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On a question of Sierpiński

by

Theodore A. S l a m a n (Berkeley, Ca.)

Abstract. There is a set U of reals such that for every analytic set A there is a
continuous function f which maps U bijectively to A.

1. Introduction. A set of real numbers is analytic if it is a continuous
image of a Borel set. It is projective if it can be obtained from a Borel set by a
finite iteration of complementation and application of continuous functions.

Initially, the projective sets were studied topologically. Much of the
progress was limited to the analytic sets, for which a variety of regularity
properties were established. Among many, we should mention Borel, Luzin,
Novikov, Sierpiński, and Suslin as having made significant contributions; see
[2] for a more thorough discussion.

We will make use of Suslin’s Perfect Set Theorem. Recall a perfect set is
a nonempty closed set with no isolated points.

Theorem 1.1 (Suslin; see [3]). Every uncountable analytic set has a
perfect subset.

It follows that any uncountable analytic set has the same cardinality as
the continuum.

Our discussion will not be sensitive to variations in topology, but it
will be most convenient for us to work with the Baire space ωω, the set of
ω-sequences of natural numbers. In what follows, we construct a point in
the Baire space as a real number.

We can restate Theorem 1.1 in the following way. For every analytic
subset A of ωω there is a subtree T of <ωω, the set of finite sequences
of natural numbers, such that T has no terminal nodes, every node in T
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has incompatible extensions in T , and every infinite path through T is an
element of A. Such a tree is called a perfect tree. When T is a perfect tree
we use [T ] to denote the set of infinite paths through T . We note that if T
is perfect, then there is a continuous injection of ωω into [T ]. For example,
one could map (n1, n2, . . .) first to the binary sequence b consisting of n1

many 1’s, a 0, n2 many 1’s, a 0, and so forth. Then map b to the element t
of [T ] obtained by recursion: when for the kth time we must decide a value
for b and there is more than one possibility in T , we take the least possible
value if the kth element of b is 0 and take the next to least possible value
otherwise. We will simply say that any Z in ωω canonically determines an
element of [T ].

These classical notions have natural syntactic formulations. For example,
A is analytic if membership in A is definable by

(1.1) X ∈ A ⇐⇒ (∃W )(∀n)R(n,X¹n,W ¹n,Z¹n)

where R is a recursive predicate, Z is a fixed real parameter, W ranges over
the real numbers, n ranges over the natural numbers, and ¹n denotes the
restriction of a real to its first n values. In (1.1), we say that membership in
A has been defined by a formula that is Σ1

1(Z): Σ because the formula begins
with an existential quantifier, 1 in the superscript because the highest order
quantifiers range over the real numbers, 1 in the subscript because there
is only one alternation in the real quantifiers, and with the argument Z
because Z appears as a parameter in the definition. We write Σ1

1 to denote
the collection of analytic sets, that is, the collection of sets that are Σ1

1(Z)
for some Z. Now we use recursion to define the projective hierarchy. We say
that a set is Π1

n if its complement is Σ1
n. We say that a set S is Σ1

n+1 if
membership in S can be defined by X ∈ S ⇔ (∃W )R(X,W ), where R is
Π1
n. A set that is both Σ1

n and Π1
n is said to be ∆1

n. At the base of the
projective hierarchy, Suslin showed that a set of reals is ∆1

1 if and only if it
is Borel. Globally, a set is projective if and only if it is Σ1

n for some n. It
was Luzin who showed that the projective hierarchy is a proper hierarchy:
for each n, ∆1

n $ Σ1
n.

The fact that the classical descriptive set theorists were often limited to
the analytic sets was well explained by Gödel.

Theorem 1.2 (Gödel [1]). The set of constructible reals is Σ1
2 and has a

Σ1
2 wellordering.

Consequently, if every real number is constructible (as is consistent with
ZFC, the standard axioms of set theory), then there is a projective set with
no perfect subset and so forth.

Modern descriptive set theory, in particular the theory of the projective
sets, is well integrated with axiomatic set theory (in a strikingly beautiful
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way). For the most part, independence theorems show that the classical
descriptive set theorists proved the strongest theorems possible, given that
they were working within ZFC.

In this paper, we reverse the metamathematical trend toward axiomatic
independence, and work entirely within ZFC. On the other hand, we apply
intuitions of modern mathematical logic. We consider the following problem.

Problem 1.3 (Sierpiński [5]). Does there exist a set U of reals such that
for every uncountable analytic set A, there is a continuous function f that
maps U bijectively to A?

It is not difficult to find a set U such that every uncountable analytic
set A is a continuous image of U . There is even an analytic example. But
these examples do not satisfy the requirement that continuous functions be
injective on U .

We answer Problem 1.3 in two parts. First, no analytic set can have the
required property. Second, there is a set U as required, constructed using a
wellordering of the reals.

2. Solution to Sierpiński’s problem

2.1. No analytic solution. We begin with the easier calculation that there
is no analytic solution to Problem 1.3. We apply a classical theorem.

Theorem 2.1 (Luzin [3]). Suppose that B is a Borel subset of ωω, and
that f is a continuous function that is injective on B. Then the range of f
applied to B is a Borel set.

Corollary 2.2. Suppose that U is an analytic set. Then there is an
uncountable analytic set A such that there is no continuous bijection from
U to A.

P r o o f. Suppose to the contrary that for each uncountable analytic set
A, there is a continuous bijection from U to A. In particular, there is a
continuous bijection f from U to ωω. But then for each X ∈ ωω and for all
n and m in ω,

f−1(X)(n) = m⇔ (∃Z)[Z ∈ U and Z(n) = m and f(Z) = X].

Thus, for each X, the set of natural numbers f−1(X) is uniformly Σ1
1(X, f),

and similarly uniformly ∆1
1(X, f). Consequently, for all Y , Y is in U if and

only if Y is equal to f−1(f(Y )), and so U is ∆1
1, and therefore Borel.

Now, for every uncountable analytic set A, there is a continuous function
that is injective on the Borel set U and has range A. By Theorem 2.1, every
uncountable analytic set is Borel, contradicting ∆1

1 6= Σ1
1.

2.2. Constructing a solution—first approximation. Let 2ω be the cardi-
nality of the continuum. (So, 2ω is an ordinal.) We begin by giving a heuristic
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construction of a one-parameter family of functions, each mapping a subset
of 2ω bijectively to an associated Σ1

1 subset of ωω. Later, we will replace 2ω

by a set of reals.
Let < be a wellordering of the finite sequences from ωω. We may assume

that < has length 2ω. Fix an indexing of the analytic sets by reals. For each
real number Z, let A(Z) denote the analytic set specified by Z.

We define the function F (γ, Z) by transfinite recursion on γ ∈ 2ω. To
specify the recursion step, let (Yγ , Zγ) be the <-least pair such that Yγ ∈
A(Zγ) and Yγ is not in the range of F (−, Zγ) applied to ordinals less than
γ. If Z is equal to Zγ , then let F (γ, Z) equal Yγ . Otherwise, let F (γ, Z) be
an element of A(Z) which is not in the range of F (−, Z) applied to ordinals
less than γ, if there is such an element.

If A(Z) is countable, then the domain of F (−, Z) is some countable
ordinal depending on the construction. If A(Z) is not countable, then it has
cardinality 2ω and the domain of F (−, Z) is 2ω.

Clearly, for each Z, F (−, Z) is an injective function.
For a contradiction, suppose that there are Y ∗ and Z∗ with Y ∗ in A(Z∗)

but not in the range of F (−, Z∗), and let (Y,Z) be the least pair with this
property. Let β be the ordinal height of (Y, Z) in <. Then, before or during
the βth step of the construction, (Y, Z) must appear in the definition of F .
At the stage during which (Y,Z) is considered, Y is placed in the range of
F (−, Z), a contradiction. Thus, for each Z, A(Z) is equal to the range of
F (−, Z).

2.3. Constructing a solution

Theorem 2.3. There is a set U of reals such that for every uncountable
analytic set A, there is a continuous function f which maps U bijectively
to A.

P r o o f. We permute the logic from our heuristic construction of F . When
we defined F , we fixed the domain 2ω in advance, and then specified a family
of functions F (−, Z) by transfinite recursion on that domain. Here, we define
a family of continuous functions f(−, Z) in advance. We then define a set
U of reals by transfinite recursion, on which those functions will be defined.
We ensure that f(−, Z) has the same value on the αth element of U that
F (−, Z) has on α.

Decomposing analytic sets. Suppose that A is an analytic set. For each
finite sequence σ, let i(σ) denote the interval of reals in ωω which extend
σ. Clearly, i(σ) ∩A is analytic and therefore either i(σ) ∩A is countable or
it contains a perfect set. Since there are only countably many sequences σ,
there are only countably many reals in the union of those sets i(σ) ∩ A for
which i(σ)∩A is countable. Consequently, A can be written as the union of
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a countable set Ac and an analytic set Au such that for all σ, if i(σ)∩Au is
nonempty, then it contains a perfect set. It is a technical point, but if A is
uncountable, then there are Ac and Au as above such that Ac is countable
and infinite.

Henceforth, we will consider only representations of analytic sets A(Z)
in the form Ac(Z)∪Au(Z) as above. By invoking the Perfect Set Theorem,
we will also assume that each analytic set comes equipped with the system
of perfect trees

T(Z) = {T (σ,Z) : i(σ) ∩Au(Z) 6= ∅}
with the following properties: For each T (σ,Z) in T(Z), [T (σ,Z)] is a subset
of i(σ) ∩Au(Z), and for unequal σ and τ , [T (σ,Z)] ∩ [T (τ, Z)] = ∅.

A one-parameter family of continuous functions. We decompose ωω into
(ωω)0, those reals whose first element is 0, and (ωω)1, those reals whose first
element is 1. Our set U will be the union of two disjoint sets, Uc ⊂ (ωω)0

and Uu ⊂ (ωω)1, so that our functions f(−, Z) can continuously distinguish
potential elements of Uc from potential elements of Uu in the following.

We define Uc to be the countable subset of (ωω)0 consisting of those
reals whose first element is 0, whose second element is arbitrary, and whose
remaining elements are all equal to 0. For (0, n, 0, . . .) ∈ Uc, we define
f((0, n, 0, . . .), Z) to be the nth element of Ac(Z).

We interpret the elements of (ωω)1 as triples (Y ∗, Z∗, D∗): Y ∗ and Z∗

are viewed as having roles as in the definition of F in Section 2.2; when
evaluating f(−, Z) on Uu, if necessary D∗ is used to pick a real not yet in
the range of f(−, Z).

On (ωω)1, we define f by recursion on ω. If the recursion reaches step
n without terminating, then we may assume that f((Y ∗, Z∗, D∗), Z)¹n is
equal to Y ∗¹n and we proceed as follows:

• If Z¹n + 1 = Z∗¹n + 1 and Au(Z) ∩ i(Y ∗¹n + 1) 6= ∅, then let
f((Y ∗, Z∗, D∗), Z)(n) = Y ∗(n).
• Otherwise, end the recursion and let f((Y ∗, Z∗, D∗), Z) be the path

through T (i(Y ∗¹n), Z) canonically determined by D∗.

In short, while it appears that Z is equal to Z∗and that Y ∗ ∈ Au(Z),
we let f((Y ∗, Z∗, D∗), Z) copy Y ∗. Should this condition no longer hold, we
use D∗ to pick an element in one of the perfect subsets of Au(Z).

Defining Uu. We define Uu to be the union of the sets Uα which appear
in the following transfinite recursion. For α less than 2ω, let Uα be the set
of reals {(Yβ , Zβ , Dβ) : β < α}. (In particular, U0 = ∅.) Let (Yα, Zα) be the
<-least pair (Y, Z) such that Y is not in the range of f(−, Z) applied to
Uα and Y ∈ Au(Z). Let Dα be the least real satisfying the following two
conditions on D: first, for all β less than α, D is not equal to Dβ ; second,
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for all β less than α and all of the trees T (σ,Zβ) in T(Zβ), D is unequal
to Dβ and the path through T (σ,Zβ) canonically determined by D is not
equal to f((Yβ , Zβ , Dβ), Zβ). Then let (Yα, Zα, Dα) be the element of (ωω)1

which represents this triple.
Here is an argument that Dα is well defined. The constraint that for each

β < α, Dα not equal Dβ rules out α many possible values for Dα. Suppose
that β is less than α and T (σ,Zβ) ∈ T(Zβ). Since each real determines
a unique path through T (σ,Zβ), at most one real can determine the path
f((Yβ , Zβ , Dβ), Zβ) through T (σ,Zβ). Further, the elements of T(Zβ) have
disjoint sets of paths, so there is at most one real that can determine the
path f((Yβ , Zβ , Dβ), Zβ) through any element of T(Zβ). Thus, at most α
many additional values are ruled out by the second constraint on Dα. Since
α is less than 2ω, the set of values which are ruled out for Dα by either of
the two cases has cardinality less than 2ω, and Dα is well defined.

Verifying the properties of U . Suppose that A(Z) is an uncountable
analytic set.

The proof in Section 2.2 that there cannot be a least (Y ∗, Z∗) such that
Y ∗ is in A(Z∗) but not in the range of f(−, Z∗) on U , applies to f(−, Z)
exactly as it did to F (−, Z). Consequently, f(−, Z) maps U onto A(Z).

It only remains to verify that f(−, Z) is injective on U . Clearly, f(−, Z)
is injective on Uc and maps Uu to Au(Z), so we need only consider the
possibility that two elements of Uu have the same image. Suppose that
β < α and f((Yβ , Zβ , Dβ), Z) = f((Yα, Zα, Dα), Z). It cannot be the case
that f((Yα, Zα, Dα), Z) is evaluated by staying in the first case of the recur-
sion during each stage: in this case, Z would equal Zα; f((Yα, Zα, Dα), Z)
would equal Yα; by the choice of Yα, Yα would not be in the range of
f(−, Zα) on earlier elements of Uu, and that would be a contradiction. Thus,
f((Yα, Zα, Dα), Z) must be defined by using Dα to determine a path through
one of the trees in T(Z). If Zβ is not equal to Z, then f((Yβ , Zβ , Dβ), Z)
would also be a path through one of the trees in T(Z) and canonically de-
termined by Dβ . But different elements of T(Z) have disjoint sets of paths,
so f((Yβ , Zβ , Dβ), Z) and f((Yα, Zα, Dα), Z) would have to be paths in the
same tree. But this would contradict the fact that Dβ and Dα are not iden-
tical, since different reals canonically determine different paths in a perfect
tree. The only remaining case is that Z is equal to Zβ . But the choice of Dα

precludes f((Yα,Zα, Dα), Zβ)’s being equal to f((Yβ , Zβ , Dβ), Zβ), so this
case would also lead to a contradiction. Thus, f(−, Z) is injective on U ,
which completes the proof of Theorem 2.3.

3. A question. Our argument in the previous section does not use any
properties of the analytic sets other than their satisfying the Perfect Set
Theorem and being parameterized by the reals. Consequently, it applies to
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the higher projective classes under suitable large cardinal assumptions. See
[4] for more information on these.

Problem 3.1. Does there exist a projective set U of reals such that for
every uncountable analytic set A, there is a continuous function f that maps
U bijectively to A (1)?
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(1) Added in proof: Hjorth has shown that, yes, there is a projective set U of reals
such that for every uncountable analytic set A, there is a continuous function f that maps
U bijectively to A.


