but the proof for (2) is the same. The proof is
by induction on β. If β = 0 then β0 = 0, k = 0 and (3) is trivial. If β = β′+1
is a successor ordinal, and β = β0 + k + 1 where β0 is the last limit ordinal
(or zero) below β, then β′ = β0 + k and, by the inductive assumption,

α� β = α� β′ ⊕ α = ωα(0)β0 ⊕ α� k ⊕ α = ωα(0)β0 ⊕ α� (k + 1).
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Now if β is limit, then β = β0, k = 0 and we shall prove that α�β = ωα(0)β.
By definition

α� β = Sup
β′<β

α� β′.

There are two possibilities.

1. β is a limit of limit ordinals βi, i ∈ I. Then

α� β = Sup
i∈I

α� βi = Sup
i∈I

ωα(0)βi = ωα(0)β

because (regular) ordinal multiplication is continuous on the right.
2. β has the form β = γ + ω where γ is limit or 0. Then

(4) α� β = Sup
n∈ω

α� (γ + n) = Sup
n∈ω

ωα(0)γ ⊕ α� n.

Observe first that Supn∈ω α� n = ωα(0)ω. So if β = ω then γ = 0,

α� β = Sup
n∈ω

α� n = ωα(0)β

and we are done. Thus we assume γ ≥ ω. But ωα(0)γ⊕α�n = ωα(0)γ+α�n,
because tip(ωα(0)γ) ≥ ωα(0)ω > α� n. So, by the right-continuity property
of ordinal addition, (4) gives

α� β = ωα(0)γ + ωα(0)ω = ωα(0)(γ + ω) = ωα(0)β.

Corollary 1.4. Distributivity holds on the right :

α� (β1 ⊕ β2) = α� β1 ⊕ α� β2.

P r o o f. This can be proved by induction on γ = β1⊕β2. The case γ = 0
is trivial, and the case of γ a successor is easy. So assume that γ is a limit
ordinal, that is, both β1 and β2 are limit ordinals. Then

α� γ = ωα(0)γ = ωα(0)(β1 ⊕ β2) = ωα(0)β1 ⊕ ωα(0)β2 = α� β1 ⊕ α� β2.

We have used the formula ωδ(β1 ⊕ β2) = ωδβ1 ⊕ ωδβ2, which can be easily
computed.

Corollary 1.5. � is associative: (α� β)� γ = α� (β � γ).

P r o o f. We proceed by induction on γ. The successor case is handled as
follows:

(α� β)� (γ + 1) = (α� β)� γ ⊕ α� β,
α� (β � (γ + 1)) = α� (β � γ ⊕ β) = α� (β � γ)⊕ α� β.

So we see that the two terms are equal by the induction hypothesis. (To get
the second equality, we have used distributivity.)
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The case where γ is a limit ordinal is as follows:

(α� β)� γ = Sup
γ′<γ

(α� β)� γ′

= Sup
γ′<γ

α� (β � γ′) = α� (β � γ).

We have used here the fact that Supγ′<γ(β � γ′) = β � γ by definition, and
the continuity property on the right, which says that if Supg∈G βg = β is a
limit ordinal, then Supg∈G α� βg = α� β.

Definition. In the following step � is used to define the Hessenberg
based exponentiation, which we denote by the superscript H (as in αHβ).
Whenever it is perfectly clear that we deal with the Hessenberg based ex-
ponentiation, we shall omit H:

α0 = 1 for α > 0 (but 0β = 0),

αβ+1 = αβ � α,
αβ = Sup{αγ | γ < β} for limit β.

Lemma 1.6. The usual rules hold for the Hessenberg based exponentia-
tion:

αβ+γ = αβ � αγ ,(5)

(αβ)γ = αβγ .(6)

P r o o f. All exponentiations are Hessenberg based exponentiations. We
first show (5). The proof is by induction on γ. The case γ = 0 is trivial.
Look at the following for γ + 1. By the definition of exponentiation and by
the inductive assumption we have αβ+γ+1 = αβ+γ � α = (αβ � αγ) � α =
αβ � (αγ � α) = αβ � αγ+1.

Now, for γ a limit ordinal, we argue as follows: αβ+γ = Supγ′<γ α
β+γ′ =

Supγ′<γ α
β�αγ′ = αβ�αγ . This last equality is derived from the definition

of µ� δ when δ is a limit ordinal, and from the fact that Supγ′<γ α
γ′ = αγ .

So (5) holds.
The case γ = 0 for (6) is trivial. Look at the following for (6) in the

successor case γ + 1:

(αβ)γ+1 = (αβ)γ � αβ = αβγ � αβ = αβγ+β = αβ(γ+1).

Here, we have used the induction hypothesis in the second equality, and (5)
in the third equality.

For γ limit, (6) follows from

(αβ)γ = Sup
γ′<γ

(αβ)γ
′

= Sup
γ′<γ

α(βγ′) = αβγ .
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For many ordinals µ, we have µHα = µα for all α’s. That is, the Hessen-
berg based exponentiation coincides with the regular one. For example:

Lemma 1.7. For every α, ωHα = ωα.

P r o o f. We proceed by induction on α. The cases α = 0, 1 and α a limit
ordinal are very easy. Now consider the successor case:

ωH(α+1) = ωHα � ω = ωα � ω = ωαω = ωα+1.

For instance, note that (ω + 2)ω+1 < (ω + 2)H(ω+1).
The following lemma is used in the proof of Lemma 1.11.

Lemma 1.8. If γ < α� β then for some k < ω,

γ = α1 ⊕ . . .⊕ αk ⊕ α� β0

where αi < α for every i and β0 < β, and in fact β0 + k ≤ β.
Moreover , if γ′ < α1 ⊕ . . .⊕ αk ⊕ α� β0, then for some l ∈ ω,

γ′ = α′1 ⊕ . . .⊕ α′k ⊕ α′k+1 ⊕ . . . α′k+l ⊕ α� β′0
where α′i ≤ αi for each 1 ≤ i ≤ k and either

1. l = 0 and β′0 = β0, or
2. l > 0 and then β′0 + l ≤ β0.

P r o o f. We prove the first statement by induction on β. If β is 0 or is
a limit ordinal the statement is obvious. So assume that γ < α� (β + 1) =
α� β ⊕ α. Then (by (1))

γ = µ⊕ α0 where µ ≤ α� β and α0 ≤ α.
If α0 = α then necessarily µ < α�β and the inductive hypothesis applied

to µ gives µ = α1 ⊕ . . .⊕ αk ⊕ α� β0 with β0 + k ≤ β. Then

γ = α1 ⊕ . . .⊕ αk ⊕ α� β0 ⊕ α = α1 ⊕ . . .⊕ αk ⊕ α� (β0 + 1),

and β0 + 1 + k ≤ β + 1 as required.
If α0 < α, then there are two subcases: µ = α � β and µ < α � β. The

first subcase is obvious (giving γ = α0⊕α�β), and the inductive hypothesis
is applied in the second subcase.

The “moreover” part of the lemma is a consequence of the first part. If

γ′ < [α1 ⊕ . . .⊕ αk]⊕ [α� β0]

then apply (1) to the Hessenberg sum of the two ordinals enclosed in the
square brackets, and write γ′ = γ0 ⊕ γ1 with γ0 ≤ α1 ⊕ . . . ⊕ αk, and
γ1 ≤ α� β0. For γ1 < α� β0, use the first part of the lemma.

On ranks of posets. Any well-founded poset A has an associated rank
function rk : A→ Ord satisfying

rk(a) = Sup{rk(x) | x <A a}.
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The range of rk, that is, Supa∈A rk(a), is called the length of A and is
denoted by rk(A) for simplicity. If % : A → Ord is any order preserving
function, then rk(a) ≤ %(a) for every a ∈ A. Thus rk(A) is the least ordinal
into which there is an order preserving function from A. The rank function
“leaves no gaps”: if γ < rk(a) then for some a′ <A a we have γ = rk(a′).

The basic reason that the natural sum is so useful for us is the following
simple lemma.

Lemma 1.9. If rX : X → α and rY : Y → β are the rank functions
of the well-founded posets X and Y , then the rank function rk on X × Y
satisfies

(7) rk(〈x, y〉) = rX(x)⊕ rY (y).

P r o o f. Since ⊕ is order preserving in both coordinates, the expression
rX(x) ⊕ rY (y) on the right-hand side is an order preserving function from
X × Y into α⊕ β. From this follows the “≤” part of the equality. Equality
follows from (1), namely if γ < rX(x) ⊕ rY (y) then γ = α0 ⊕ β0 for some
α0 ≤ rX(x), β0 ≤ rY (y). So if (7) is violated, then it is violated by some
minimal pair 〈x, y〉 inX×Y . But then rk(〈x, y〉) = γ < rX(x)⊕rY (y) implies
that γ = α0 ⊕ β0 for some α0 ≤ rX(x), β0 ≤ rY (y) and strict inequality
must hold at least once. Say α0 < rX(x), and then there is x0 < x with
α0 = rkX(x0) and y0 ≤ y with rkY (y0) = β0. Now, as 〈x0, y0〉 < 〈x, y〉,
we have rk(〈x0, y0〉) = rkX(x0) ⊕ rkY (y0) = γ which is a contradiction!
(Compare with Fräıssé [4], and see Abraham [1] for related results.)

On the antichain rank. Observe that P satisfies the FAC iff the set of
antichains of P under inverse inclusion forms a well-founded poset. That
is, there is no infinite strictly ⊂-increasing sequence of antichains in P .
When P satisfies the FAC, we denote by 〈A(P ),⊃〉 the poset of all non-
empty antichains of P under inverse inclusion. The rank function on A(P )
is denoted by rkA, and its image (which is an ordinal) is called the length
(or the rank) of A(P ). For simplicity of notation we denote this rank by
rkA(P ). (This may be confusing if P itself is a finite antichain.) Denote
by A+(P ) = A(P ) ∪ {∅} the collection of all antichains of P , including
the empty antichain, which is not in A(P ), and extend rkA on the empty
antichain by defining rkA(∅) = rkA(P ).

We have the following results:

Lemma 1.10. If P and Q are FAC posets with antichain rank functions
rP and rQ, then the perpendicular sum R = P ⊥ Q is also a FAC poset and
its rank function rkA satisfies

rkA(X) = rP (X ∩ P )⊕ rQ(X ∩Q)

for every antichain X in R (including the empty antichain). In particular ,
rkA(R) = rP (P )⊕ rQ(Q).
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P r o o f. The proof is a direct consequence of Lemma 1.9 and the fact
that A+(P ⊥ Q) = A+(P ) × A+(Q). (Recall that A+(X) = A(X) ∪ {∅}
is the set of all antichains of X, including the empty one.) So rkA(R) =
rkA(∅) = rP (∅)⊕ rQ(∅) = rP (P )⊕ rQ(Q).

Lemma 1.11. If P and Q are FAC posets, and R = P ·Q is the lexico-
graphic product (that is, the lexicographic sum of copies of P along Q), if
rP and rQ are the antichain rank functions on A(P ) and A(Q), then R is
a FAC poset as well , and the length of A(R) is rP (P )� rQ(Q).

P r o o f. Lemma 1.8 is used in the proof. Any antichain X in R can
be represented as a union of P -antichains along some Q-antichain. That
is, X =

⋃{Aq | q ∈ B} where B is an antichain in Q and each Aq is an
antichain in P . If B = {q(1), . . . , q(n)}, and α = rP (P ), define

f(X) = rP (Aq(1))⊕ rP (Aq(2))⊕ . . .⊕ rP (Aq(n))⊕ α� rQ(B).

We shall prove that f is the rank function for R. Having done so, we can
put X = ∅ to obtain the lemma. First we prove the following:

Claim 1. The function f is order reversing : If X1 ⊂ X2 are two an-
tichains in R, then f(X1) > f(X2).

This claim implies that rR(X) ≤ f(X) for any antichain X in R (rR is
the antichain rank for R).

Proof of Claim 1. Suppose that X1 is represented with P -antichains A1
q

for q ∈ B1, and X2 is represented with A2
q for q ∈ B2. Then X1 ⊂ X2 implies

that B1 ⊆ B2 and for q ∈ B1 and A1
q ⊆ A2

q. There are two cases to consider:
when B1 = B2 and when B1 ⊂ B2.

In the first case it is easy to see that f(X1) > f(X2), because the Hes-
senberg sum is (strictly) order preserving in all coordinates.

In the second case, let l ≥ 1 be the number of points in B2 not in B1.
Then rQ(B2) + l ≤ rQ(B1). This is because if B2 = B1 ∪ {b1, . . . , bl}, then

rkQ(B1) > rkQ(B1 ∪ {b1}) > rkQ(B1 ∪ {b1, b2}) > . . . > rkQ(B2).

Now

f(X2) = rP (A2
q(1))⊕ . . .⊕ rP (A2

q(n))

⊕ rP (A2
q(n+1))⊕ . . .⊕ rP (A2

q(n+l))⊕ α� rQ(B2)

(where B1 = {q(1), . . . , q(n)}, B2 = {q(1), . . . , q(n+ l)}). Hence

f(X2) < rP (A1
q(1))⊕ . . .⊕ rP (A1

q(n))⊕
l times︷ ︸︸ ︷

α⊕ . . .⊕ α ⊕ α� rQ(B2)

= rP (A1
q(1))⊕ . . .⊕ rP (A1

q(n))⊕ α� (rQ(B2) + l) ≤ f(X1).

This ends the proof of Claim 1.
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Applying the claim to X1 = ∅ we get f(X) < α � β for any non-empty
antichain X in R (where α = rP (P ) and β = rQ(Q)).

To prove the equality of f and rR, we assume (towards a contradiction)
that for some antichain X, with a minimal f -value,

rR(X) = γ < f(X).

The idea is to extend the antichain X to some antichain X ′ that satisfies a
corresponding formula, contrary to the minimality of f(X).

We represent X as
⋃{Aq | q ∈ B}, where B = {q(i) | i = 1, . . . , n}, and

write

f(X) = rP (Aq(1))⊕ . . .⊕ rP (Aq(n))⊕ α� rQ(B).

Then γ < f(X) implies, by (1), that

γ = α1 ⊕ . . .⊕ αn ⊕ . . .⊕ αn+l ⊕ α� β0

where l ∈ ω, αi ≤ rP (Aq(i)) and β0 + l ≤ rQ(B) by Lemma 1.8.
We shall define X ′ ⊃ X with f(X ′) ≥ γ. Thus rR(X ′) < γ ≤ f(X ′)

contradicts the minimality of f(X). First a simple observation.

Claim 2. If B is an antichain in Q such that rkA(B) = β and β0 < β
is an ordinal such that β0 + l ≤ β (where l ∈ ω), then there is an antichain
B′ ⊃ B with rkA(B′) ≥ β0 and such that B′ \B contains l points.

P r o o f. Define inductively B ⊂ B1 ⊂ . . . ⊂ Bl by rkA(B1) = β0 +
(l − 1), . . . , rkA(Bl) = β0. Then Bl \ B contains at least l points, and any
B ⊂ B′ ⊆ Bl containing exactly l additional points concludes the claim.

The construction of X ′ is done in two steps. Since β0 + l ≤ rQ(B),
by Claim 2, we first add l new points to B and obtain an antichain B′ ⊃
B in Q with rQ(B′) ≥ β0. Having defined B′, pick for each q ∈ B′ an
antichain A′q in P that extends Aq (if q ∈ B) and with rank as given by the
corresponding ordinal αi. Then f(X ′) ≥ γ follows. (To argue that X ′ 6= X
consider separately the case l = 0, in which αi < rP (Aq(i)) for some i, and
the case l > 0.)

2. The generalized Hausdorff hierarchy. Fix an ordinal % ≥ 1 which
will denote antichain ranks. We shall define and study in this section the class
H% which is the least class of posets that contain all the well-founded posets
with antichain rank ≤ % and is closed under inversion and lexicographic
sums. We shall stratify H% in the form H% =

⋃
α∈OrdH%α and investigate

the properties of H%α. In particular we prove here that for any P ∈ H%α,
rkA(P ) ≤ %α (Hessenberg based exponentiation).
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Definition 2.1. Let % ≥ 1 be our fixed ordinal. By induction on α ∈ Ord
define the class H%α as follows:

1. H%0 = {1} consists of a single poset 1 containing just one element.
2. H%1 is the class of all posets P with rkA(P ) ≤ % and such that P or P ∗

(the inverse of P ) is well-founded. So H1
1 is the class of all well-ordered sets

and their inverses (i.e., order types of ordinals and inverses of ordinals).
3. For any limit ordinal δ, H%δ =

⋃
α<δH%α.

4. If β = α + 1 is a successor ordinal, then H%β is the class of all posets
P that are a lexicographic sum of the form

P =
∑

i∈I
Pi

where Pi ∈ H%α and I is a poset with rkA(I) ≤ % and such that I or I∗ is
well-founded, that is, I is in H%1.

Finally, set H% =
⋃
α∈OrdH%α and H =

⋃
1≤%∈OrdH%.

We first state some simple properties concerning this hierarchy of po-
sets H%.

Lemma 2.2. 1. H% is the least class that contains the well-founded posets
of antichain ranks ≤ % and is closed under lexicographic sums and inverses.
In particular , H1 is the class originally defined by Hausdorff as the least
class containing the ordinals that is closed under inverses and sums.

2. Each H%α and H% is closed under restrictions.
3. If P ∈ H% then P is scattered and satisfies the FAC.
4. aug(H%) (the collection of all augmentations of posets in H%) is closed

under lexicographic sums, inverses, restrictions, and (naturally) augmenta-
tions. Every poset in aug(H%) is scattered.

P r o o f. For item 1, we shall only indicate the proof that H% is closed
under lexicographic sums. We prove by induction on α that if I ∈ H%α and
Pi ∈ H% for each i ∈ I, then

∑
i∈I Pi ∈ H%. The case α = 1 is obvious by the

definition of the hierarchy, and the case of α a limit ordinal is trivial. Let
I ∈ H%α+1 and for each i ∈ I, let Pi ∈ H% be given. We have I =

∑
j∈J Lj

with Lj ∈ H%α, and J ∈ H%1. Then P =
∑
i∈I Pi =

∑
j∈J(

∑
i∈Lj Pi). Now

because J ∈ H%1, we have P ∈ H%. Items 2, 3 and 4 are obvious (note that
the last statement of item 4 follows from Lemma 1.2).

Theorem 2.3. If R ∈ H%α then rkA(R) ≤ %Hα (the superscript H refers
to the Hessenberg based exponentiation, and we omit it below).

P r o o f. The proof is by induction on α. If α = 0 and R ∈ H%0, then R
consists of a single point and so rkA(R) = 1. The case α = 1 follows from
the definition: if R ∈ H%1 then rkA(R) ≤ % = %1. If α is a limit ordinal the
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inductive claim follows trivially, and so we assume that R ∈ H%α+1 and the
lemma holds for H%α.

So R =
∑
i∈I Pi where Pi ∈ H%α and I ∈ H%1. It follows from the inductive

assumption that rkA(Pi) ≤ %α, and it is not difficult to find a single poset
P with rkA(P ) ≤ %α and such that Pi ⊆ P for each i ∈ I (just align the
Pi’s along some ordinal). Then R ⊆ P · I and hence rkA(R) ≤ rkA(P · I) =
rkA(P )� rkA(I) ≤ %α � % = %α+1. (Use Lemma 1.11.)

3. A generalization of Hausdorff’s theorem. This is the main sec-
tion of our paper.

A quite useful and well-known observation is that every poset P has a
cofinal well-founded set. (Recall that H ⊆ P is cofinal iff every p ∈ P has an
extension in H.) To prove this, define hξ by induction until {hξ | ξ < α} =
Hα is cofinal. The inductive requirement is that for every ξ1 < ξ2 we have
hξ2 6<P hξ1 ; this ensures that Hα is well-founded.

Given a cofinal well-founded sequence H = {hξ | ξ < α} ⊆ P as above,
we define the stratification of P (induced by H) as the sequence of disjoint
subposets

(8) A(hξ) = {p ∈ P | p ≤P hξ but p 6≤P hξ′ for ξ′ < ξ}, for hξ ∈ H.
We consider A(hξ) as a restriction of P .

Suppose that P satisfies FAC and H ′ is a well-founded subset of P . We
define

(≤ H ′) =
⋃

h∈H′
(≤ h) and F (H ′) = P \ (≤ H ′).

We say that p ∈ F (H ′) is minimal over H ′ if for every q ∈ F (H ′) ∩ (≤ p),
h ≤ q if and only if h ≤ p for every h ∈ H.

If P satisfies the FAC, then the cofinal well-founded sequence H can be
defined in such a way that P is an augmentation of the lexicographic sum∑
h∈H A(h) obtained from the stratification of P induced by H (using the

existence of minimal point). Towards this aim we bring the following lemma.

Lemma 3.1. If P is a FAC poset , then there exists a cofinal well-founded
sequence H = {hξ | ξ < α} such that , for every ξ < α, hξ is minimal over
Hξ = {hµ | µ < ξ}.

P r o o f. The construction of H is done inductively as before, but with
the following change. Suppose that Hξ = {hµ | µ < ξ} has been defined
with each hµ minimal over its set of predecessors. If Hξ is cofinal in P , then
we are done. Otherwise Fξ := F (Hξ) is non-empty, and we must find some
minimal element h = hξ ∈ Fξ over Hξ. Suppose that no such h can be found,
and construct an infinite descending sequence p(0) >P . . . >P p(i) >P . . .
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in Fξ and corresponding members hµ(i) of Hξ such that for each i < ω,

(9) hµ(i) <
P p(i) but hµ(i) 6<P p(i+ 1).

Indeed, p(0) ∈ Fξ is arbitrarily chosen, and having defined p(i) we use the
supposition that p(i) is not minimal over Hξ to find p(i+ 1) <P p(i) in Fξ
with a different type: for some hµ(i) in Hξ, (9) holds. Since P satisfies the
FAC and Hξ is well-founded, Hξ is a well-founded FAC poset, and hence
there must be i < j with hµ(i) <

P hµ(j) (apply Lemma 1.1). But then

hµ(i) <
P hµ(j) <

P p(j) ≤P p(i+ 1)

contradicts (9).

Now we look at the stratification 〈A(h) | h ∈ H〉 obtained by a well-
founded cofinal sequence H with the “minimality condition” as in the lem-
ma. Form the lexicographic sum S =

∑
h∈H A(h) where A(h), as defined in

(8), is the collection of points ≤P h that are not in any previous A(h′). Then
the universe of S is the universe of P , since H is cofinal. We claim that P
augments S. Indeed, assume that p1 <

S p2. There are two possibilities:

1. For some h ∈ H, p1, p2 ∈ A(h). Then p1 <S p2 iff p1 <P p2 by
definition.

2. p1 ∈ A(h1) and p2 ∈ A(h2), and p1 <
S p2 because h1 <P h2. Then by

the “special minimality property” any point in A(h2) is above h1 and thus
any point in A(h1) is <P -below any point in A(h2).

Corollary 3.2. Suppose P is a FAC poset with rkA(P ) ≤ %. If for every
x ∈ P , (≤ x) ∈ aug(H%), then P ∈ aug(H%).

P r o o f. Find first an ordinal α such that (≤ x) ∈ aug(H%
α) for every

x ∈ P , and we will prove that P ∈ aug(H%
α+1). Construct a cofinal well-

founded sequence H ⊆ P as in Lemma 3.1, and form the lexicographic sum

S =
∑

h∈H
A(h)

of the resulting stratification. We consider the following facts:

1. P augments S.
2. Each A(h) is a restriction of (≤ h) to some subset, and hence A(h) ∈

aug(H%α) (as H%α and hence aug(H%α) are closed under restrictions). Say A(h)
augments A0(h) ∈ H%α.

3. H is well-founded and rkA(H) ≤ % (as H ⊆ P ). Thus H ∈ H%1.
4. So S0 =

∑
h∈H A

0(h) ∈ H%α+1. Now, S augments S0 since each A(h)
augments A0(h).

5. But S augments S0 and P augments S imply that P augments S0.
Thus P ∈ aug(H%α+1).

This proves Corollary 3.2.
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Since H%1 also contains all inverses of well-founded posets of antichain
rank ≤ %, the same result holds for every poset P with rkA(P ) ≤ % and such
that each (≥ x) is in aug(H%).

Corollary 3.3. 1. If P is a FAC poset with rkA(P ) ≤ %, but P 6∈
aug(H%), then for some p ∈ P , (≤ p) 6∈ aug(H%) and (≥ p) 6∈ aug(H%).

2. If P is a FAC poset with rkA(P ) ≤ % but P 6∈ aug(H%), then Q is
embeddable in P , that is, P is not scattered.

P r o o f. We first prove 1. Suppose that P is a FAC poset with rkA(P ) ≤
%, and let P 0 = {p ∈ P | (≤ p) ∈ aug(H%)} and P 1 = {p ∈ P | (≥ p) ∈
aug(H%)}. Assume that P = P 0 ∪ P 1. We must prove that P ∈ aug(H%).
P 0 is an initial segment of P , and P 1 a final segment (that is, (≥ q) ⊆ P 1

for every q ∈ P 1). By Corollary 3.2, both P 0 and P 1 are in aug(H%): Say
Q0, Q1 ∈ H% are such that P i ∈ aug(Qi) for i = 0, 1. There are two cases:
either for every x ∈ P 0 and y ∈ P 1 we have x ≤P y, or else some x ∈ P 0

and y ∈ P 1 are incomparable.
In the first case P is the sum P 0 + (P 1 \ P 0) of two posets that are in

aug(H%), and hence P is in aug(H%) as well (because H% is closed under
sums).

In the second case there are two incomparable points in P and thus % > 1.
Hence H%1 contains the poset consisting of two incomparable members, and
so H% is closed under perpendicular sums. As P is an augmentation of
Q0 ⊥ (Q1 \Q0) it follows that P ∈ aug(H%).

The second part of our lemma requires that we find an embedding f
of the rational chain Q into P , in the case where P is a FAC poset with
antichain rank ≤ % and such that P 6∈ aug(H%).

Fix an enumeration qn of the rational numbers, and decide in the nth
step of the construction the value of f(qn) ∈ P . The inductive assumption is
that, for distinct i, j < n, if qi <Q qj then f(qi) <P f(qj) and the P -interval

[f(qi), f(qj)] = {p ∈ P | f(qi) ≤ p ≤ qj}
is not in aug(H%), and similarly that (≤ f(qi)) and (≥ f(qi)) are not in
aug(H%). The first part of the lemma is used at each step. Thus we construct
f which is an embedding of Q into P .

Since the second part of the corollary is our main result we restate it for
conclusion:

Theorem 3.4. aug(H%), which is the closure of the class of all well-
founded posets with antichain rank ≤ % under inversion, lexicographic sums,
and augmentation, contains the class of all scattered FAC posets with ranks
≤ %. So aug(H), which is the closure of the well-founded posets with FAC
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under inversion, lexicographic sums, and augmentation, is the class of all
scattered FAC posets.

Hausdorff’s theorem is obtained for % = 1.

4. On the need for augmentations. Is it possible to prove a stronger
statement in which there is no need for augmentations? That is, is it true
that H already contains all scattered FAC posets? We shall show in this
section that this is not the case. We first make the following

Definition. Let P be a poset. A subset S of P is called a strong interval
of P iff for every x, y ∈ S and p ∈ P \ S, we have p ≤ x iff p ≤ y, and p ≥ x
iff p ≥ y.

In other words, S is a strong interval if any p ∈ P \ S is either greater
than all members of S, or smaller, or incomparable with all of them. For
instance, ∅, P , and every singleton are strong intervals of any poset P . Also,
if P is a lexicographic sum

∑
q∈Q Pq, then each Pq is a strong interval of P .

The following trivial observations are useful: (1) Any strong interval is
an interval (a convex set). (2) If S is a strong interval of P , if s, s′ ∈ S and
p ∈ P is such that p is comparable with s but not with s′, then p ∈ S.

We describe a FAC poset P that is not in H. Let A = {an | n ∈ ω} and
B = {bn | n ∈ ω} be disjoint countable sets, and let Q = A ∪ B. Let < be
the ordering on Q defined by

a0 < a1 < a2 < a3 < . . . < b3 < b2 < b1 < b0.

Let {0, 1} be the linear ordering of two points 0 < 1, and then let

P = Q× {0, 1}
be the Cartesian product. Then P has a least element p− = 〈a0, 0〉 and a
greatest element p+ = 〈b0, 0〉.

Lemma 4.1. The strong intervals of P are ∅, the singletons, and the sets
of the form P \ X where X ⊆ {p−, p+}. Hence every strong interval of P
that contains at least two points contains a restriction isomorphic to P .

P r o o f. Clearly, each of these sets, except the singletons and the empty
set, is a strong interval of P , and contains a restriction isomorphic to P . For
example, S = P \ {p+} is a strong interval because p+ is greater than all
members of S. Also, S \ {p−} contains a restriction isomorphic to P .

Now let S be any strong interval of P containing at least two points; we
shall prove that S has the required form. LetQ0 = Q×{0} andQ1 = Q×{1}.

We claim that it is not possible for S to be contained in Q0. Indeed,
in such a case pick two points in S: they are of the form 〈i, 0〉, 〈j, 0〉 with
i <Q j. But then e = 〈i, 1〉 6∈ S contradicts the assumption that S is a
strong interval, because e is above 〈i, 0〉 but is incomparable with 〈j, 0〉. In a
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similar vein S cannot be contained in Q1. Thus we conclude that S contains
a point 〈i, 0〉 from Q0 and a point 〈j, 1〉 from Q1. The proof now proceeds
in four cases.

Case 1: Both p− and p+ are in S. Then S = P because S is convex.

Case 2: p+ 6∈ S, p− ∈ S. Since p+ 6∈ S, but 〈j, 1〉 ∈ S by our conclusion,
necessarily j 6= b0 and then 〈b0, 0〉 is incomparable with 〈j, 1〉. Yet it is above
p−, and thus 〈b0, 0〉 ∈ S. This is because p− ∈ S and S is an interval Q0 ⊂ S.
A similar argument can show that Q1 \ {p+} ⊂ S: this follows because any
〈k, 1〉 is incomparable with 〈b0, 0〉 ∈ S but is above p−. Thus S = P \ {p+},
and in particular S contains an isomorphic copy of P .

Case 3: p+ ∈ S, p− 6∈ S. This case is symmetric to Case 2, and S =
P \ {p−} again contains a restriction isomorphic to P .

Case 4: p−, p+ 6∈ S. Then 〈b0, 0〉 is in S as it is incomparable with 〈j, 1〉
but comparable with 〈i, 0〉. Similarly, 〈a0, 1〉 ∈ S. Except for p−, any pair
in Q0 is incomparable with 〈a0, 1〉 and comparable with 〈b0, 0〉, and thus
Q0 \ {p−} ⊂ S. Similarly, Q1 \ {p+} ⊂ S. Thus S = P \ {p−, p+}, and again
S contains an isomorphic copy of P .

Corollary 4.2. P 6∈ H.

P r o o f. Look at

H′ = {Q ∈ H | no restriction of Q is isomorphic to P}.
Prove that H′ contains all FAC well-founded posets and their inverses, and
that it is closed under restrictions, inverses, and lexicographic sums. (Hence
H′ = H and so P 6∈ H.)

Indeed, the main point is the proof that if P can be represented as a
lexicographic sum R =

∑
q∈Q Pq, then either a restriction of Q is isomorphic

to P , or else a restriction of some Pq is isomorphic to P . To prove this,
consider first the case where any Pq is a singleton or the empty poset. Then
Q is isomorphic to P . Otherwise some Pq contains two points. But each Pq
is a strong interval of R, and hence this Pq contains a restriction isomorphic
to P .
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