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A forcing construction of thin-tall Boolean algebras

by

Juan Carlos M a r t ı́ n e z (Barcelona)

Abstract. It was proved by Juhász and Weiss that for every ordinal α with 0 < α < ω2
there is a superatomic Boolean algebra of height α and width ω. We prove that if κ is an
infinite cardinal such that κ<κ = κ and α is an ordinal such that 0 < α < κ++, then there
is a cardinal-preserving partial order that forces the existence of a superatomic Boolean
algebra of height α and width κ. Furthermore, iterating this forcing through all α < κ++,
we obtain a notion of forcing that preserves cardinals and such that in the corresponding
generic extension there is a superatomic Boolean algebra of height α and width κ for every
α < κ++. Consistency for specific κ, like ω1, then follows as a corollary.

0. Introduction. A superatomic Boolean algebra is a Boolean algebra
in which every subalgebra is atomic. It is a well-known fact that a Boolean
algebra B is superatomic iff its Stone space S(B) is scattered. For every
ordinal α, the α-derivative of S(B) is defined by induction on α as follows:
S(B)0 = S(B); if α = β + 1, then S(B)α is the set of accumulation points
of S(B)β ; and if α is a limit, then S(B)α =

⋂{S(B)β : β < α}. Then S(B)
is scattered iff S(B)α = ∅ for some α. This process can be transferred to the
Boolean algebra B, yielding an increasing sequence of ideals Iα, which are
defined by transfinite induction as follows: we put I0 = {0}; if α = β + 1,
then Iα = the ideal generated by Iβ ∪ {b ∈ B : b/Iβ is an atom in B/Iβ};
and if α is a limit, then Iα =

⋃{Iβ : β < α}. Then B is superatomic iff
there is an ordinal α such that B = Iα.

We define the height of a superatomic Boolean algebra B by ht(B) =
the least ordinal α such that B/Iα is finite (which means B = Iα+1). For
every α < ht(B), we denote by wdα(B) the cardinality of the set of atoms of
B/Iα, and we define the width of B by wd(B) = sup{wdα(B) : α < ht(B)}.
If κ is an infinite cardinal and η 6= 0 is an ordinal, we say that a Boolean
algebra B is a (κ, η)-Boolean algebra if B is superatomic, wd(B) = κ and
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ht(B) = η. If B is a (κ, η)-Boolean algebra for some ordinal η ≥ κ+, we say
that B is κ-thin-tall.

A construction in ZFC of an ω-thin-tall Boolean algebra was carried out
by Rajagopalan and, in a simplified way, by Juhász and Weiss (see [5]).
However, it is not known whether there exists an (ω1, ω2)-Boolean algebra.
Nevertheless, it was shown in [7] that under V = L, there is a (κ, κ+)-
Boolean algebra for every regular cardinal κ. On the other hand, Juhász
and Weiss proved in [5] that for every ordinal α with 0 < α < ω2, there
exists an (ω, α)-Boolean algebra. This result is in a sense best possible,
since it is known that CH implies the nonexistence of an (ω, ω2)-Boolean
algebra, and also that in the Cohen model there is no such algebra (see [6]
and [11]). Also, Baumgartner and Shelah proved in [3] that the existence
of an (ω, ω2)-Boolean algebra is consistent with ZFC. However, if κ is an
uncountable cardinal, it is not known whether the existence of a (κ, κ++)-
Boolean algebra is consistent with ZFC.

The reader may consult [8] and the survey paper [12] for more informa-
tion on superatomic Boolean algebras.

Our aim in this paper is to prove that for any specific regular cardinal κ
and any specific ordinal η < κ++, the existence of a (κ, η)-Boolean algebra is
consistent with ZFC. In the proof of this result, we will extend the technique
given in [10] for forcing the existence of a (κ, κ+)-Boolean algebra by means
of a κ-closed and κ+-c.c. partial order. If κ+ < η < κ++, we will need a
more intricate argument to verify the κ+-chain condition.

In Section 2 of the paper, we present our forcing construction of thin-tall
Boolean algebras. And in Section 1, we introduce the combinatorial notions
that make the proof of our consistency result work.

I would like to thank the referee for several useful comments, in particular
the suggestion of the notion of a tree of intervals presented in Section 1.

Our set-theoretic terminology is standard. Terms not defined here can
be found in [4] or [9].

2. Trees of intervals. We provide here the background necessary for
the proof of the main result.

Definition 1.1. 1. By an ordinal interval we mean an interval of the
form [α, β), where α, β are ordinals with α < β.

2. Given an ordinal interval I = [α, β), we write I− = α and I+ = β.

All the intervals considered in this paper will be ordinal intervals.

Definition 1.2. 1. Let η be a nonzero ordinal. A tree of intervals on η
is a collection I =

⋃
n<ω In where:

(1) I0 = {[0, η)}.
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(2) For every I, J ∈ I, I ⊆ J or J ⊆ I or I ∩ J = ∅.
(3) If I, J are different elements of I, I ⊆ J and J+ is a limit, then

I+ < J+.
(4) In partitions [0, η) for each n < ω.
(5) In+1 refines In for each n < ω.
(6) For every α < η there is an I ∈ I such that I− = α.

2. Now given a tree of intervals I =
⋃
n<ω In, we make the following

definitions:

(1) If α < η and n < ω, we write I(α, n) = the unique interval I ∈ In
with α ∈ I.

(2) If α < η, we write n(α) = the least natural number n such that there
is an interval I ∈ In with I− = α.

If I =
⋃
n<ω In is a tree of intervals on an ordinal η, then for every

α < η there is an n < ω such that {α} ∈ In. To check this, note that if
n(α) < n(α + 1) then {α} ∈ In(α+1), and analogously n(α) ≥ n(α + 1)
implies {α} ∈ In(α).

Definition 1.3. Let I =
⋃
n<ω In be a tree of intervals on an ordinal η.

Then:

1. For each n ∈ ω, we define En = {I− : I ∈ In}.
2. For each α < η, we define the orbit of α (with respect to I) by

o(α) =
⋃
{Em+1 ∩ α ∩ I(α,m) : m < n(α)}.

Here is an example. Consider η = ω2 · ω2. Then we define I by I0 =
{[0, ω2 ·ω2)}, I1 = {[ω2 ·ξ, ω2 · (ξ+1)) : ξ < ω2} and In = {{ξ} : ξ < ω2 ·ω2}
for n ≥ 2. In this case, we have E0 = {0}, E1 = {ω2 · ξ : ξ < ω2} and
E2 = ω2 · ω2. Now consider α = ω2 · ω1 + ωω. It is easy to verify that

o(α) = {ω2 · ξ : ξ ≤ ω1} ∪ {ω2 · ω1 + ξ : 0 < ξ < ωω}.
Proposition 1.1. Let I be a tree of intervals on an ordinal η. Suppose

that for some α < η, β ∈ o(α) and γ ∈ o(β). Then γ ∈ o(α).

P r o o f. Since β ∈ o(α), we have β ∈ Em+1 ∩ α ∩ I(α,m) for some
m < n(α). As β ∈ Em+1 and m < n(α), we infer n(β) ≤ m+ 1 ≤ n(α).

On the other hand, as β ∈ I(α,m) and Im is a partition of [0, η), we
have I(α,m) = I(β,m). Thus, since Ik+1 refines Ik for each k, we infer that
I(α, k) = I(β, k) for all k ≤ m.

Now, since γ ∈ o(β), we have γ ∈ Ek+1 ∩ β ∩ I(β, k) for some k < n(β).
Thus k ≤ m < n(α), and therefore γ ∈ o(α).

Definition 1.4. Let I be a tree of intervals on an ordinal η.
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1. Let α < β < η and I ∈ I. Then we say that α, β separate at I if for
some n < ω, I = I(α, n) = I(β, n) and I(α, n+ 1) 6= I(β, n+ 1).

2. If α, β separate at I ∈ In, we say that n is the level where α, β separate,
and we write j(α, β) = n.

Let I be a tree of intervals on an ordinal η. Let α < β < η. Note that
α, β separate at some I ∈ I. Now if we put k = j(α, β) and n = n(α), the
following two conditions hold:

(1) If k < n, then o(α)∩⋃m≤k Em = o(β)∩⋃m≤k Em and o(α)∩Ek+1 ⊆
o(β) ∩ Ek+1.

(2) If n ≤ k, then o(α)∩⋃m<nEm = o(β)∩⋃m<nEm and o(β)∩En =
(o(α) ∩ En) ∪ {α}.

Also, it can be proved that if I is a tree of intervals on η, then o(α) is
closed for every α < η. Since this fact will not be used in the proof of the
consistency result of Section 2, we leave its proof to the reader.

Next, we define the kind of tree of intervals we will use later.

Definition 1.5. A tree of intervals I is cofinal if the following two
conditions hold:

(1) For every I ∈ In with I+ a limit ordinal, En+1 ∩ I is a sequence of
order type cf(I+).

(2) For every I ∈ In with I+ a successor ordinal, En+1 ∩ I is finite.

Proposition 1.2. For every ordinal η 6= 0 there is a cofinal tree of
intervals on η.

P r o o f. We define a cofinal tree of intervals I =
⋃
n<ω In on η by induc-

tion on n. We put I0 = {[0, η)}. In order to construct In+1 from In, first
we define for every I ∈ In a partition W (I) of I as follows. Suppose that
I ∈ In is not a singleton. Assume that I+ is a limit ordinal. Put λ = cf(I+).
Now, choose a sequence of ordinals 〈αξ : ξ < λ〉 with α0 = I− converging
to I+ in a strictly increasing way and such that αξ = sup{αµ : µ < ξ} for
every limit ordinal ξ < λ. Then we define W (I) = {[αξ, αξ+1) : ξ < λ}.

Now assume I+ is a successor ordinal. Put α = I−. If I+ = α+k for some
k < ω, we put W (I) = {[α, α+ 1), . . . , [α+ k− 1, α+ k)}, and otherwise we
consider the limit ordinal γ and the natural number k such that I+ = γ+k,
and we put W (I) = {[α, γ), [γ, γ+1), . . . , [γ+k−1, γ+k)}. Also, if I ∈ In is a
singleton, we put W (I) = {I}. Then we define In+1 =

⋃{W (I) : I ∈ In}.
Proposition 1.3. Let κ be an infinite cardinal and η an ordinal such

that 0 < η < κ++. Let I be a cofinal tree of intervals on η. Then for every
α < η, |o(α)| ≤ κ.
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P r o o f. We have

o(α) =
⋃
{Em+1 ∩ α ∩ I(α,m) : m < n(α)}.

Fix m < n(α). Put I = I(α,m). Assume that I+ is a limit. Then, since
Em+1 ∩ I is a sequence of order type cf(I+) ≤ κ+, we infer that the size of
Em+1 ∩ α ∩ I is at most κ.

Propositions 1.1–1.3 will be used without explicit mention.

2. The forcing construction. Our purpose here is to prove the follow-
ing consistency result:

Theorem 1. Assume that in M , κ is an infinite cardinal such that κ<κ =
κ and η is an ordinal with 0 < η < κ++. Then there is a partial order Pη
in M that preserves cardinals such that if G is Pη-generic over M , then in
M [G] there is a (κ, η)-Boolean algebra.

To prove Theorem 1, we consider an infinite cardinal κ such that κ<κ = κ
and an ordinal η with κ+ ≤ η < κ++. Note that from König’s Lemma we
infer that κ is regular. Also, we fix a cofinal tree of intervals I =

⋃
n<ω In

on the ordinal η.
Recall that if (X,≤) is a partial order and s, t ∈ X, we say that s, t are

comparable in (X,≤) if s ≤ t or t ≤ s, and s, t are compatible in (X,≤) if
there is a u ∈ X such that u ≤ s and u ≤ t.

Now we introduce our notion of forcing for adding a (κ, η)-Boolean al-
gebra.

Definition 2.1. 1. We set T = η × κ, and for each α < η we write
Tα = {α} × κ.

2. We define Pη as the set of all p = (xp,≤p) such that the following
conditions are satisfied:

(∗) (1) xp is a subset of T of size < κ.
(2) ≤p is a partial order on xp such that:

(a) If s ∈ Tα, t ∈ Tβ and s <p t, then α < β.
(b) Every pair s, t of compatible elements in p has an infimum,

that is, there is a v ∈ xp with v ≤p s, t and such that for any
u ∈ xp, u ≤p s, t implies u ≤p v.

(3) If s, t ∈ xp are compatible but not comparable in p, v is the
infimum of s, t in p and s ∈ Tα1 , t ∈ Tα2 , v ∈ Tβ , then β ∈
o(α1) ∩ o(α2).

(4) Suppose that s <p t, s ∈ Tα, t ∈ Tβ . Let J = I(α, n + 1) where
n = j(α, β). If α 6= J− then there is a v ∈ xp ∩ TJ+ such that
s <p v ≤p t.
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3. If p = (xp,≤p) ∈ Pη and s, t ∈ xp are compatible elements in p, we
denote the infimum of s, t in p by ip{s, t}.

4. If p, q ∈ Pη, we put p ≤η q iff (a) xp ⊇ xq; (b) ≤p¹xq = ≤q; and (c)
if s, t ∈ xq and s, t are compatible in p, then s, t are compatible in q and
ip{s, t} = iq{s, t}.

5. We define Pη = (Pη,≤η).

In what follows, if s ∈ Tα we write π(s) = α and o(s) = o(π(s)).

Lemma 2.1. If Pη preserves cardinals, then forcing with Pη adjoins a
(κ, η)-Boolean algebra.

P r o o f. Let G be a Pη-generic filter. We put ≤ =
⋃{≤p : p ∈ G}. It is

easy to check that T =
⋃{xp : p ∈ G} and that ≤ is a partial order on T .

Now suppose that α < β < η and t ∈ Tβ . We show that the set {s ∈
Tα : s < t} is infinite. To check this, assume that p = (xp,≤p) ∈ Pη and
ξ0 < κ. We prove that there is a q ∈ Pη such that q ≤η p and (α, ξ) <q t
for some ξ with ξ0 < ξ < κ. Without loss of generality, we may assume that
t ∈ xp. Since |xp| < κ, there is a ξ with ξ0 < ξ < κ and (α, ξ) 6∈ xp. Put
v = (α, ξ). Let n = j(α, β). Let I ∈ In be the interval where α, β separate.
Let J = I(α, n+ 1).

First, assume α = J−. Then we define q = (xq,≤q) by xq = xp ∪ {v},
<q = <p∪{(v, t′) : t ≤p t′}. In order to check that q ∈ Pη, it is easy to verify
(∗)(1)–(3). We then prove (∗)(4). Consider t′ ∈ xp such that t <p t′. Let
γ = π(t′) and m = j(α, γ). Let I ′ ∈ Im be the interval where α, γ separate.
Clearly, m ≤ n. Note that if m = n, we have I = I ′ and so we are done.
Suppose m < n. Let J ′ = I(α,m + 1). Since m < n, we infer that I ′ does
not separate α and β, and thus β ∈ J ′. Hence, I ′ is also the interval where
β, γ separate. Therefore, by using (∗)(4), there is a u ∈ xp∩T(J′)+ such that
t <p u ≤p t′, and thus v <q u ≤q t′.

Now assume α 6= J−. Without loss of generality, we may assume β 6= J+.
Then we choose a v∗ ∈ TJ+ such that v∗ 6∈ xp, and we define q = (xq,≤q)
by

xq = xp ∪ {v, v∗},
<q = <p ∪ {(v, v∗)} ∪ {(v, t′) : t ≤p t′} ∪ {(v∗, t′) : t ≤p t′}.

As above, we can verify that q ∈ Pη, and so q ≤η p.
Now, in order to construct a (κ, η)-Boolean algebra from (T,≤), we define

for each t ∈ T the cone of t by C(t) = {s ∈ T : s ≤ t}. Then we can verify
that {C(t) \ (C(t1) ∪ . . . ∪ C(tn)) : n < ω, t, t1, . . . , tn ∈ T, t1, . . . , tn < t}
is a clopen base for a topology σ≤ on T such that (T, σ≤) is a locally com-
pact, Hausdorff, scattered space. Let A be the one-point compactification
of (T, σ≤). For every α < η, we have Aα \Aα+1 = Tα. Thus, the algebra of
clopen subsets of A is a (κ, η)-Boolean algebra.
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So, our aim now is to prove the following result:

Lemma 2.2. Pη preserves cardinals.

It is easy to verify that Pη is κ-closed. To show that Pη has the κ+-chain
condition, we need some preparations.

Definition 2.2. Suppose that g : y → z is a bijection, where y, z ∈
[T ]<κ. We say that g is adequate if the following two conditions hold:

(1) For every s, t ∈ y, π(s) < π(t) iff π(g(s)) < π(g(t)).
(2) For every s = (α, µ) ∈ y, g(α, µ) = (β, ξ) implies µ = ξ.

Definition 2.3. A set Z ⊆ Pη is separated if the following conditions
are satisfied:

(1) {xp : p ∈ Z} forms a ∆-system with root x.
(2) For each α < η, either xp ∩ Tα = x ∩ Tα for every p ∈ Z, or there is

at most one p ∈ Z such that xp ∩ Tα 6= ∅.
(3) For every p, q ∈ Z there is an adequate bijection hpq : xp → xq which

satisfies the following:

(a) For any s ∈ x, hpq(s) = s.
(b) If s, t ∈ xp, then s <p t iff hpq(s) <q hpq(t).
(c) If s, t are compatible in p, then hpq(ip{s, t}) = iq(hpq(s), hpq(t)).

In what follows, if Z ⊆ Pη is a separated set, we denote the root of the
set {xp : p ∈ Z} by x(Z).

Since we are assuming κ<κ = κ, we can easily prove by means of a
combinatorial argument that every set in [Pη]κ

+
has a separated subset of

size κ+.
The following result will be essential in order to amalgamate two forcing

conditions of a separated set correctly.

Lemma 2.3. Let Z ⊆ Pη be a separated set of size κ+ such that x = x(Z)
is nonempty. If s, t ∈ x are compatible in a condition of Z, then ip{s, t} =
iq{s, t} for every p, q ∈ Z.

P r o o f. Since Z is separated, it is clear that if s, t ∈ x are compatible
in some condition of Z, then s, t are compatible in any condition of Z. Now
since Z is a separated set of size κ+ and |o(α)| ≤ κ for every α < η, we infer
from (∗)(3) the desired conclusion.

Suppose that Z ⊆ Pη is a separated set of size κ+. By the argument of
Lemma 2.1, we may extend the conditions in Z so that each extension p has
the property that if α < β, and xp ∩ Tα and xp ∩ Tβ are nonempty, then
there are elements s ∈ xp∩Tα and t ∈ xp∩Tβ with s <p t. Then we can find
a separated set Z ′ of size κ+ with x = x(Z ′) nonempty such that for every
p ∈ Z ′ there is a unique q(p) ∈ Z with p ≤ q(p) and such that if p, q ∈ Z ′
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with p 6= q, then we may find elements s ∈ xp \ x and t ∈ xq \ x such that
some of the following conditions holds:

(a) For some v ∈ x, v <p s and v <q t.
(b) There are u ∈ xp \ x and v ∈ x such that u <p s and u <p v <q t.
(c) There are u ∈ xq \ x and v ∈ x such that u <q t and u <q v <p s.

Then the following definition permits us to amalgamate p and q in such a
way that any pair of such elements has an infimum in the amalgamation.

Definition 2.4. Suppose that Z ⊆ Pη is a separated set and p, q ∈ Z
with p 6= q.

1. Let y ∈ [T ]<κ be such that y∩(xp∪xq) = ∅. Put x = x(Z), y1 = xp \x
and y2 = xq \ x. Suppose that there are adequate bijections g1 : y → y1 and
g2 : y → y2 such that for every s ∈ y, π(s) < π(g1(s)), π(g2(s)) and there is
no v ∈ x with π(s) ≤ π(v) < max{π(g1(s)), π(g2(s))}. Then we define the
amalgamation of p, q via y as the pair r = (xr,≤r) defined as follows. We
set xr = xp ∪ xq ∪ y. If s, t ∈ xr, we put s ≤r t iff s ≤p t or s ≤q t or one of
the following conditions holds:

(a) s, t ∈ y and g1(s) ≤p g1(t),
(b) s ∈ y, t ∈ xp and g1(s) ≤p t,
(c) s ∈ y, t ∈ xq and g2(s) ≤q t,
(d) s ∈ xp, t ∈ y and there is a v ∈ x such that s ≤p v ≤p g1(t),
(e) s ∈ y1, t ∈ y2 and there is a v ∈ x such that s ≤p v ≤q t,
(f) s ∈ xq, t ∈ y and there is a v ∈ x such that s ≤q v ≤q g2(t),
(g) s ∈ y2, t ∈ y1 and there is a v ∈ x such that s ≤q v ≤p t.
2. If r is the amalgamation of p, q via y for some y ∈ [T ]<κ, we say that

r is an amalgamation of p, q.

We will need conditions (∗)(3) and (∗)(4) in order to provide room for
the set y of the definition of amalgamation.

Lemma 2.4. Let Z ⊆ Pη be a separated set of size κ+. Let p, q ∈ Z with
p 6= q. Then any amalgamation of p, q is a partially ordered set satisfying
(∗)(1)–(2).

P r o o f. Suppose that r = (xr,≤r) is an amalgamation of p, q via y for
some y ∈ [T ]<κ. Clearly, |xr| < κ. As above, we put x = x(Z), y1 = xp \ x
and y2 = xq \x. Consider the corresponding adequate bijections g1 : y → y1

and g2 : y → y2. Then, since for all s ∈ y, π(s) < π(g1(s)), π(g2(s)) and
there is no v ∈ x with π(s) ≤ π(v) < max{π(g1(s)), π(g2(s))}, it is easy to
check that for every s, t ∈ xr, s <r t implies π(s) < π(t).

Now, in order to show that ≤r is a transitive relation, consider u, s, t ∈ xr
such that u ≤r s ≤r t. If u, s, t ∈ xp or u, s, t ∈ xq, we are done. For the
rest, we consider the following cases:
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Case 1: u, s ∈ y1, t ∈ y. We have u ≤p s. Since s ≤r t, there is a v ∈ x
such that s ≤p v ≤p g1(t), and therefore u ≤p v ≤p g1(t), and so u ≤r t.

Case 2: u ∈ y1, s ∈ y, t ∈ y1. Since u ≤r s, there is a v ∈ x such that
u ≤p v ≤p g1(s). Since s ≤r t, we have g1(s) ≤p t. Therefore, u ≤p t.

Case 3: u ∈ y, s ∈ y1, t ∈ y. Since u ≤r s, we have g1(u) ≤p s. From
s ≤r t we infer that there is a v ∈ x such that s ≤p v ≤p g1(t). Thus
g1(u) ≤p g1(t), whence u ≤r t.

Case 4: u ∈ y1, s ∈ y2, t ∈ y1. As u ≤r s, there is a v1 ∈ x such that
u ≤p v1 ≤q s. Since s ≤r t, there is a v2 ∈ x such that s ≤q v2 ≤p t. Since
v1 ≤q v2 and v1, v2 ∈ x, we have v1 ≤p v2, and so u ≤p t.

Case 5: u ∈ y, s ∈ y1, t ∈ y2. As u ≤r s, g1(u) ≤p s. As s ≤r t, there is
a v ∈ x such that s ≤p v ≤q t. From g1(u) ≤p v, we deduce g2(u) ≤q v, and
thus g2(u) ≤q t, whence u ≤r t.

In all the other cases the considerations are similar.
Next, assume that s, t are compatible but not comparable in r. We show

that the pair s, t has an infimum ir{s, t} in r. We distinguish the following
two cases:

Case 1: s, t ∈ xp. Then s, t are compatible in p and v = ip{s, t} is the
infimum of s, t in r. To see this, consider u ∈ xr such that u ≤r s, t. If u ∈ xp,
we have u ≤p s, t, and thus u ≤p v. If u ∈ y, we infer that g1(u) ≤p s, t,
hence g1(u) ≤p v, and therefore u ≤r v. Now suppose that u ∈ y2. It follows
that there are w1, w2 ∈ x such that u ≤q w1 ≤p s and u ≤q w2 ≤p t. Put
w = ip{w1, w2}. By Lemma 2.3, we have w = iq{w1, w2}, and thus w ∈ x.
Now since u ≤q w ≤p s, t, we infer u ≤q w ≤p v, and therefore u ≤r v.

Case 2: s ∈ y1, t ∈ y2. Let t′ = hqp(t). Then we can show that s, t′ are
compatible in p, and if we put v = ip{s, t′}, then ir{s, t} = v if v ∈ x, and
ir{s, t} = g−1

1 (v) if v ∈ y1. To verify this statement, assume that u ∈ xr is
such that u ≤r s, t. First, assume u ∈ xp. From u ≤r t we deduce that there
is a w ∈ x such that u ≤p w ≤q t. Set w′ = ip{s, w}. Note that since s, t are
not comparable in r, we have s 6<p w. Then as |Z| = κ+ and |o(w)| = κ, we
infer from (∗)(3) that w′ ∈ x. Also, as w ≤q t, we have w ≤p t′, and thus
u ≤p w′ ≤p s, t′. If u ∈ xq, the argument is parallel. Finally, note that if
u ∈ y, we infer g1(u) ≤p s, t′.

The considerations are analogous in the remaining cases. For example,
suppose that s ∈ y1, t ∈ y. Put t′ = g1(t). Then, by using an argument
similar to the one given in Case 2, we can show that s, t′ are compatible
in p, and if we set v = ip{s, t′}, it follows that ir{s, t} = v if v ∈ x, and
ir{s, t} = g−1

1 (v) if v ∈ y1.
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Note that we also infer from the proof of Lemma 2.4 that if a forcing
condition r is an amalgamation of p, q, then r ≤η p, q. However, an amal-
gamation of two forcing conditions of a large separated set need not satisfy
(∗)(3)–(4). To overcome this problem, we need to refine the notion of a
separated set.

For every n < ω, we write I+
n = {I ∈ In : cf(I+) = κ+}.

Definition 2.5. Let Z ⊆ Pη be a separated set. Set x = x(Z). Then:

1. Assume that I ∈ I+
n . Let 〈αµ : µ < κ+〉 be the strictly increasing

enumeration of En+1 ∩ I. Put

ξ = the least µ such that αµ ⊇ π[x] ∩ I.
Then we define γ(I) = αξ+κ.

2. For every α < η, if there is an n < ω and an I ∈ I+
n with α ∈ I

such that γ(I) ≤ α, we define k(α) as the least natural number n with this
property. Otherwise, we put k(α) =∞.

3. For each α < η, we define the interval I(α) as follows. If k(α) < ∞,
we put I(α) = I(α, k(α)), and if k(α) =∞, we set I(α) = {α}.

For every v ∈ T , we write k(v) = k(π(v)) and I(v) = I(π(v)).
Next, we introduce the central notion of this section.

Definition 2.6. A separated set Z ⊆ Pη is pairwise equivalent if for all
p, q ∈ Z and all s ∈ xp, we have k(s) = k(hpq(s)) and I(s) = I(hpq(s)).

Lemma 2.5. Every set in [Pη]κ
+

has a pairwise equivalent subset of
size κ+.

P r o o f. Let Z be a subset of Pη of size κ+. We may assume that Z is
separated. Then, by using the assumption that κ<κ = κ, we prove that Z has
a pairwise equivalent subset of size κ+. First, note that since {k(α) : α < η}
is countable and |Z| = κ+, by thinning out Z if necessary we may suppose
that for every p, q ∈ Z and every s ∈ xp, k(s) = k(hpq(s)).

Next, for every ordinal α < η we define the type of α as follows. If
k(α) < ∞, we put tp(α) = 〈I(α, n) : n ≤ k(α)〉. If k(α) = ∞, we consider
l(α) = the least natural number n such that {α} ∈ In, and then we define
tp(α) = 〈I(α, n) : n ≤ l(α)〉. Now if tp(α) = 〈I0, . . . , Ik〉, for each n < ω
we write tp(α, n) = In if n ≤ k and tp(α, n) = Ik if n > k. Then we write
TP(n) = {tp(α, n) : α < η} for n < ω.

We prove by induction on n that |TP(n)| ≤ κ for each n < ω. The
case n = 0 is immediate. Suppose that |TP(n)| ≤ κ. Note that for every
I ∈ TP(n) and every α < η such that tp(α, n) = I, if cf(I+) = κ+ and
α ≥ γ(I) then tp(α, n+ 1) = I, and otherwise tp(α, n+ 1) = J where J ⊆ I
is the interval of In+1 that contains α. Therefore, for every I ∈ TP(n) we
have
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|{tp(α, n+ 1) : α < η and tp(α, n) = I}| ≤ κ.
Thus, since |TP(n)| ≤ κ we infer that |TP(n+ 1)| ≤ κ⊗ κ = κ.

Now, we write ap = π[xp] and θp = 〈tp(α) : α ∈ ap〉 for p ∈ Z. Consider
the cardinal λ < κ such that |ap| = λ for each p ∈ Z. We deduce that

|{θp : p ∈ Z}| ≤ (κ<ω)λ = κ.

Therefore, there is a subset Y of Z of size κ+ such that θp = θq for all
p, q ∈ Y . Clearly, Y is as required.

Now, to show that Pη is κ+-c.c., we prove the following result:

Lemma 2.6. A pairwise equivalent set Z ⊆ Pη of size κ+ is linked.

P r o o f. As above, we denote by x the root of {xp : p ∈ Z}. We write
ap = π[xp] for p ∈ Z, and a = π[x].

Consider p, q ∈ Z with p 6= q. Our aim is to show that there is an
amalgamation r of p, q such that r ∈ Pη. First, for n < ω, we choose for
every interval I ∈ I+

n a set D(I) ⊆ En+1 ∩ [I−, γ(I)) of size κ such that if
α ∈ (ap ∪ aq) ∩ γ(I) and β ∈ D(I), then α < β.

Put δ = o.t.(ap \ a) = o.t.(aq \ a). Let {αξ : ξ < δ} and {α′ξ : ξ < δ}
be the strictly increasing enumerations of ap \ a and aq \ a respectively.
Note that for every ξ < δ, since I(αξ) = I(α′ξ) and αξ 6= α′ξ, we have
k(αξ) = k(α′ξ) < ∞. Now, proceeding by transfinite induction on ξ, we
associate with each pair αξ, α′ξ an ordinal βξ ∈ o(αξ)∩ o(α′ξ) as follows. For
any ξ < δ, we consider I = I(αξ) = I(α′ξ), and then we define βξ as the
least element of D(I) \ {βµ : µ < ξ}.

It can be shown that µ < ξ < δ implies βµ < βξ. To see this, observe
that either αξ ∈ I(αµ) or j(αµ, αξ) < k(αµ). In both cases, it is easy to
check that βµ < βξ.

We set b = {βξ : ξ < δ}. Now, for every α ∈ b we consider the ordinal ξ
with α = βξ and then we define the set x(α) = {(α, µ) ∈ Tα : (αξ, µ) ∈ xp} =
{(α, µ) ∈ Tα : (α′ξ, µ) ∈ xq}. We put

y =
⋃
{x(α) : α ∈ b}, y1 = xp \ x, y2 = xq \ x.

We consider the corresponding adequate bijections g1 :y→y1 and g2 :y→y2.
Note that for every s ∈ y, if we set I = I(g1(s)) = I(g2(s)), then

by the definition of γ(I), there is no v ∈ x such that π(s) ≤ π(v) <
max{π(g1(s)), π(g2(s))}. So, let us denote by r = (xr,≤r) the amalgama-
tion of p and q via y. Our purpose is to show that r ∈ Pη. By Lemma 2.4,
we know that r satisfies (∗)(1)–(2).

Next, we show that if s, t are compatible but not comparable in r and v
is the infimum of s, t in r, then π(v) ∈ o(s) ∩ o(t). If s, t ∈ xp, we proved in
Lemma 2.4 that if s, t are compatible and not comparable in r, then s, t are
compatible and not comparable in p and ir{s, t} = ip{s, t}. Thus, the cases
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s, t ∈ xp and s, t ∈ xq are immediate. For the rest, we consider the following
cases:

Case 1: s ∈ y1, t ∈ y2 and s, hqp(t) are not comparable in p. Put
t′ = hqp(t). Since s, t are compatible in r, it follows that s, t′ are compatible
in p. Assume that v′ = ip{s, t′} ∈ y1. Set v = g−1

1 (v′). It follows from the
proof of Lemma 2.4 that v = ir{s, t}. Now since s and t′ are not comparable
in p, we infer from (∗)(3) that π(v′) ∈ o(s). Also, as g1(v) = v′ we deduce
that π(v) ∈ o(v′). Therefore, π(v) ∈ o(s). Now consider v′′ = g2(v). Then
π(v′′) ∈ o(t) and π(v) ∈ o(v′′), and hence π(v) ∈ o(t). Thus, π(v) ∈ o(s) ∩
o(t). If ip{s, t′} ∈ x, the considerations are analogous.

Case 2: s ∈ y1, t ∈ y2 and s, hqp(t) are comparable in p. We assume
s ≤p hqp(t). If hqp(t) ≤p s, we would proceed in a similar fashion. Put
t′ = hqp(t). Let s∗ = g−1

1 (s). It follows from Lemma 2.4 that s∗ = ir{s, t}.
Without loss of generality, we may assume s 6= t′. Note that from g1(s∗) = s
we infer that π(s∗) ∈ o(s). We need to verify that π(s∗) ∈ o(t). It is enough
to show that π(t′) ∈ I(s). Note that in this situation π(s∗) ∈ o(t′), and now
since I(t) = I(t′), we infer that π(s∗) ∈ o(t).

Suppose on the contrary that π(t′) 6∈ I(s). Let n be the level where
π(s), π(t′) separate and assume π(s) ∈ J ∈ In+1. Clearly, n < k(s). Note
that if π(s) = J−, then since n < k(s) and J− ∈ En+1, we infer k(s) =∞.
But on the other hand, from s ∈ y1 we deduce k(s) <∞. Thus, π(s) 6= J−.
It follows from (∗)(4) that there is a v ∈ xp ∩ TJ+ such that s <p v ≤p t′.
Since n < k(s) and J+ ∈ En+1, we infer k(v) = ∞, and thus v ∈ x. But
then we would have s <r t, which contradicts the assumption that s, t are
not comparable in r.

Case 3: s ∈ y1, t ∈ y and s, g1(t) are not comparable in p. Put t′ = g1(t)
and v′ = ip{s, t′}. Let I = I(t′). Since t′ = g1(t), we have π(t) ∈ D(I). First,
assume that v′ ∈ y1. Consider v = ir{s, t} = g−1

1 (v′). Note that π(v) ∈ o(s),
as π(v′) ∈ o(s) and π(v) ∈ o(v′). Since v′ ∈ y1, we have k(v′) <∞. Then, as
π(v′) ∈ o(t′) it follows that π(v′) ∈ I and π(v′) ≥ γ(I). Now since v′ = g1(v),
we deduce that π(v) ∈ D(I). But from π(t), π(v) ∈ D(I) and π(v) < π(t),
it follows that π(v) ∈ o(t).

Now assume that v′ ∈ x. Then v′ = ir{s, t}. We have to prove that
π(v′) ∈ o(t). Suppose that π(v′) ∈ I. Let n be such that I ∈ In. Since
π(v′) ∈ o(t′), we have π(v′) ∈ En+1 ∩ I. As π(t) ∈ D(I) we deduce that
π(t) > π(u) for all u ∈ x ∩ I, and therefore π(v′) ∈ o(t). If π(v′) 6∈ I, the
considerations are analogous.

All the other cases are similar.
Now, let s, t ∈ xr be such that s <r t. Suppose that n is the level where

π(s), π(t) separate and π(s) ∈ J ∈ In+1. Assume π(s) 6= J−. We show that
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there is a v ∈ xr ∩TJ+ such that s <r v ≤r t. If s, t ∈ xp or s, t ∈ xq, we are
done. For the rest, we consider the following cases:

Case 1: s ∈ y1, t ∈ y2. Consider w ∈ x such that s <p w <q t.
Suppose that π(w) 6∈ J . Clearly, the pairs π(s), π(t) and π(s), π(w) separate
at the same interval. Then since s <p w, there is a v ∈ xp ∩ TJ+ such that
s <p v ≤p w, whence s <p v <r t. If π(w) ∈ J , we can use a similar
argument.

Case 2: s ∈ y1, t ∈ y. Put t′ = g1(t). Let I ′ ∈ Im be the interval
where π(s), π(t′) separate and J ′ the interval such that π(s) ∈ J ′ ∈ Im+1.
Since π(t) ∈ o(t′), it follows that π(t) 6∈ J ′. So, I ′ is also the interval where
π(s), π(t) separate, and thus J ′ = J . As s <r t, there is a w ∈ x such that
s <p w <p t

′, and hence for every i ≤ n and every K ∈ I+
i such that

π(s), π(t′) ∈ K, we have π(s) < γ(K). Now, consider v ∈ xp∩TJ+ such that
s <p v ≤p t′. Then, since π(v) ∈ En+1, we infer k(v) = ∞, so v ∈ x, and
therefore s <r v <r t.

Case 3: s ∈ y, t ∈ x. Let s′ = g1(s). Consider the interval I ′ ∈ Im
where π(s′), π(t) separate and the interval J ′ ∈ Im+1 with π(s′) ∈ J ′.
Note that for i ≤ m, if π(s′) ∈ K ∈ I+

i , then since t ∈ x it follows that
π(s′) < π(t) < γ(K). Therefore, as g1(s) = s′ we deduce that π(s) ∈ J ′. But
then I ′ is the interval where π(s), π(t) separate and J ′ = J . Now as s′ <p t
and π(s′) 6= J−, there is a v ∈ xp ∩ TJ+ such that s′ <p v ≤p t, and hence
s <r v ≤r t.

Case 4: s, t ∈ y. Put s′ = g1(s) and t′ = g1(t). Note that if π(t′) ∈
I(s′), then π(s), π(t) ∈ D(I(s′)), and hence I(s′) would be the interval
where π(s), π(t) separate and π(s) = J−. Thus, π(t′) 6∈ I(s′). Then it is
not difficult to check that the pairs π(s), π(t) and π(s′), π(t′) separate at
the same interval and that π(s′) ∈ J . Now consider v ∈ xp ∩ TJ+ such that
s′ <p v ≤p t′. Since π(t′) 6∈ I(s′), we deduce n < k(s′), hence we infer
k(v) =∞, and therefore v ∈ x. Thus, s <r v <r t.

All the other cases are similar.

So, we have completed the proofs of Lemma 2.2 and Theorem 1.

In the following result, we show that Theorem 1 can be strengthened by
means of an iterated forcing argument.

Theorem 2. Assume that in M , κ is an infinite cardinal such that
κ<κ = κ. Then there is a partial order P in M that preserves cardinals such
that if G is P-generic over M , then in M [G] there is a (κ, η)-Boolean algebra
for every η < κ++.

P r o o f. Following the terminology of [2], we define in M the iterated
forcing 〈Rα : 1 ≤ α ≤ κ++〉 as follows. We put R1 = Pκ+ . If α = β+1, β ≥ 1,
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we define Rα = Rβ ⊗ Qβ , where Qβ = (Pκ++β)M . If α is a limit and
cf(α) < κ, we define Rα as the inverse limit of the Rβ (β < α). And if
α is a limit and cf(α) ≥ κ, we define Rα as the direct limit of the Rβ
(β < α).

Now we prove by transfinite induction on α ≤ κ++ that Rα is κ-closed
and κ+-c.c. The case α = 1 is clear. Suppose α = β + 1, β ≥ 1. By the in-
duction hypothesis, Rβ is κ-closed and κ+-c.c. Let G be an Rβ-generic filter.
Then it is easy to check that (Pκ++β)M [G] = (Pκ++β)M , hence °Rβ (Qβ is
κ-closed and κ+-c.c.), and therefore Rα is κ-closed and κ+-c.c. Now assume
that α is a limit. Clearly, Rα is κ-closed. Suppose that X is a subset of Rα
of cardinality κ+. Since |support(p)| < κ for every p ∈ Rα, we may assume
that {support(p) : p ∈ X} is a ∆-system. Now, by using the argument given
in the proof of Theorem 1, we can show that there is a subset Y of X of
cardinality κ+ such that any two elements of Y are compatible. Thus, Rκ++

is the desired partial order.

If κ is a specific uncountable cardinal, we do not know whether the
existence of a (κ, κ++)-Boolean algebra is consistent with ZFC. However, we
want to remark that if κ, λ are specific infinite cardinals with κ < λ, then
it is consistent with ZFC that there exists a superatomic Boolean algebra
with exactly κ atoms and height λ. To see this, note that an immediate
consequence of [1, Theorem 6.1] is that it is consistent with ZFC that there
exists a family F such that F ⊆ P(κ), |F | = λ, |X| = κ for each X ∈ F
and X ∩ Y is finite for every X,Y ∈ F with X 6= Y . But from the existence
of the family F we can easily construct by transfinite induction on η ≤ λ a
superatomic Boolean algebra with exactly κ atoms and height η.
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