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On products of Radon measures

by

C. G r y l l a k i s and S. G r e k a s (Athens)

Abstract. Let X = [0, 1]Γ with cardΓ ≥ c (c denotes the continuum). We construct
two Radon measures µ, ν on X such that there exist open subsets of X×X which are not
measurable for the simple outer product measure. Moreover, these measures are strikingly
similar to the Lebesgue product measure: for every finite F ⊆ Γ , the projections of µ
and ν onto [0, 1]F are equivalent to the F -dimensional Lebesgue measure. We generalize
this construction to any compact group of weight ≥ c, by replacing the Lebesgue product
measure with the Haar measure.

1. Introduction. Suppose that (X,Σ, µ) and (Y, T, ν) are topological
probability spaces, that is, probability spaces with topologies such that every
open set is measurable. We can form product measures on X ×Y in various
ways. First, we have the ordinary completed product measure µ× ν derived
by Carathéodory’s method from the outer measure (µ× ν)∗, where

(µ× ν)∗C

= inf
{ ∞∑
n=0

µEn · νFn : En ∈ Σ, Fn ∈ T, n ∈ N, C ⊆
∞⋃
n=0

En × Fn
}
.

It can happen that µ × ν is again a topological measure, that is, every
set open in X × Y for the product topology is µ × ν-measurable. This is
known as the product measure problem. The conditions under which it occurs
are not well understood yet. On dyadic spaces the problem has a positive
answer for a large class of measures; see [Fr-Gr]. In the negative direction,
D. H. Fremlin [Fr1], [Fr2] proved that if (S, ν) is the hyperstonian space of
the Lebesgue measure on [0, 1], then there are open sets in S × S which are
not measurable for the simple product outer measure. More recent results
were obtained by M. Talagrand [T2].

Although the measure on the hyperstonian space has the special ad-
vantage of being completion regular, it is somehow irritating that the only
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known counterexample, up to now, for this deceptively simple problem, is a
hyperstonian space. In the present paper, using a lemma of Fremlin [Fr1] as
well as a construction of Erdős and Oxtoby, we construct two (probability)
measures µ, ν on [0, 1]A with cardA ≥ c which furnish a counterexample to
the product measure problem. These measures are strikingly similar to the
usual Lebesgue product measure on [0, 1]A. To be precise, for every finite
F ⊆ A the projections prF (µ) and prF (ν) are equivalent to the Lebesgue
product measure on [0, 1]F . Moreover, the relevant density functions are step
functions. We notice that this similarity to the Lebesgue product measure
is, in a certain sense, best possible; for details see Remark 1. We hope that,
in view of this striking similarity, our counterexample will help to bring to
light the elusive circumstances under which the answer to the product mea-
sure problem is positive. Furthermore, our construction can be extended to
the case where X is any compact group of weight ≥ c. In this extension, we
replace the Lebesgue product measure by the Haar measure.

The original impulse to study such questions arose from a simple desire
to understand the nature of Radon product measures. However, there are
important problems in functional analysis and probability theory which re-
late to our counterexample; see for instance the distinction between “stable”
and “R-stable” sets which is necessary in [T1] (cf. [T2]).

2. A counterexample

2.1. Construction of µ, ν. We need the following fact, proved by Erdős–
Oxtoby [Er-Ox] (see also [Fr1], p. 286). Given ε > 0, there exists an open
subset U∗ of the unit square [0, 1]2 such that

(i) λ2U∗ < ε (λ denotes the Lebesgue measure),
(ii) if E,F ⊆ [0, 1] are such that λE · λF > 0, then there exist E′ ⊆ E

and F ′ ⊆ F with λE′ · λF ′ > 0 such that E′ × F ′ ⊆ U∗.
Now we come to the definition of the measures µ and ν. We enumerate

the family B = {Ei ×Fi : i < c}, where Ei and Fi are Borel subsets of [0, 1]
with Ei × Fi ⊂ U∗ and λEi > 0, λFi > 0. We consider the spaces

∏
i<cXi

and
∏
i<c Yi, where Xi = Yi = [0, 1] = I for every i < c. For each x ∈ I,

y ∈ I and i < c, let µxi and νyi be the Radon probability measures on Xi

and Yi respectively given by

µxi =




λ (= the Lebesgue measure on Xi = [0, 1]) if x ∈ Ei,
λ′ (= the restriction λ|[1/2, 1] normalized to be a probability

measure) if x 6∈ Ei,

νyi =
{
λ if y ∈ Fi,
λ′ if y 6∈ Fi.

Now, for any x ∈ I and y ∈ I, let µx and νy be the Radon product prob-



Products of Radon measures 73

ability measures
⊗

i<c µ
x
i and

⊗
i<c ν

y
i on X =

∏
i<cXi and Y =

∏
i<c Yi,

respectively.

Lemma 1. (a) If U ⊆ ∏i<cXi and V ⊆ ∏i<c Yi are elementary open
sets, then the functions x 7→ µxU : [0, 1] → [0, 1] and y 7→ νyV : [0, 1] →
[0, 1] are Borel measurable.

(b) There are (unique) Radon measures µ1 and ν1 on I ×X and I × Y
respectively such that

µ1(D) =
\
µxDx λ(dx) and ν1(D) =

\
νyDy λ(dy)

for all Baire sets D ⊂ I × X, resp. D ⊂ I × Y , where Dx = {u ∈ X :
(x, u) ∈ D} and Dy = {u ∈ Y : (y, u) ∈ D}.

P r o o f. Express U as U = {u : u(t) ∈ Ut ∀t ∈ F}, where F is a
finite set of coordinates and Ut ⊂ [0, 1] is open. For x ∈ [0, 1] we have
µx(U) =

∏
t∈F µ

x
t (Ut). Since each map x 7→ µxt (Ut), t ∈ F , is clearly Borel

measurable, it follows that x 7→ µx(U) is Borel measurable (the same holds
for y 7→ νy(V )).

Let Ω be the class of those sets D for which the map x 7→ µxDx is
Borel measurable. Then Ω is closed under monotone limits of sequences, and
U \ V ∈ Ω whenever U, V ∈ Ω and V ⊂ U . Also Ω contains all elementary
open sets in I ×∏i<cXi, therefore it contains all the Baire sets.

For every Baire set D ⊂ I ×∏i<cXi, we define the Baire measures

µ1D =
\
µxDx λ(dx), ν1D =

\
νyDy λ(dy).

Clearly µ1 and ν1 are Baire measures on I × X, resp. I × Y , which have
unique extensions to Radon measures. Let µ and ν be the projections of µ1

and ν1 onto the spaces
∏
i<cXi and

∏
i<c Yi respectively (note that we also

have
(µ1 ⊗ ν1)(B) =

\
(µx × νy)(Bx,y) d(x, y),

where Bx,y = {(u, v) ∈ X × Y : (x, u, y, v) ∈ B} and B is any Baire subset
of I ×X × I × Y ). The proof of the lemma is complete.

2.2. An open set in X × Y that is not µ × ν-measurable. Our example
of an open set in

∏
i<cXi ×

∏
i<c Yi which is not µ× ν-measurable has the

very simple form

U =
⋃

i<c

Ui × Vi

where Ui = pr−1
i [0, 1/2) and Vi = pr−1

i [0, 1/2) for every i < c and
pri :

∏
i<cXi → Xi is the canonical projection.

2.3. The µ⊗ ν-measure of U
Lemma 2. The µ⊗ ν-measure of U is less than or equal to ε.



74 C. Gryllakis and S. Grekas

P r o o f. We can find K ⊂ U compact such that (µ ⊗ ν)(U \ K) < ε.
There exists a finite M ⊂ c such that K ⊂ ⋃

i∈M Ui × Vi. We set E =⋃
i∈M Ui×Vi. Then E is a Baire set. Using the relative formula of Lemma 1

we see immediately that (µ⊗ ν)(E) ≤ ε.
2.4. The outer µ×ν-measure of U . We set U ′ =

⋃
i<c U

′
i ×V ′i , where U ′i

= pr−1
i [0, 1/4] and V ′i = pr−1

i [0, 1/4] for i < c. Clearly U ′i ⊂ Xi, V ′i ⊂ Yi,
U ′ ⊂ U and we shall show that (µ× ν)∗(U ′) = 1 (hence (µ× ν)∗(U) = 1).

By definition and by the regularity of µ and ν, for some δ small enough
we have

(µ× ν)∗(U ′) + δ =
∞∑
n=0

µWn · νTn,

where Wn ⊂ X and Tn ⊂ Y are open sets for each n ∈ N and U ′ ⊂⋃∞
n=0Wn×Tn. Since each U ′i ×V ′i is compact, for each i < c there is a finite

Li ⊂ N such that U ′i × V ′i ⊂
⋃
n∈LiWn × Tn.

We consider the family {Q×R ⊂ ⋃n∈LiWn×Tn} of measurable rectan-
gles, directed by set-theoretic inclusion; the maximal elements of this family
are clearly finitely many, say Qi1 × Ri1, Qi2 × Ri2, . . . , Qini × Rini . The fam-
ily {Qij × Rij : i < c, 1 ≤ j ≤ ni} has countably many pairwise distinct
elements; enumerate this family as {Qn ×Rn : n ∈ N}.

For each n ∈ N we consider the set In ⊂ c defined by In = {i < c :
U ′i × V ′i ⊂ Qn ×Rn}. Then clearly, for every n ∈ N,

( ⋃

i∈In
U ′i
)
×
( ⋃

i∈In
V ′i
)
⊆ Qn ×Rn ⊆

∞⋃
n=0

Wn × Tn.

Thus, we have proved

Lemma 3. Assume the above notation and definitions. Then there exists
a countable family In, n ∈ N, of subsets of c such that

(i)
⋃
n∈N In = c,

(ii) for every n ∈ N, (
⋃
i∈In U

′
i)× (

⋃
i∈In V

′
i ) ⊆ ⋃∞n=0Wn × Tn.

We set U ′′i = pr−1
i [0, 1/4) and V ′′i = pr−1

i [0, 1/4). Since µ and ν are
regular, for every n ∈ N there exists a countable Mn ⊂ In such that
µ(
⋃
i∈In U

′′
i ) = µ(

⋃
i∈Mn

U ′′i ) and ν(
⋃
i∈In V

′′
i ) = ν(

⋃
i∈Mn

V ′′i ). We set
Un =

⋃
i∈Mn

U ′′i and V n =
⋃
i∈Mn

V ′′i for n ∈ N. We observe that these
are Baire sets.

Our next auxiliary result is

Lemma 4. Assume the above notations and definitions. For n ∈ N, set

Dn = {x ∈ I : µx(Un) < 1}, Cn = {y ∈ I : νy(V n) < 1}.
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Then card{Ei×Fi ⊆ U∗ : i ∈ In, at least one of Ei∩Dn, Fi∩Cn has strictly
positive Lebesgue measure} is at most countable.

P r o o f. Suppose the contrary. Then the set {Ei×Fi : i ∈ In, at least one
of Ei ∩Dn, Fi ∩Cn has strictly positive Lebesgue measure} is uncountable.
Thus at least one of the following sets is uncountable:

{Ei : i ∈ In, λ(Ei ∩Dn) > 0}, {Fi : i ∈ In, λ(Fi ∩ Cn) > 0}.
Suppose it is the former. Then there exists some i0 > sup{i : i ∈ Mn}
such that λ(Ei0 ∩ Dn) > 0. It follows easily that µx(Un) < µx(Un ∪ U ′′i0)
for every x ∈ Ei0 ∩Dn. Therefore µ(Un) < µ(

⋃
i∈In U

′′
i ), which contradicts

µ(
⋃
i∈In U

′′
i ) = µ(

⋃
i∈Mn

U ′′i ).

We now calculate (µ× ν)∗(U ′).
Consider the sets An = [0, 1] \ Dn = {x ∈ I : µx(Un) = 1} and Bn =

[0, 1]\Cn = {y ∈ I : νy(V n) = 1}. We prove that (µ×ν)(
⋃
n∈N U

n×V n) = 1.
Since (µ× ν)(

⋃
n U

n × V n) ≥ (λ× λ)(
⋃
nAn ×Bn) it suffices to verify that

λ2(
⋃
nAn × Bn) = 1. Supposing that λ2(

⋃
nAn × Bn) < 1, we will arrive

at a contradiction of with the help of the key Lemma A of [Fr1], p. 286 (see
also proof of 345K Lemma in [Fr2]).

Suppose, if possible, that (λ×λ)(
⋃
nAn×Bn) < 1. In view of Lemma 4,

enlarging slightly An and Bn, we can assume that U∗ ⊆ ⋃nAn × Bn. By
Lemma 4, the family {E × F ⊆ U∗ : at least one of E ∩ Dn, F ∩ Cn has
positive Lebesgue measure for every n} is at most countable. We enumerate
this family as {A′k ×B′k : k ∈ N}.

On [0, 1] we consider the second countable topology which has as base
the sets of a countable base for the usual topology on [0, 1] plus the sets Dn,
Cn, [0, 1]\A′k, [0, 1]\B′k, n, k ∈ N. Since the Lebesgue measure on [0, 1] with
this new topology is τ -additive, we can consider its support K ⊆ [0, 1]. By
Lemma A of [Fr1], there exist some (t, u) ∈ K×K with (t, u) 6∈ ⋃nAn×Bn ⊃⋃
k A
′
k ×B′k and some E × F ⊂ U∗ with E and F being open subsets of K

in the restriction of the new topology to K, such that (t, u) ∈ Ẽ× F̃ , where
C̃ is the closure of C in this topology. Now again by Lemma 4, E and F are
almost contained in An, A

′
k and Bn, B

′
k respectively, for some n or k ∈ N.

Since λ is supported on K (with respect to the new topology) and E and F
are open in K, it follows that they are contained in the closed sets (for the
new topology) An ∩K, A′k ∩K and Bn ∩K, B′k ∩K respectively, for some
n or k ∈ N. Thus Ẽ and F̃ are subsets of An, A′k and Bn, B

′
k respectively,

for some n or k ∈ N. This leads to a contradiction, since (t, u) ∈ Ẽ × F̃ and
(t, u) 6∈ ⋃nAn ×Bn ⊃

⋃
k A
′
k ×B′k.

Remark. If F ⊂ c is finite, then it is easily seen that, for the pro-
jections prFµ and prF ν on

∏
i∈F Xi and

∏
i∈F Yi, we have prFµ � λF



76 C. Gryllakis and S. Grekas

and prF ν � λF (where � denotes absolute continuity and λF is the F -
dimensional Lebesgue measure on

∏
i∈F Xi). So, if instead of µ and ν we

consider the measures µ+m and ν +m (where m is the Lebesgue product
measure on

∏
i<cXi), then prF (µ+m) and prF (ν+m) are both equivalent

to the Lebesgue product measure.
This similarity of the measures µ+m and ν +m to the Lebesgue prod-

uct measure is, in a sense, best possible; to be precise, if for two measures
η, θ on

∏
i<cXi, prMη and prMθ are equivalent to the Lebesgue product

measure on
∏
i∈M Xi for every countable M ⊂ c, then it is easily seen that

these measures satisfy b) of Proposition on p. 564 of [Gry]. Therefore they
are completion regular. But for completion regular measures on products
of compact metric spaces the answer to the product measure problem is
positive; see e.g. [Gry] (cf. [Fr-Gr]).

Note. The above construction can be carried out on every uncountable
product of c-many compact metric spaces (and in particular on {0, 1}c) as
follows:

1. Let Xi, i < c, be a family of compact metric spaces, with at least two
points each, µi a strictly positive Radon probability measure on Xi, and
I = [0, 1]. Let also Ai ⊆ Xi be open with µiAi < 1. We set Yi = Xi, νi = µi,
i < c.

2. For x, y ∈ I and i < c, let µxi and νyi be the probability measures on
Xi and Yi respectively given by

µxi =




µi, x ∈ Ei,
µ′i

(
:=

1
µi(Ac

i )
× µi|Ac

i

)
, x 6∈ Ei, νxi =

{
νi, y ∈ Fi,
ν′i (:= µ′i), y 6∈ Fi,

where Ei and Fi are as in 2.1.
3. We can now define (in analogy) the measures µx and νy as well as µ and

ν on X =
∏
i<cXi and Y =

∏
i<c Yi respectively (note that now Xi and Yi

correspond to [0, 1]). Then, by the same procedure, the set U =
⋃
i<c Ui×Ui

(Ui = pr−1
i Ai, pri : X → Xi the projection) satisfies

(α) (µ⊗ ν)(U) ≤ ε,
(β) (µ× ν)∗(U) = 1,
(γ) if M ⊂ c is any finite set, and µM and µ̃M are the projections of

µ and µ̃ =
⊗

i<c µi, respectively, onto
∏
k∈M Xk, then µM is absolutely

continuous with respect to µ̃M .

3. Generalizations

3.1. The property (I). From the results of §2 it easily follows that for ev-
ery cardinal a ≥ c, there exist positive Radon measures µ and ν on {0, 1}α
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such that (1) their finite-dimensional projections are equivalent to the cor-
responding Haar measures and (2) some open set in {0, 1}α ×{0, 1}α is not
µ × ν-measurable (of course, if we consider ξ = µ + ν instead of µ, ν, the
same holds; therefore we can assume that µ = ν). Thus the topological space
X = {0, 1}α has the following property:

(I) for some positive Radon measure ξ on X, there exist open subsets of
X ×X that are not ξ × ξ-measurable.

In this section we describe a large class of compact spaces with the
property (I). This class contains every Stonian (compact, extremally dis-
connected) space as well as every dyadic space of topological weight ≥ c.

Let X1 and X2 be a couple of compact spaces. We consider a family
(Ai ×Bi)i∈Γ , cardΓ ≥ c, of compact rectangles in X1 ×X2 and a sequence
{Wn×Tn} of open rectangles in X1×X2. The following result is clear from
the arguments used in §2.

Lemma 5. There exists a sequence Γn ⊂ Γ , n ∈ N, such that

(i)
⋃
n∈N Γn = Γ ,

(ii) for every n ∈ N, (
⋃
i∈Γn Ai)× (

⋃
i∈Γn Bi) ⊆

⋃
n∈NWn × Tn.

Let now Xj , Yj , j = 1, 2, be compact spaces and pj : Yj → Xj continuous
surjections. We suppose that µj , νj are Radon measures on Xj , Yj resp. with
pj(νj) = µj . Then we have

Lemma 6. If X1 and X2 are totally disconnected and H ⊂ X1 ×X2 is
open with (µ1 × µ2)∗(H) ≥ γ > 0, then (ν1 × ν2)∗[(p1 × p2)−1H] ≥ γ.

P r o o f. Let {Wn×Tn} be any sequence of open rectangles in Y1×Y2 such
that W := (p1×p2)−1H ⊆ ⋃n∈NWn×Tn. We write H as a union of clopen
rectangles, i.e. H =

⋃
i∈Γ Ai ×Bi. Then W =

⋃
i∈Γ (p1 × p2)−1(Ai ×Bi) =⋃

i∈Γ p
−1
1 Ai × p−1

2 Bi. By Lemma 5, there is a sequence {Γn} of subsets of
Γ such that

(i)
⋃
n Γn = Γ ,

(ii) for every n, Sn := (
⋃
i∈Γn p

−1
1 Ai)× (

⋃
i∈Γn p

−1
2 Bi) ⊆

⋃
nWn × Tn.

Then

γ ≤ (µ1 × µ2)
[⋃
n

( ⋃

i∈Γn
Ai ×

⋃

i∈Γn
Bi

)]
= (ν1 × ν2)

[⋃
n

Sn

]

≤ (ν1 × ν2)
(⋃

n

Wn × Tn
)
≤
∑
n

ν1(Wn) · ν2(Tn).

We now consider the class Z of compact topological spaces admitting a
continuous surjection onto [0, 1]c. This class contains every Stonian space
[B-F] as well as every dyadic space of weight ≥ c (see [E]).
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Proposition 1. Every compact space Z ∈ Z has the property (I).

P r o o f. By Lemma 1.1 of [H], there exists a continuous surjection from
some closed subset X of Z onto {0, 1}c. By Lemma 6, we can find a suitable
measure ξ on X, satisfying (I). Then ξ, considered as a measure on the whole
space Z, also has the property (I).

The next result implies the result of Fremlin [Fr1], provided that the
hyperstonian space has “large” topological weight.

Corollary 1. Let (Y, ν) be the Stone space of the Lebesgue product
measure on [0, 1]A with cardA ≥ c. Then there exists an open set W ⊂ Y ×Y
such that (ν ⊗ ν)(W ) < (ν × ν)∗(W ).

P r o o f. Let µ be a Radon measure on {0, 1}c with full support and satis-
fying (I). Then we can easily find a measure µ′ on {0, 1}A of full support, also
satisfying (I) on {0, 1}A, such that the hyperstonian space of ({0, 1}A, µ′) is
(Y, ν) (simply, multiply µ by a suitable product measure).

If we now consider the canonical surjection π : Y → {0, 1}A, then
π(ν) = µ′. Lemma 6 yields the result.

Remark 2. Combining Lemma 6 with techniques used by Talagrand [T2],
we obtain the result of Fremlin without any restriction:

If (S, %) is the Stone space of ([0, 1], λ), then by [T2], there exists some
n ∈ N such that %n (:= %× . . .×%) satisfies (I). Since the hyperstonian space
of (Sn, %n) is (S, %), Lemma 6 assures the existence of some open subset of
S × S which is not %× %-measurable.

3.2. The case of a compact group. Since every topological group is a
dyadic space (see [K], [U]; also Prop. 7.6 in [P]), we already know that there
exists some measure ξ on the group satisfying condition (I). However, we
have no information on the relation of ξ to the Haar measure. On the other
hand, it is well known that every compact group is the projective limit of
a (directed) family of compact metric groups ([Mo-Zi], [Pr]) such that the
Haar measure is the projective limit of the corresponding Haar measures on
the metric “components” (see e.g. [C] and the relevant references). So (in
accordance with the measure constructed on [0, 1]c in §2), it is natural to
demand that the projection of ξ on every metric group is equivalent to the
corresponding Haar measure.

In this subsection we extend the construction of §2 to any compact group
G with w(G) ≥ c, where in place of the Lebesgue product measure we
have the (normalized) Haar measure and in place of finite products of unit
intervals we have some compact metric groups (precisely, Lie groups having
as projective limit the group G).

In the following, for a compact group A, wA denotes the (normalized)
Haar measure on A. The relevant result is
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Proposition 2. Let G be a compact group with w(G) ≥ c. Then there
exist a (directed) family (Gj)j∈J of compact Lie groups and a Radon prob-
ability measure µ′ on G such that

(a1) G ∼= projj limGj (∼= denotes topological isomorphism),
(a2) there are open sets in G×G which are not µ′ × µ′-measurable,
(a3) for each j ∈ J , the projection of µ′ onto Gj is absolutely continuous

with respect to wGj .

Note. Considering the measure 1
2µ
′ + 1

2wG instead of µ′, we see that
every projection of this measure is equivalent to the (corresponding) Haar
measure.

The construction of µ′ on G is in analogy with that of the measure µ on
[0, 1]c in §2. We only give the basic steps and tools for the construction. For
simplicity we assume that w(G) = c.

We begin with the following lemmata.

Lemma 7. If G is a totally disconnected (compact) group, then the con-
clusion of Proposition 2 holds with Gj being finite groups.

P r o o f. Since G is totally disconnected, there exists a directed family
(Gj)j∈J , card J = c, of finite groups such that G = projj limGj . Note that
(Gj , wGj )j∈J is a projective system of measure spaces which satisfies wG =
projj limwGj ([C], [Mo-Zi]). We now define the measure µ′ and we prove
that µ′ and Gj satisfy our requirements.

For brevity we follow the notations and arguments in [Gr1].
(a) We consider the (directed) set Γ = {Fj : j ∈ J} of compact normal

subgroups of G, where Gj = G/Fj (see proof of Lemma 2.2 in [Gr1]) and
using the Fγ we define the compact normal subgroups Hγ of G, for γ < c.

(b) Following the proof of Theorem 2.3 of [Gr1], we set X0 = G/H1,
Xγ = Hγ/Hγ+1 for γ > 0 (clearly the Xγ are finite groups) and X =∏
γ<cXγ .
(c) We construct the measures µγ , γ < c, and the map qG : X → G

exactly as in the proof of Theorem 2.3 of [Gr1]. Then, by the construction
of qG and by Theorem 8 of [Mos], qG is a homeomorphism between X and
G which, in addition, agrees with the projections (i.e. the relations (2.4) of
[Gr1] are satisfied). We use the Xi and µi, i < c, to construct the measure
µ as in the note of §2. Then for every finite M ⊂ c, the projection of µ on∏
i∈M Xi is absolutely continuous with respect to

⊗
i∈M µi.

(d) Consider the Ui, i < c, as in the note of §2 and set µ′ = qG(µ) and
U ′i = qG(Ui). Then it is easily seen that for the set U ′ =

⋃
i<c U

′
i × U ′i ,
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we have:

(i) (µ′ ⊗ µ′)(U ′) ≤ ε,
(ii) (µ′ × µ′)∗(U ′) = 1;

hence (a1)–(a3) of Proposition 2 are satisfied.

Lemma 8. If G is a connected (compact) group, then the conclusion of
Proposition 2 also holds.

For the proof of this lemma we need some notions and techniques used
in [Gr2] and [Gr-Me].

Let (H,X) be a free compact transformation group [i.e. the compact
group H acts freely on the compact space X]; see e.g. [Mo-Zi]. If µ is a
(positive) Radon measure on the coset space Y = X/H, then the H-Haar
(or simply, the Haar) lift λ = λ[µ,H,X] of µ is the measure λ defined as
follows:

λ(f) =
\
Y

( \
H

f(tx) dwH(t)
)
dµ(ẋ), f ∈ C(X),

where H ×X → X : (t, x) 7→ tx is the (left) action of the group H on X,
ẋ = Hx the class of x ∈ X and C(X) the space of (real-valued) continuous
function on X (see [Bo]; also [Gr2] and the references there).

Remark 3. (1) Let X be a compact group, H a closed normal subgroup
of X and µ a Radon measure on X/H with µ� wX/H . Suppose that H is
a Lie group. Since λ[µ,H,X] is Baire isomorphic to µ × wH (see Lemmas
1.2 and 2.3 of [Gr2]), we have λ[µ,H,X]� wX .

(2) Following the proof of [He-Ro], (25.35), p. 423, we see immediately
that

[ i1] every compact abelian group A is topologically isomorphic to some
quotient

∏
i∈Γ Qi/R, where cardΓ = w(A), each Qi is a compact

metric group and R is a closed normal subgroup of
∏
i∈F Qi.

On the other hand, by the structure theorem of Pontryagin and
van Kampen ([Pr], Theorem 6.5.6),

[ i2] every connected compact group is topologically isomorphic to a quo-
tient (A ×∏i Li)/K, where each Li is a Lie group, A is a compact
abelian group and K is a closed normal subgroup of A×∏i∈F Li.

Combining now [i1] and [i2], it follows that (see also Theorem 1.1 of
[Gr-Me])

[ i3] every connected compact group G is topologically isomorphic to some
quotient G1/N , where G1 =

∏
iG
′
i with the G′i compact metric

groups (with at least two elements each) and N is a closed normal
subgroup of G1.



Products of Radon measures 81

(3) Suppose that Xi, Yi, µi, Ai, µ, µ̃, X are as in the note of §2. For
any ordinal 0 ≤ α ≤ c, we set Z0 = X0 and Zα =

∏
γ<αXγ for α > 0.

Then clearly X ∼= Z := projα<c limZα, and we may consider the canonical
projection pα : X → Zα. Now, with the same reasoning as in the note
of §2, we conclude that the set U =

⋃
γ<c Uγ × Uγ (where U0 = p−1

0 A0 and
Uγ = p−1

γ+1(Zγ×Aγ) for γ > 0) satisfies (µ⊗µ)(U) ≤ ε and (µ×µ)∗(U) = 1.

After all this discussion we may proceed to the

Proof of Lemma 8. (a) Consider G1, N , G′i as in [ i3]. We prove that

[ j1] there exists a (directed) family Ψ = {Gj} of compact metric groups
and a Radon (probability) measure µ′ on G such that (a1)–(a3) of
Proposition 2 are satisfied.

Every G′j is of the form G′j = G1/Fj (j ∈ J), where Fj is some closed normal
subgroup of G1 (i.e. Fj ∼=

∏
i 6=j G

′
i). If we set Nj = G1/NFj , then we can

assume that the Nj are pairwise different (see [Gr2], discussion 1.3 and proof
of Theorem 1.1). We note that

⋂
i∈J Fi = {idG1} and

⋂
j∈J NFj = N , in

other words, the families

Φ = {G1/Fi1 ∩ . . . ∩ Fik : i1, . . . , ik ∈ J},
Ψ = {G1/NFi1 ∩ . . . ∩NFik : i1, . . . , ik ∈ J}

have as projective limits G1 and G1/N respectively.
(b) We enumerate the family {Nj : j ∈ J} as {Nα : α < c}. We can

assume without loss of generality that

[ j2] for every α < c, Kα :=
( ⋂
γ<α

NFγ

)
∩NFα 6=

⋂
γ<α

NFγ

(if not, then we can make inductively a suitable choice of Nα and work with
those Nα).

In agreement with the notation of Remark 3(2), we set Xi = G′i, µi =
wG′i , i < c (of course µ̃ = wG1). Note that qj(wG′j ) = wNj , where qj is the
canonical projection from G′j to Nj . By (j2), for every a < c, we can find
an open set B′α ⊆ G1/Kα such that wG1/Kα(B′α) < 1 and B′α = r−1

α rα(B′α),
where rα is the projection of G1/Kα to G1/NFα = Nα. Finally, we set
Aα = q−1

α (rαB′α), α < c.
(c) Then the Aα satisfy the conditions of Remark 3, therefore we can

define (as there) the measure µ and the sets Uα and U . Then it is routine
to see that for the measure p(µ) = µ′ (where p : G1 → G is the projection)
and for the set U ′ =

⋃
γ<c U

′
γ × U ′γ (where p(Uγ) = U ′γ), we have

(I1) (µ′ ⊗ µ)′(U ′) ≤ ε,
(I2) the projection of µ′ onto any G1/NFi1 ∩ . . . ∩ NFi1 is absolutely

continuous with respect to the corresponding Haar measure. (This holds
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because for every a < c, the projections of µ on the finite subproducts of
G1 =

∏
iG
′
i are absolutely continuous with respect to the projections of µ̃).

Thus, [ j1] is true for the family Ψ .
(d) To complete the proof of Lemma 8 it suffices to observe that every

Gj ∈ Ψ , as a metric compact group, is the projective limit of some sequence
of (compact) Lie groups [Mo-Zi], say Gj = projn∈N limG/Kn

j , where the
Kn
j can be chosen to be closed normal subgroups of the connected group

G. Then clearly
⋂
n,j K

n
j = {idG}; therefore, G is the projective limit of Lie

groups, of the form G/L each, where L is a finite intersection of the Kn
j .

This completes the proof.

Remark 4. Assume that, for a compact group G with w(G) ≥ ω and a
Radon measure τ on G, there exists a family {G/Mi} of Lie groups (with
Mi normal closed subgroups of G) such that

(c1)
⋂
iMi = {idG},

(c2) for every i, the projection of τ of G/Mi is absolutely continuous
with respect to (the Haar measure) wG/Mi

.

Then one can check the following:

[ j3] For every compact Lie group of the form G/M (where M is a closed
normal subgroup of G), the projection of τ onto G/M is absolutely
continuous with respect to wG/M .

For a compact group B, we denote by B0 the component of the identity
in B.

Proof of Proposition 2. Suppose that G is any compact group with
w(G) = c. It suffices to construct a measure τ on G with the property
(a2) of Proposition 2 and such that [j3] holds. By a theorem of Mostert
([Mos], Theorem 8), G is homeomorphic to G/G0 ×G0.

Case 1: w(G0) < c (and therefore, w(G/G0) = c). By Lemma 8, there
exist a directed system {Gi} of finite groups and a measure µ′ on G/G0

such that G/G0 = proji limGi, and for each i, the projection of µ′ onto Gi
is absolutely continuous with respect to wGi .

We can write every Gi in the form Gi = G/Li, where Li is a closed
normal subgroup of G. We now claim that the Haar lift τ = λ[µ,G0, G]
is the required measure. Indeed, using Remark 4, we can easily see that
the projection of τ onto any Lie group G/M is absolutely continuous with
respect to wG/M (see [ j3]). Finally, using Lemma 6, we get the claim.

Case 2: w(G0) = c. By Lemma 8 and Remark 4, there is a measure µ0

on G0 such that
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(d1) there exist non-µ0 × µ0-measurable subsets of G0 ×G0,
(d2) for every continuous homomorphism g of G onto any compact Lie

group H, we have g(µ0)� wH .

The measure µ0 on G0 may be viewed as a measure on G. We denote
this measure by τ ; it is clear that there exist open subsets of G ×G which
are not τ × τ -measurable. We claim that τ is the required measure.

Indeed, it suffices to prove that [ j3] holds. Let G/M be any quotient as in
[j3] and π : G→ G/M be the canonical projection. Then π(G0) = (G/M)0

(see e.g. [Mo-Zi] or Theorem 7.12 of [He-Ro]), therefore π(τ) = π|G0(µ0).
But π|G0(µ0) is absolutely continuous with respect to w(G/M)0 , because
(G/M)0 is a clopen subgroup of G/M and w(G/M)0 is absolutely continuous
with respect to wG/M . This completes the proof.

The previous arguments imply the following general theorem.

Theorem. If G is a compact group with w(G) ≥ c, then there exists a
Radon probability measure τ on G such that

(1) sup τ = G,
(2) there exist open sets in G×G which are not τ × τ -measurable,
(3) for every (compact) Lie group H of the form H = G/M (with M a

closed normal subgroup of G), the projection of τ onto H is equivalent to
the Haar measure on H.
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