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Ordered fields and the ultrafilter theorem

by

R. B e r r (Dortmund), F. D e l o n (Paris)
and J. S c h m i d (Dortmund)

Abstract. We prove that on the basis of ZF the ultrafilter theorem and the theorem
of Artin–Schreier are equivalent. The latter says that every formally real field admits a
total order.

Introduction. In 1900 at the international congress of mathematicians
in Paris Hilbert raised his famous 23 problems. Among these was the fol-
lowing (the 17th):

Let f ∈ R[X1, . . . , Xn] be a polynomial which is positive semidefinite,
i.e., f(x) ≥ 0 for all x ∈ Rn. Is f a sum of squares of rational functions?

Hilbert already knew that f is not necessarily a sum of squares of polyno-
mials unless n = 1. In 1927 Artin solved Hilbert’s 17th problem affirmatively
(cf. [1]). The methods he used were developed in the joint paper [2] with
Schreier and are nowadays known as Artin–Schreier theory. The crucial no-
tion of Artin–Schreier theory is that of a formally real field. A field K is
called formally real if −1 is not a sum of squares in K. The first basic the-
orem proved by Artin and Schreier stated that each formally real field K
admits an ordering, i.e. a subset P ⊂ K such that P + P ⊂ P , P · P ⊂ P ,
P ∩ −P = {0} and P ∪ −P = K.

The proof runs as follows. Let T =
∑
K2 be the set of all sums of squares

of K. Then T + T ⊂ T , T · T ⊂ T , K2 ⊂ T and by the assumption −1 6∈ T ,
i.e. T is a preordering. An application of Zorn’s Lemma yields a preordering
maximal for set-theoretic inclusion. Now an elementary computation shows
that this maximal preordering is an ordering.

In 1954 Tarski [6] mentioned that the axiom of choice (in the form of
Zorn’s Lemma) is not necessary. The ultrafilter theorem suffices to prove
the theorem of Artin–Schreier. A proof can be found in [3] (Theorem 2.2
and Example 2.3.3). As mentioned by Tarski the problem whether the
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theorem of Artin–Schreier is equivalent to the ultrafilter theorem remains
open.

Recently, questions of similar type appeared in computer algebra. Lom-
bardi–Roy [4] and Sander [5] proved independently that the existence and
uniqueness of the real closure of an ordered field can be proven within ZF.

In this paper we close the gap mentioned above and show that the the-
orem of Artin–Schreier, the ultrafilter theorem and certain other theorems
from real algebra are mutually equivalent on the basis of ZF.

1. Preliminaries. It is the aim of this section to prove a couple of
preliminary results which will be needed for the proof that every filter is
contained in an ultrafilter provided every formally real field admits an or-
dering. Since these results are of quite technical nature we briefly sketch
their meaning for the proof.

Let S be a non-empty set and let F be a filter on S. It is our goal to show
that F is contained in an ultrafilter. To this end we consider A = Q[XI |
I ⊂ S] and construct in a first step a ring homomorphism ϕ : A → (K,T )
into a preordered field (K,T ) such that

F = {I ⊂ S | ϕ(XI) ∈ T}.
In the next step we embed K into a formally real field L with T = K∩∑L2

and show that for any ordering P ⊂ L,

U = {I ⊂ S | ϕ(XI) ∈ P}
is an ultrafilter containing F . For the construction of K one has to consider
ideals in certain polynomial rings over A which are generated by elements
of the form aX2 + bY 2 + c with a, b, c ∈ A. In Lemmas 1.1–1.4 we will be
concerned with these ideals. The remaining statements are related to the
construction of the preordering T ⊂ K and the extension field L ⊃ K.

Throughout this section we are working inside ZF and all fields are as-
sumed to have characteristic zero. Given a ring R we let R× denote the
group of units of R.

Lemma 1.1. Let R be an integral domain with K as its field of quotients.
Let a, b, c ∈ R\{0} and assume that a ∈ R×. Let p, q be the ideals generated
by aX2 + bY 2 + c in R[X,Y ] and K[X,Y ] respectively. Then

(1) p, q are prime ideals,
(2) q ∩R[X,Y ] = p.

P r o o f. We first prove (2). Let f ∈ q∩R[X,Y ]. Then f(X,Y ) = g(X,Y )·
(aX2 + bY 2 + c) for some g ∈ K[X,Y ]. Let

f(X,Y ) =
n+2∑

i=0

fi(Y )Xi and g(X,Y ) =
n∑

i=0

gi(Y )Xi
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for certain fi ∈ R[Y ] and gi ∈ K[Y ]. Comparing the coefficients we get
agn = fn+2 ∈ R[Y ] and agn−1 = fn+1 ∈ R[Y ]. Hence gn, gn−1 ∈ R[Y ]
because a is a unit in R.

For 1 ≤ i ≤ n− 1 we obtain again by comparing the coefficients

agi−1(Y ) + (bY 2 + c) · gi+1(Y ) = fi+1(Y ) ∈ R[Y ].

Now an easy induction yields gn, gn−1, . . . , g1, g0 ∈ R[Y ] and hence g ∈
R[X,Y ]. Therefore f ∈ p. The other inclusion is trivial.

An easy computation shows that aX2 +bY 2 +c is irreducible in K[X,Y ].
Thus q is a prime ideal of K[X,Y ] and from (2) we conclude that p is a prime
ideal of R[X,Y ]. This proves (1).

Lemma 1.2. Let R be an integral domain. Let I 6= ∅ and ai, bi, ci ∈ R×
(i ∈ I). Let p be the ideal of R[{Xi, Yi | i ∈ I}] which is generated by the
polynomials aiX2

i + biY
2
i + ci (i ∈ I). Then p is a prime ideal.

P r o o f. In a first step we assume that I is finite. We prove the assertion
by induction on the number n of elements of I. We may assume that I =
{1, . . . , n}. The case n = 1 follows from Lemma 1.1(1). Let

q = (a1X
2
1 + b1Y

2
1 + c1, . . . , an−1X

2
n−1 + bn−1Y

2
n−1 + cn−1)

⊂ R[X1, Y1, . . . , Xn−1, Yn−1].

By the induction hypothesis q is a prime ideal. Thus the residue class ring

A = R[X1, Y1, . . . , Xn−1, Yn−1]/q

is a domain. An easy argument yields

R[X1, Y1, . . . , Xn, Yn]/p ∼= A[Xn, Yn]/(anX2
n + bnY

2
n + cn).

Now Lemma 1.1(1) shows that the right hand side is a domain. Thus p is a
prime ideal.

In the second step we assume that I is arbitrary. Let f, g ∈ R[{Xi, Yi |
i ∈ I}] and assume that fg ∈ p. Thus there are a finite set J ⊂ I and
polynomials hi ∈ R[{Xi, Yi | i ∈ I}] such that

fg =
∑

i∈J
hi · (aiX2

i + biY
2
i + ci).

In the polynomials f, g, hi (i ∈ J) only finitely many indeterminates occur.
Enlarging J if necessary we may assume that f, g, hi ∈ R[{Xi, Yi | i ∈ J}].
Then fg ∈ q where q is the ideal of R[{Xi, Yi | i ∈ J}] generated by the
polynomials aiX2

i + biY
2
i + ci (i ∈ J). By the first step q is a prime ideal.

Thus f ∈ q ⊂ p or g ∈ q ⊂ p.
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Lemma 1.3. Let K be a field and let T be a preordering of K. Let I 6= ∅
and ai, bi, ci ∈ K× (i ∈ I). Assume that for each i ∈ I either cia−1

i or cib−1
i

is in T . Let

p = (aiX2
i + biY

2
i − ci | i ∈ I) ⊂ K[{Xi, Yi | i ∈ I}]

and let L be the field of quotients of the ring K[{Xi, Yi | i ∈ I}]/p. Then
there is a preordering T ′ of L which extends T , i.e., T ′ ∩K = T .

P r o o f. We prove the lemma in three steps. In the first step we assume
that I contains only one element. We omit all indices. Since the situation is
symmetric in X and Y we may assume ca−1 ∈ T . First note that

L ∼= K(Y )[X]/(X2 + ba−1Y 2 − ca−1).

We denote by x ∈ L the image of X under the canonical projection K(Y )[X]
→ L. Now let T ′ ⊂ L be the semiring generated by T and the squares of L.
We claim T = T ′ ∩K. Obviously, T ⊂ T ′ ∩K. So let t ∈ T ′ ∩K. Then there
are n ∈ N, ti ∈ T and g, gi, hi ∈ K[Y ], i = 1, . . . , n, with g 6= 0 and

tg2 =
n∑

i=1

(hi + xgi)2 · ti =
n∑

i=1

(h2
i + x2g2

i ) · ti + 2x ·
n∑

i=1

gihiti.

But x2 = ca−1 − ba−1Y 2 ∈ K(Y ) implies
∑
gihiti = 0. Therefore

tg2 =
n∑

i=1

h2
i ti + (ca−1 − ba−1Y 2) ·

n∑

i=1

g2
i ti.

Now assume g(0) = 0. Since ca−1 ∈ T we see hi(0) = 0 = gi(0) for all i.
Hence we may assume that g(0) 6= 0. But then ca−1 ∈ T implies tg(0)2 ∈ T ,
hence t ∈ T . Therefore T ′ extends T .

In the second step we assume that I is finite and proceed by induction
on the number n of its elements. We may assume that I = {1, . . . , n}. The
case n = 1 is exactly the first step. Let

q = (a1X
2
1 + b1Y

2
1 + c1, . . . , an−1X

2
n−1 + bn−1Y

2
n−1 + cn−1)

⊂ K[X1, Y1, . . . , Xn−1, Yn−1].

By Lemma 1.2, q is a prime ideal. So A = K[X1, Y1, . . . , Xn−1, Yn−1]/q is
a domain. Let F be its field of quotients. By the induction hypothesis T
extends to a preordering T ′ of F . From the first step we see that T ′ extends
to a preordering T ′′ of E = Quot(F [Xn, Yn]/(anX2

n + bnY
2
n + cn)). An easy

argument yields

K[X1, Y1, . . . , Xn, Yn]/p ∼= A[Xn, Yn]/(anX2
n + bnY

2
n + cn).

By Lemma 1.1(2) the right hand side embeds into E. Thus there is also
an embedding L → E. Now one can easily see that T ′′ induces the desired
preordering on L.
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In the final step we assume that I is arbitrary. Let T ′ be the semiring
generated by T and the squares of L. It suffices to show that T ′ ∩K = T .
The inclusion T ⊂ T ′ ∩K is clear. So let a ∈ T ′ ∩K. Then there are f0 ∈
K[{Xi, Yi | i ∈ I}] \ p, f1, . . . , fn ∈

∑
K[{Xi, Yi | i ∈ I}]2 and t1, . . . , tn ∈ T

such that

af2
0 ≡

n∑

i=1

fi · ti mod p.

Thus there is a finite set J ⊂ I and polynomials gi ∈ K[{Xi, Yi | i ∈ I}]
(i ∈ J) such that

af2
0 −

n∑

i=1

fi · ti =
∑

i∈J
gi · (aiX2

i + biY
2
i + ci).

In the polynomials f0, . . . , fn, gi (i ∈ J) only finitely many indetermi-
nates occur. After enlarging J if necessary we may assume that f0, . . . , fn, gi
∈ K[{Xi, Yi | i ∈ J}].

By Lemma 1.2 the ideal q of K[{Xi, Yi | i ∈ J}] generated by aiX
2
i +

biY
2
i − ci (i ∈ J) is prime. Let F be the field of fractions of K[{Xi, Yi |

i ∈ J}]/q. By the second step T extends to a preordering T ′′ of F . The
above equation then yields a ∈ T ′′. Since a ∈ K we obtain a ∈ T ′′ ∩K = T .

This proves the lemma.

Now we fix some notations. Let S be an arbitrary non-empty set. We
denote by AS the ring of polynomials in the power set of S over the field Q
of rational numbers. If we look at I ⊂ S as an indeterminate we write XI .
So AS = Q[{XI | I ⊂ S}]. We denote by pS the ideal of AS generated by
all elements of the form XI +XIc (I ⊂ S). Let BS = AS/pS . We denote by
xI the residue class of the indeterminate XI .

Lemma 1.4. Let S be a non-empty set. Then pS is a prime ideal of AS
and XI 6∈ pS for all I ⊂ S.

P r o o f. Let f, g ∈ AS and assume that fg ∈ pS . Then there are distinct
subsets I1, . . . , In ⊂ S with Ij 6= Ic

k for j 6= k and polynomials hi ∈ AS
(1 ≤ i ≤ n) such that fg =

∑n
i=1 hi · (XIi + XIc

i
). In the polynomials

f, g, h1, . . . , hn only finitely many indeterminates occur. After enlarging the
list I1, . . . , In we may assume f, g, h1, . . . , hn ∈ Q[XI1 , XIc

1
, . . . , XIn , XIc

n
].

Thus fg ∈ q = (XI1 + XIc
1
, . . . , XIn + XIc

n
) ⊂ Q[XI1 , XIc

1
, . . . , XIn , XIc

n
].

Since

Q[XI1 , XIc
1
, . . . , XIn , XIc

n
]/q ∼= Q[XI1 , . . . , XIn ]

we find that q is a prime ideal. Hence f ∈ q ⊂ pS or g ∈ q ⊂ pS . Finally, a
straightforward argument shows XI 6∈ pS for all I ⊂ S.
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Since pS is a prime ideal, BS is a domain. Its field of quotients will be
denoted by KS . Now let F be a filter on S. As mentioned at the beginning
of this section we will construct a preordering TF ⊂ KS with xI ∈ TF if and
only if I ∈ F . To this end we need the following simple fact.

Lemma 1.5. Let S be a non-empty set and let F be a filter on S. Let
A1, . . . , An be subsets of S. Then there is a filter G on S such that

(1) F ⊂ G,
(2) for each i either Ai ∈ G or S \Ai ∈ G.

P r o o f. Without loss of generality we may assume n = 1. Let A ⊂ S.
Only the case A 6∈ F has to be considered. But then I 6⊂ A for all I ∈ F .
Hence G1 = F ∪ {I ∩ Ac | I ∈ F} is a filter basis which yields the desired
filter G.

If F is a filter on S we let TF denote the semiring generated by the
squares of KS and the elements xI (I ∈ F).

Lemma 1.6. Let F be a filter on the set S. Then

(1) TF is a preordering of KS ,
(2) for all I ⊂ S: I ∈ F ⇔ xI ∈ TF .

P r o o f. (1) By definition TF is additively and multiplicatively closed and
contains all the squares of KS . It remains to show that −1 6∈ TF . Assume
the contrary. Then there are n ∈ N, a0, . . . , an ∈

∑
K2
S and t1, . . . , tn such

that

−1 = a0 +
n∑

i=1

ai · ti

and each ti is a finite product of certain xI (I ∈ F). After multiplication
with a common denominator we obtain

−b2 = b0 +
n∑

i=1

bi · ti

for certain b0, . . . , bn ∈
∑
B2
S , b ∈ BS\{0}. The elements b, b0, . . . , bn are the

residue classes of polynomials f ∈ AS \ pS , f0, . . . , fn ∈
∑
A2
S and t1, . . . , tn

are residue classes of certain P1, . . . , Pn ∈ Q[{XI | I ⊂ S}] where each Pi is
a product of certain XI with I ∈ F . Thus

f2 + f0 +
n∑

i=1

fi · Pi ∈ pS .

In these polynomials only finitely many indeterminates occur. So there
are J1, . . . , Jm ⊂ S such that J1, . . . , Jm, J

c
1 , . . . , J

c
m are pairwise distinct,

P1, . . . , Pn ∈ Q[XJ1 , . . . , XJn ] and f, f0, . . . , fn ∈ Q[XJ1 , . . . , XJm , XJc
1
, . . .

. . . , XJc
m

]. Now we apply the substitution homomorphism Φ : AS →



Ordered fields and the ultrafilter theorem 237

Q[XJ1 , . . . , XJm ] given by XJi 7→ XJi , XJc
i
7→ −XJi (1 ≤ i ≤ m), XJ 7→ 0

(J 6∈ {J1, . . . , Jm, J
c
1 , . . . , J

c
m}) and obtain

Φ(f)2 + Φ(f0) +
n∑

i=1

Φ(fi) · Pi = 0

or

Φ(f)2 = −Φ(f0)−
n∑

i=1

Φ(fi) · Pi.

This is a polynomial equation in the indeterminates XJ1 , . . . , XJm over Q.
Since f0, . . . , fn are sums of squares so are Φ(f0), . . . , Φ(fn). Thus Φ(f)(x)2

≤ 0 for all x ∈ H = {(x1, . . . , xm) ∈ Qm | x1, . . . , xm ≥ 0} and therefore
Φ(f)(x) = 0 for x ∈ H. Thus f(XJ1 , . . . , XJm ,−XJ1 , . . . ,−XJm) = Φ(f) =
0. This yields the contradiction f ∈ (XJ1 +XJc

1
, . . . , XJm +XJc

m
) ⊂ pS and

(1) is proved.
(2) If I ∈ F then xI ∈ TF by the definition. So let xI ∈ TF . Since xI 6= 0

we get −xI = xIc 6∈ TF because TF is a preordering. Thus Ic 6∈ F . Now
assume that also I 6∈ F . By the proof of Lemma 1.5 we know that there is
a filter G ⊃ F on S with Ic ∈ G. Then xI ∈ TF ⊂ TG and by (1) we know
that TG is a preordering. But Ic ∈ G implies xIc = −xI ∈ TG , which gives
the desired contradiction.

Lemma 1.7. Let S be a non-empty set and F a filter on S. Then there
is an extension field L ⊃ KS such that

(1) xI ∈
∑
L2 (I ∈ F),

(2) each preordering T ⊃ TF extends to L.

P r o o f. Let A = KS [{YI , ZI | I ∈ F}] and let p be the ideal of A which
is generated by the polynomials Y 2

I + Z2
I − xI (I ∈ F). By Lemma 1.2, p is

a prime ideal. Let L be the field of quotients of A/p. Then (1) is clear and
(2) follows from Lemma 1.3.

2. The main theorem. Before we state the main theorem we recall
some definitions and facts from real algebra.

By a ring we always mean a commutative ring with a unit element 1 6= 0.
A subset T ⊂ R is called a (quadratic) preordering if

T + T ⊂ T, T · T ⊂ T, R2 ⊂ T and − 1 6∈ T.
A preordering T is called total if T ∪ −T = R. Finally, an ordering P ⊂ R
is a total preordering for which P ∩ −P is a prime ideal. In the case of a
field this last condition reduces to P ∩ −P = {0}. Therefore the orderings
of a field are exactly the total preorderings.
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A ring R is called real or formally real if
n∑

i=1

a2
i = 0 ⇒ a1 = . . . = an = 0.

R is called semi-real if−1 6∈∑R2. Note that a semi-real field is also formally
real; however, for rings this is not true.

Theorem. On the basis of ZF the following statements are equivalent :

(1) Each filter on a non-empty set is contained in an ultrafilter.
(2) Each formally real field admits an ordering.
(3) Each preordering of a field is contained in an ordering.
(4) Each semi-real ring admits an ordering.
(5) Each preordering of a ring is contained in a total preordering.
(6) Each preordering of a ring is contained in an ordering.

P r o o f. We prove the following implications:

(6) ⇒ (3)
⇓ ⇓

(4) ⇒ (2) ⇒ (1) ⇒ (5) ⇒ (6)

The implications in the left square are obvious.
(2)⇒(1). Let F be a filter on a non-empty set S. By Lemma 1.7 there

is an extension field L ⊃ KS such that xI ∈
∑
L2 (I ∈ F) and each

preordering T ⊃ TF of KS extends to L. Given a total order P ⊂ L, in
general

U = {I ⊂ S | xI ∈ P}
is not a filter. For example, if I, J ∈ U it may happen that I ∩ J 6∈ U . This
problem leads to the following construction. Let

A = L[{YIJ , ZIJ | (I, J) ∈ S × S}],
p = (xIY 2

IJ + xJZ
2
IJ − xI∩J | (I, J) ∈ S × S) ⊂ A.

By Lemma 1.2, p is a prime ideal of A. We let F denote the quotient field
of A/p.

We assume that F is not formally real. Then −1 ∈∑F 2. In this repre-
sentation of −1 as a sum of squares in F only finitely many indeterminates
occur. Hence there are I1, . . . , In, J1, . . . , Jn ⊂ S such that E = Quot(B/q)
is not formally real where

B = L[YI1J1 , ZI1J1 , . . . , YInJn , ZInJn ],

q = (xIiY
2
IiJi + xJiZ

2
IiJi − xIi∩Ji | i ∈ {1, . . . , n}) ⊂ B.
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By Lemma 1.5 there is a filter G ⊃ F on S such that for each

I ∈ {I1, . . . , In, J1, . . . , Jn, I1 ∩ J1, . . . , In ∩ Jn}
either I ∈ G or Ic ∈ G. Since TF ⊂ TG the preordering TG extends to a
preordering T of L.

Let i ∈ {1, . . . , n} and let I = Ii and J = Ji. We show that xI∩J ·x−1
I ∈ T

or xI∩J · x−1
J ∈ T . If I ∩ J ∈ G then also I ∈ G. Thus xI∩J , xI ∈ TG and

therefore xI∩J · x−1
I ∈ TG ⊂ T . If I ∩ J 6∈ G then without loss of generality

I 6∈ G. Then (I∩J)c, Ic ∈ G by the choice of G. Hence −xI∩J = x(I∩J)c ∈ TG
and −xI = xIc ∈ G and therefore xI∩J · x−1

I ∈ TG ⊂ T .
By Lemma 1.3, T extends to a preordering T ′ of E. Hence E is formally

real and we got a contradiction.
Thus F is formally real. By (2) it admits an ordering P . Let

U = {I ⊂ S | xI ∈ P}.
We show that U is an ultrafilter that contains F .

If I ∈ F then xI ∈
∑
L2 ⊂ ∑F 2 ⊂ P . Hence I ∈ U and so F ⊂ U .

Since S ∈ F we get S ∈ U . Hence xS ∈ P and therefore −xS = x∅ 6∈ P .
Thus ∅ 6∈ U .

Let I, J ∈ U . Then xI , xJ ∈ P and thus xI∩J = xIy
2
IJ + xJz

2
IJ ∈ P

where yIJ and zIJ are the residue classes of YIJ and ZIJ respectively. So
I ∩ J ∈ U . Let I ⊂ S and assume that I 6∈ U . Then xI 6∈ P and hence
xIc = −xI ∈ P . Therefore Ic ∈ U .

Finally, we have to show that I ∈ U and I ⊂ J implies that also J ∈ U .
Assume that J 6∈ U . As we have seen above this yields Jc ∈ U and hence we
get the contradiction I ∩ Jc = ∅ ∈ U .

(1)⇒(5). Let T be a preordering of the ring R. Let X be the set of all
preorderings Q of R which contain T . For a finite non-empty subset A ⊂ R
we let

DA = {Q ∈ X | −1 ∈ Q+ aQ for each a ∈ A \Q}.
Finally, let

D = {DA | ∅ 6= A ⊂ R finite}.
We first claim that D has the finite intersection property.

Let A1, . . . , An ⊂ R be finite non-empty subsets of R. Define A =⋃n
i=1Ai. Then it is easy to see that DA ⊂

⋂n
i=1DAi . Hence it suffices to

show that DA 6= ∅. Let Σ = {A ∩ Q| Q ∈ X}. Since A is finite Σ has a
maximal element V with respect to set-theoretic inclusion. V is of the form
V = A ∩Q for some preordering Q ∈ X. We claim that Q ∈ DA.

Let a ∈ A \ Q and define Q′ = Q + aQ. Then a ∈ Q′ and hence V is a
proper subset of A ∩ Q′. Thus Q′ 6∈ X by the maximality of V . Therefore
−1 ∈ Q′ = Q+ aQ.
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Since D has the finite intersection property it is contained in some
filter F . By (1), F is contained in some ultrafilter U . For Z ∈ U let
PZ =

⋂
Q∈Z Q. Obviously PZ ∈ X (Z ∈ U). Now define

P =
⋃

Z∈U
PZ .

We claim that P is a total preordering which contains T .
The inclusion T ⊂ P is clear. Since PY , PZ ⊂ PY ∩Z the system (PZ)Z∈U

is inductively directed. Hence P is a preordering. It remains to show that
P is total. Let a ∈ R and let Z = {Q ∈ X | a ∈ Q}. If Z ∈ U then
a ∈ ⋂Q∈Z Q = PZ ⊂ P . If Z 6∈ U then Zc ∈ U because U is an ultrafilter.
Let A = {a,−a}. Then Y = Zc ∩ DA ∈ U . For Q ∈ Y we get a ∈ A \ Q
and thus −1 ∈ Q + aQ as Q ∈ DA. Therefore −1 6∈ Q − aQ. Now Q ∈ DA

implies −a 6∈ A \Q and hence −a ∈ Q. Therefore −a ∈ ⋂Q∈Y Q = PY ⊂ P .
(5)⇒(6). Let T be a preordering of the ring R. By (5) there is a total

preordering Q which contains T . Let

p = {a ∈ R | 1 + xa ∈ Q for all x ∈ R}.
We first show that p is a proper prime ideal of R. Let a, b ∈ p and let x ∈ R.
Then 1 + 2xa, 1 + 2xb ∈ Q and hence 2 + 2x(a + b) ∈ Q. Since Q is total,
1 + x(a + b) ∈ Q. Thus a + b ∈ p. The inclusion Rp ⊂ p is obvious by the
definition. Since 1 − 2 · 1 = −1 6∈ Q we obtain 1 6∈ p and therefore p is a
proper ideal of R.

In order to show that p is a prime ideal let a, b ∈ R \ p. Then there are
x, y ∈ R with xa− 1, yb− 1 ∈ Q. Hence xyab− 1 ∈ Q. Now assume ab ∈ p.
Then 1 − 2xyab ∈ Q, which implies the contradiction −1 = 1 − 2xyab +
2(xyab− 1) ∈ Q. So ab 6∈ p.

Now we show that p is convex with respect to Q, i.e.,

a+ b ∈ p, a, b ∈ Q⇒ a, b ∈ p.

It is sufficient to show a ∈ p. Let x ∈ R. If x ∈ Q then 1 + xa ∈ Q. So
assume −x ∈ Q. Then 1 + xa = 1 + x(a+ b) + (−x)b ∈ Q. Hence a ∈ p.

Now let P = p +Q. We claim that P is an ordering of R which contains
T . Since p and Q are additively closed, so is P . Since p is an ideal, P is also
multiplicatively closed. Obviously T ⊂ Q ⊂ P and therefore P ∪ −P = R
because Q ∪ −Q = R. It remains to show that P ∩ −P is a prime ideal of
R. We actually show P ∩ −P = p.

Obviously p ⊂ P ∩ −P . Let x ∈ P ∩ −P . Then there are a, b ∈ p and
p, q ∈ Q such that x = a+ p and −x = b+ q. Thus p+ q = −(a+ b) ∈ p. As
p is convex with respect to Q we get p, q ∈ p and hence x = a+ p ∈ p.

This proves the theorem.
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