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Area and Hausdorff dimension of the set of

accessible points of the Julia sets of λez and λ sin z

by

Bogus lawa K a r p i ń s k a (Warszawa)

Abstract. The Julia set Jλ of the exponential function Eλ : z → λe
z for λ ∈ (0, 1/e)

is known to be a union of curves (“hairs”) whose endpoints Cλ are the only accessible
points from the basin of attraction. We show that for λ as above the Hausdorff dimension
of Cλ is equal to 2 and we give estimates for the Hausdorff dimension of the subset of
Cλ related to a finite number of symbols. We also consider the set of endpoints for the
sine family Fλ : z → (1/(2i))λ(e

iz
− e−iz) for λ ∈ (0, 1) and prove that it has positive

Lebesgue measure.

1. Introduction. We consider the complex exponential maps Eλ(z) =
λez where z ∈ C and λ ∈ (0, 1/e). The function Eλ has two real fixed
points; the attracting fixed point is denoted by pλ and the repelling one by
qλ. Note that 0 < pλ < 1 < qλ. The basin of attraction of pλ is an open,
dense and simply connected subset Ωλ of C.

We choose νλ such that νλ < qλ and |E′
λ(z)| > 1 if Re z ≥ νλ and denote

by H the half-plane {z : Re z ≥ νλ}. The function Eλ maps C \ H into
itself. Consequently, this half-plane lies in the basin of attraction Ωλ and
the Julia set of Eλ is contained in H. We divide H (as in [4]) into infinitely
many strips: for k ∈ Z,

P (k) = {z ∈ C : Re z ≥ νλ, (2k − 1)π ≤ Im z < (2k + 1)π}.
If the forward orbit of z is completely contained in H then the itinerary

of z is defined to be the sequence s = (s0, s1, . . .) such that sj = k if

Ej
λ(z) ∈ P (k). But not every sequence corresponds to an actual orbit of

Eλ. A sequence s = (s0, s1, . . .) is called allowable if there exists x ∈ R such
that Ej

λ(x) ≥ (2|sj | + 1)π for each j = 0, 1, . . .
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In [4] Devaney and Krych (see also [3]) proved that there exists z ∈ H
with itinerary s if and only if s is an allowable sequence and the set of points
which have s as itinerary forms a curve Xs lying in the Julia set. Xs is the
image of [0, 1) under a continuous embedding φs : [0, 1) → C, φs(t) → ∞ as
t → 1. The set Jλ \ {∞} consists of a disjoint union of sets Xs. Devaney
and Goldberg ([3]) proved that the point zs = φs(0) is accessible from the
basin of attraction (i.e. there exists a path γ : [0, 1) → Ωλ such that
limt→1 γ(t) = zs) and zs is the unique accessible point in Xs. We then say
that zs is an endpoint of Xs and we denote the set of endpoints by Cλ.

Fig. 1. The Julia set for 0.2ez

In [10] McMullen proved that for Eλ as above the Hausdorff dimension
of the Julia set Jλ is HD(Jλ) = 2. It is known that the Hausdorff dimension
of Cλ is greater than or equal to 1; this follows from [9], where it is proved
that the topological dimension of the set of endpoints is equal to 1. Another
argument is that the harmonic measure ω has its support in the set of
accessible points and its Hausdorff dimension is HD(ω) = inf{HD(X) :
X ⊂ Jλ, ω(X) = 1} = 1 (see [8]).

Note that Cλ = Jλ because Cλ contains all the repelling periodic points
of Eλ, which are dense in Jλ (see [1] and [3]). So one can think that HD(Cλ)
is much larger than 1 if Cλ is “very dense” in Jλ. This question, according
to F. Przytycki (see also [9]), has been known since the eighties. Here we
give the answer:

Theorem 1. The Hausdorff dimension of Cλ is equal to 2.
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We also prove that the Hausdorff dimension of the subset of Cλ consisting
of those endpoints whose itinerary contains a finite number of symbols is
greater than 1, but for small λ this dimension is close to 1 (independently of
the number of symbols). For N ∈ N, we define ΣN = {s = (s0, s1, . . .) : sj ∈
N and 1 ≤ sj ≤ N for j = 0, 1, . . .}. Note that all sequences from ΣN are
allowable. Let Cλ,N denote the set of endpoints corresponding to itineraries
which belong to ΣN .

Theorem 2. For every λ ∈ (0, 1/e) there exists N0 ∈ N such that for

N > N0,

HD(Cλ,N ) > 1.

Moreover , if λ is sufficiently small then

1 +
1

log(log 1/λ)
< HD(Cλ,N ) < 1 +

1

log(log(log 1/λ))
.

Remark. The above results hold in the case of complex parameters λ
such that Eλ has an attracting fixed point, i.e. λ is of the form λ = ξe−ξ

for some ξ ∈ C, |ξ| < 1 (with λ replaced by |λ| in Theorem 2).

It was shown by McMullen in [10] that the Julia set for maps of the
form f(z) = γez + δe−z where γ, δ ∈ C has positive Lebesgue measure. So
the natural question is: does the set of endpoints (for parameters such that
Cantor bouquets occur) for the sine family have positive Lebesgue measure?

Let Fλ(z) = λ(ez − e−z)/2 where λ ∈ (0, 1). Then Fλ has an attracting
fixed point at 0 and two repelling fixed points q+

λ > 0 and q−λ < 0 such that
q+
λ = −q−λ . The Julia set for Fλ contains a pair of Cantor bouquets; one in

H+ = {z : Re z > ν+} where 0 < ν+ < q+
λ and one in H−={z : Re z<ν−}

where q−λ < ν− < 0 (see [5]). Note that Fλ(z) becomes λ sin z in the
coordinates z → iz.

We prove the following:

Theorem 3. The set of accessible points in the Julia set for maps of the

form Fλ(z) = λ(ez − e−z)/2 where λ ∈ (0, 1) has positive Lebesgue measure.

Acknowledgments. The author would like to thank Prof. Feliks Przy-
tycki and Prof. Janina Kotus for their helpful suggestions. The author is
also grateful to the referee for his criticism and comments which improved
the exposition.

2. Proof of Theorem 1. For every n ∈ N we construct a family Kn

of sets such that the intersection C′
λ =

⋂
n∈N

⋃
K∈Kn

K is contained in the
set of accessible points. Consider the strips

Sk = {z ∈ H : Im z ∈ [−π/4 + 2kπ, π/4 + 2kπ]}
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and let S =
⋃

k∈Z
Sk. Let ε be fixed, say ε = 1/100. For every integer k

and every positive integer j define

Bj
k = {z ∈ Sk : νλ + π(j − 1)/2 + ε ≤ Re z ≤ νλ + πj/2 − ε}.

Let C be a constant whose choice depends only on λ. Now we only
assume that C > qλ + 2π; we shall indicate further conditions on C as the
proof proceeds. The family Kn consists of the nth preimages of some boxes
Bj

k which we have just defined. We take a specific box

Bs0
= Bj

s0
⊂ {z : C < Re z < 2C}

and we define the collection Kn inductively:

• K0 = {Bs0
},

• Kn consists of the sets Kn satisfying the following conditions:

(i) there exist sn ∈ Z, j ∈ N and a box Bj
sn

⊂ {z : Re z > En
λ (C)}

such that En
λ (Kn) = Bj

sn
,

(ii) Kn ⊂ Kn−1 for some Kn−1 ∈ Kn−1,
(iii) |sn| ≥ 1

2 max{k : Sk ∩ En
λ (Kn−1) 6= ∅}.

Fig. 2. Boxes from the family Enλ (Kn) in E
n

λ (Kn−1)

Figure 2 shows En
λ (Kn−1) for some Kn−1 ∈ Kn−1, i.e. the image of some

box contained in {z : Re z > En−1
λ (C)}. Since En

λ (Kn−1) is a part of an
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annulus whose inner radius is greater than En
λ (C) it follows that the family

Kn is non-empty.

Let R = supz∈En+1
λ (Kn) Re z. It is easy to see that En+1

λ (Kn) is contained

in the disk of radius r = 15
16R centered at R. The branches of the inverse

function of En+1
λ are univalent in the disk of a greater radius s, one can take

s = 31
32R. Therefore the distortion of En+1

λ , i.e.

sup
z1,z2∈Kn

|(En+1
λ )′(z1)|

|(En+1
λ )′(z2)|

,

is universally bounded on each Kn ∈ Kn; this is a consequence of the Koebe
distortion theorem (see [6]) which says that if f is a univalent function in
B(w, r) = {z : |z−w| < r} then for s ∈ (0, r) the distortion of f on the disk
B(w, s) is bounded by ((r + s)/(r − s))4.

Our aim is to prove that C′
λ =

⋂
n∈N

⋃
K∈Kn

K is contained in the set Cλ

of endpoints and the Hausdorff dimension of C′
λ is equal to 2. Note that in

this way we shall estimate the Hausdorff dimension of a compact subset of
Cλ consisting of some endpoints whose itineraries grow superexponentially
fast (condition (iii) in the definition of Kn).

Let Lk : H → P (k) denote the appropriate branch of the inverse function
to Eλ.

Proposition 2.1. For every n ∈ N, every Kn ∈ Kn and every box

Bsn+1
⊂ En+1

λ (Kn) ∩ Ssn+1
∩ {z : Re z ≥ En+1

λ (C)}

where |sn+1| ≥ 1
2 max{k : Sk ∩ En+1

λ (Kn) 6= ∅} the following holds:

dist(Ls0
◦ . . . ◦ Lsn

(Bsn+1
), Ls0

◦ . . . ◦ Lsn
(qλ + 2πisn+1)) ≤ 2C2−n

(where dist means the Euclidean distance).

P r o o f. The proof is by induction. Since Bs0
⊂ {z : Re z < 2C} it

follows that for n = 0 and every box Bs1
⊂ Eλ(Bs0

),

dist(Ls0
(b), Ls0

(qλ + 2πis1)) < 2C

for b ∈ Bs1
. We prove that for every sn+1, every Bsn+1

satisfying the
assumption of the proposition and every b ∈ Bsn+1

,

dist(Ls0
◦ . . . ◦ Lsn

(b), Ls0
◦ . . . ◦ Lsn

(qλ + 2πisn+1)) ≤ 2C2−n.

Note that Bsn+1
= En+1

λ (Kn+1) for some Kn+1 ∈ Kn+1. Let b ∈ Bsn+1
.

Since Bsn+1
⊂ En+1

λ (Kn) = {z : arg z ∈ [−π/4, π/4], e−π/2R ≤ |z| ≤ R}
for some R, we have |b| ≤ R and 2π|sn+1| ≥ R/(2

√
2) − π. Since C > qλ,

it follows that R > C. We can assume that C/(2
√

2) − π > C/3, therefore
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2π|sn+1| ≥ R/3. For simplicity we use the following notation:

an−k = Lsk
◦ . . . ◦ Lsn

(qλ),

bn−k = Lsk
◦ . . . ◦ Lsn

(b),

cn−k = Lsk
◦ . . . ◦ Lsn

(qλ + 2πisn+1).

Our aim is to prove the following inequality:

dist(bn, cn) ≤ 1
2 dist(an, bn).

We begin with considering a0, b0, c0 (see Fig. 3). Notice that applying Lsn

Fig. 3. The first preimages of the triple qλ, qλ + 2πisn+1, b

to b and qλ + 2πisn+1 we obtain

Re b0 − Re c0 ≤ log
R

λ
− log

|qλ + iR/3|
λ

≤ log 3,

so
dist(b0, c0) ≤ |log 3 + 2πi|

but

dist(a0, b0) ≥ log
|b|
λ

− qλ ≥ C − qλ.

This means that for a given d1 (arbitrarily large) if C ≥ qλ + d1|log 3 + 2πi|
then

d1 dist(b0, c0) ≤ dist(a0, b0).

En
λ (Kn−1) is the intersection of a sector and an annulus; denote by R′ the
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outer radius of this annulus. It follows from our assumption that the points
a0, b0, c0 are contained in the strip P (sn) such that 2π|sn| ≥ R′/(2

√
2)− π.

Thus

dist(a0, b0) ≤ 2π + Re b0 ≤ 2π + 8
9
|b0|.

But |b0| ≥ C and C is large so we can write

dist(a0, b0) ≤ 9
10 |b0|.

Therefore the disk centered at b0 of radius 9
10
|b0| contains the points a0 and

c0 (see Fig. 3). Now we can use the Koebe distortion theorem; the inverse
branches of En

λ are univalent functions in B
(
b0,

19
20
|b0|

)
, thus the distortion

of En
λ on B

(
b0,

9
10 |b0|

)
is bounded by a constant d2 which does not depend

on C.
Hence

dist(bn, cn)

dist(an, bn)
≤ d2

dist(b0, c0)

dist(a0, b0)
≤ d2

d1
.

Choosing d1 = 2d2 we obtain

dist(bn, cn) ≤ 1
2 dist(bn, an).

But bn ∈ Kn+1 ⊂ Kn and now an plays the role of cn−1, so applying the
inductive assumption we see that dist(an, bn) ≤ C22−n. Hence dist(bn, cn) ≤
C21−n.

Proposition 2.2.
⋂

n∈N

⋃
K∈Kn

K is contained in Cλ, the set of end-

points.

P r o o f. Let z ∈ ⋂
Kn where Kn ∈ Kn. Then z ∈ Jλ and in fact

{z} =
⋂

Kn (because Eλ is expanding in H). Let the sequence s = {si}∞i=0

be the itinerary of z. It follows from Proposition 2.1 that z = limn→∞ Ls0
◦

. . . ◦ Lsn−1
◦ Lsn

(qλ).
Let γsk

denote the straight line segment joining the point νλ to its preim-
age νsk

λ = log(νλ/λ) + 2skπi. We may parameterize γsk
on the interval

[k, k + 1] in such a way that γsk
(k) = νλ and γsk

(k + 1) = νsk

λ . We define
the curve ζs on the interval [k, k + 1] as follows:

• for k = 0, ζs(t) = γs0
(t),

• for k > 0, ζs(t) = Ls0
◦ . . . ◦ Lsk−1

(γsk
(t)).

The curve ζs is contained in the basin of attraction and by [3] has a
unique limit point (in Jλ) as t → ∞. But since Lj : H → H and |L′

j | ≤ δ < 1

in H we see that Ls0
◦. . .◦Lsk−1

(νk
λ) = Ls0

◦. . .◦Lsk
(νλ) and Ls0

◦. . .◦Lsk
(qλ)

have the same limit as k → ∞, namely z. Therefore z is accessible from the
basin of attraction.

Remark. To prove Proposition 2.2 we just need to know that

dist(Kn+1, Ls0
◦ . . . ◦ Lsn

(qλ + 2πisn+1)) ≤ αn
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where αn is a sequence converging to 0 (in our case αn = const · 2−n). Of
course, for αn going more slowly to 0 we would get larger Kn.

To estimate the Hausdorff dimension we use the following lemma proved
by McMullen in [10]:

Lemma 2.3. For all n let Kn be a finite collection of disjoint compact

subsets of R
d, and define K̃n =

⋃
Kn∈Kn

Kn. Assume that for each Kn ∈ Kn

there exists Kn+1 ∈ Kn+1 such that Kn+1 ⊂ Kn and a unique Kn−1 ∈ Kn−1

such that Kn ⊂ Kn−1. If for each Kn ∈ Kn,

diam Kn ≤ dn < 1, dn → 0

and

vol(K̃n+1 ∩ Kn)

vol Kn
≥ ∆n

then

HD
( ⋂

n∈N

K̃n

)
≥ d − lim sup

k→∞

∑k+1
i=1 |log ∆i|
|log dk|

.

It follows from the definition of Kn that for z ∈ K ∈ Kn we have
ReEi

λ(z) > Ei
λ(C) for i = 0, . . . , n. Therefore for z ∈ K,

|(En
λ )′(z)| ≥ Eλ(Re En−1

λ (z)) > En
λ (C)

and for every K ∈ Kn,

diam K ≤ dn =
π

2

1

En
λ (C)

.

It is sufficient to prove that there exists a constant ∆ > 0 such that for
every n,

vol(K̃n+1 ∩ Kn)

vol(Kn)
≥ ∆.

The distortion of En+1
λ is bounded on each Kn ∈ Kn by a constant L

which does not depend on n, hence

vol(K̃n+1 ∩ Kn))

vol(Kn)
≥ L2 vol(En+1

λ (K̃n+1 ∩ Kn))

vol(En+1
λ (Kn))

and it suffices to show that the last quotient is bounded away from 0. Let
Kn ∈ Kn and let R denote the radius of En+1

λ (Kn). By the construction of
Kn+1 we see that

vol(En+1
λ (K̃n+1 ∩ Kn))

≥ (1 − ε) vol
(
En+1

λ (Kn) ∩ {z : Re z > En+1
λ (C)} ∩

⋃

|k|≥p

Sk

)
− πR.
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where p = 1
2 max{k : Sk ∩ En+1

λ (Kn) 6= ∅}. The last term in the above
inequality is an estimate of the volume of those boxes which intersect but
are not contained in En+1

λ (Kn) ∩ {z : Re z > En+1
λ (C)} ∩ ⋃

|k|≥p Sk. Since
R is much bigger than the width of the strip Sk we have

vol(En+1
λ (K̃n+1 ∩ Kn)) ≥ 1

10
vol(En+1

λ (Kn)).

This finishes the proof of Theorem 1.

Remark. The method of proof carries over to the maps Eλ which have
an attracting fixed point, i.e. λ is of the form λ = ξe−ξ for some ξ with
|ξ| < 1. The maps Eλ which have a single attracting fixed point are qua-
siconformally conjugate (see [7]), the Julia set is also a union of “hairs”
whose endpoints are the only accessible points from the basin of attraction
(see [3]). Let D be a small disk with center at the attracting fixed point pλ

such that Eλ(D) ⊂ intD. Consider the sequence of components of E−k
λ (D)

containing pλ. Denote by D̃ the first component containing 0 (we know
that 0 belongs to the basin of attraction). There exists a curve γ such that

γ = E−1
λ (∂D̃) and T2πi(γ) = γ where T2πi is the translation by 2πi. Note

that γ is disjoint from ∂D̃. The left half-plane bounded by γ is mapped by
Eλ into itself and the Julia set is contained in the right half-plane Hγ . Now
Hγ plays the role of H; we divide it into the strips

P (k) = {z ∈ Hγ : (2k − 1)π − arg λ ≤ Im z < (2k + 1)π − arg λ}
where k ∈ Z and we define

Sk = {z ∈ Hγ : Im z ∈ [−π/4 − arg λ + 2kπ, π/4 − arg λ + 2kπ]}.
Then for z ∈ ⋃

k∈Z
Sk we have arg Eλ(z) ∈ [−π/4, π/4].

3. Proof of Theorem 2. We apply the methods of thermodynamic
formalism described e.g. in [11]. Assume that f : C → C is an expanding
map (there is a constant a such that |f ′| > a > 1) and that f is conformal
and open. Let X be a compact, f -invariant set. We say that X is a repeller

if there exists a neighbourhood U of X such that X =
⋂

n≥0 f−n
|U (U).

For z0 ∈ C, the topological pressure is defined as

P (α) = lim
n→∞

1

n
log Sn(α)

where

Sn(α) =
∑

z∈f−n(z0)

1

|(fn)′(z)|α

Sn(α) does not depend on the choice of the point z0 (because of uniformly
bounded distortion of the iterates of an expanding map). It is easy to see
that the function α → P (α) is strictly decreasing, convex, and P (0) > 0.
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Hence, there exists a unique α0 such that P (α0) = 0. We use the theorem
which says that if X is a conformal expanding repeller then HD(X) = α0

(see [2], [12]).
Let K be defined by

K =

{
z ∈ C : π ≤ Im z ≤ (2N + 1)π, νλ ≤ Re z ≤ log

3πN

λ

}
.

Then Eλ maps K onto an annulus which covers K, and Eλ({z : Re z =
log(3πN/λ)}) and K are disjoint. Indeed, for N sufficiently large,

Eλ

(
log

3πN

λ

)
≥

∣∣∣∣log
3πN

λ
+ (2N + 1)πi

∣∣∣∣.

From now on we make the assumption that N is so large (N depends only
on λ) that the following condition holds:

(1) qλ ≤
∣∣∣∣log

3πN

λ
+ (2N + 1)πi

∣∣∣∣ ≤ 3πN.

Thus if 1 ≤ s ≤ N then LsK ⊂ K (as before, Ls denotes the appropriate
branch of the inverse function).

Let Ki =
⋃

Ls0
◦ . . .◦Lsi

(K), where the union is over all finite sequences
(s0, . . . , si) such that 1 ≤ sj ≤ N , j = 0, . . . , i.

Proposition 3.1. Assume that N satisfies (1). Then

Cλ,N =
⋂

i≥1

Ki.

P r o o f. For 1 ≤ sj ≤ N , Lsj
maps K into itself and there exists a

constant a < 1 such that |L′
sj

(z)| < a for any z ∈ K. The diameters
of Ls0

◦ . . . ◦ Lsn
(K) shrink to 0 as n tends to infinity so the intersection⋂

n∈N
Ls0

◦. . .◦Lsn
(K) is a point which has itinerary s = (s0, s1, . . .). Denote

it by zs.
Thus for a given sequence s there exists a unique point zs such that

En
λ (zs) ∈ K for every n. We claim that zs is an accessible point in Jλ. In-

deed, the straight line segments joining the point νλ to its preimages Lsj
(νλ)

for 1 ≤ sj ≤ N have a uniformly bounded length and Eλ is expanding on
K. Therefore the curve ζs constructed in the same way as in the proof of
Proposition 2.2 converges to a point z which remains in K under iteration
of Eλ and s(z) = s. Hence z = zs.

Now we give a lower bound for the Hausdorff dimension of Cλ,N . The set
Cλ,N is a conformal expanding repeller, Cλ,N =

⋂
i≥0 Ki, so it is sufficient to

estimate the zero of the function

PN (α) = lim
n→∞

1

n
log

∑

z∈E−n
λ (qλ), s(z)∈ΣN

1

|(En
λ )′(z)|α .
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Since

SN
n+1(α)

=
N

qα
λ

∑

z1∈E−1
λ (qλ)

1

|z1|α
( ∑

z2∈E−1
λ (z1)

1

|z2|α
(

. . .

( ∑

zn∈E−1
λ (zn−1)

1

|zn|α
))

. . .

)

and for each 1 ≤ k ≤ n,

∑

zk∈E−1
λ (zk−1)

1

|zk|α
≥

N∑

k=1

1

[(2k + 1)2π2 + (log 3πN/λ)2]α/2
,

we have

PN (1) ≥ log

( N∑

k=1

1

[(2k + 1)2π2 + (log cN)2]1/2

)

≥ log

( N∑

k=[log cN ]

1√
2(2k + 1)π

)

where c = 3π/λ. Since

1√
2π

N∑

k=[log cN ]

1

(2k + 1)
≥ 1√

2π

N+1\
k=[log cN ]

dx

2x + 1
=

1

2
√

2π
log

2N + 3

2[log cN ] + 1
,

PN (1) can be large for N sufficiently large.

Fig. 4. The graph of the pressure function PN (α)

Hence for every λ ∈ (0, 1/e) there exists N0 such that for every N > N0

the Hausdorff dimension of Cλ,N is greater than 1. Now we prove that there
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exists λ0 such that for every λ ∈ (0, λ0),

HD(Cλ,N ) > 1 +
1

log(log 1/λ)
.

Assume that λ is so small that condition (1) holds for N = [1/λ] and
additionally that 3π/log cN ≤ 1.

It suffices to estimate
N∑

k=1

1

[(2k + 1)2π2 + (log cN)2]α/2
≥

N+1\
1

dx

[(2x + 1)2π2 + (log cN)2]α/2
.

Substituting

t =
(2x + 1)π

log cN
, A =

3π

log cN
, B =

(2N + 3)π

log cN

we see that the latter expression is equal to

(2)
1

2π(log cN)α−1

B\
A

dt

(t2 + 1)α/2

≥ 1

π21+α/2(log cN)α−1

B\
1

dt

tα

=
1

(α − 1)π21+α/2

[
1

(log cN)α−1
−

(
1

(2N + 3)π

)α−1]
.

Let α = 1 + 1/log(log 1/λ) and N = [1/λ]. If λ is sufficiently small then the
last term in (2) is smaller than 1/(2(log cN)α−1). Hence for N = [1/λ],

PN

(
1 +

1

log(log 1/λ)

)
≥ log

1

8π
+ log

(
log

(
log

1

λ

))
− log(log 3π/λ2)

log(log 1/λ)
.

Thus for all sufficiently small λ,

PN

(
1 +

1

log(log 1/λ)

)
≥ 0

and

HD(Cλ,N) ≥ 1 +
1

log(log 1/λ)
.

Now we prove the last inequality in Theorem 2. Let

Σ′
N = {s = (s0, s1, . . .) : ∀j, sj ∈ Z, |sj | ≤ N},

and let C′
λ,N denote the set of endpoints whose itineraries belong to Σ′

N .
We show that there exists λ0 ∈ (0, 1/e) such that for λ ∈ (0, λ0),

HD
( ⋃

N≥1

C′
λ,N

)
≤ 1 +

1

log(log(log 1/λ))
.
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We have

SN
n (1 + ε) =

∑

z∈E−n
λ (qλ), s(z)∈Σ′

N

1

|(En
λ )′(z)|1+ε

.

We can write the sum SN
n in the same form as before. For every N ∈ N and

1 ≤ l ≤ n we have

∑

zl∈E−1
λ (zl−1)

1

|zl|1+ε
≤ 2

N∑

k=1

1

[ν2
λ + (2k − 1)2π2](1+ε)/2

+
1

ν1+ε
λ

.

Hence

PN (1 + ε) ≤ log

(
2

N∑

k=1

1

[ν2
λ + (2k − 1)2π2](1+ε)/2

+
1

ν1+ε
λ

)
.

It is easy to show that

1

ν1+ε
λ

+ 2
∞∑

k=1

1

[ν2
λ + (2k − 1)2π2](1+ε)/2

≤ 1

ν1+ε
λ

+ 2

∞\
0

dx

[ν2
λ + (πx)2](1+ε)/2

≤ 1

ν1+ε
λ

+
2

πνε
λ

( 1\
0

dt

[1 + t2](1+ε)/2
+

∞\
1

dt

[1 + t2](1+ε)/2

)

≤ 1

ν1+ε
λ

+
2

πνε
λ

(
c0 +

1

ε

)
.

where

c0 =

1\
0

dt

[1 + t2](1+ε)/2
.

Since νλ > log 1/λ we see that for small λ and ε = 1/log(log νλ) we have

1

ν1+ε
λ

+
2

πνε
λ

(
c0 +

1

ε

)
≤ 1

(because the left hand side tends to 0 as λ → 0). Therefore for λ sufficiently
small

HD
( ⋃

N≥1

C′
N,λ

)
≤ 1 +

1

log(log ν)
≤ 1 +

1

log(log(log 1/λ))
.

This completes the proof of Theorem 2.

Remark. The theorem remains true for λ = ξe−ξ where ξ ∈ C, |ξ| < 1
(if we replace λ by |λ|). If |λ| < 1/e (in particular, in the second part of the
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Theorem 2 we can assume that |λ| < 1/e) then the only modification in the
proof is that we define

K =

{
z : π − arg λ ≤ Im z ≤ (2N + 1)π − arg λ, νλ ≤ Re z ≤ log

3πN

λ

}
.

We take an arbitrary point z0 ∈ K and we estimate the zero of the pressure
function starting from the point z0. If |λ| ≥ 1/e then we need to ensure
that Eλ(K) ⊃ K. Let nλ be an integer such that (2nλ−1)π ≥ |Eλ(νλ)| and
define

K =

{
z : (2nλ − 1)π − arg λ ≤ Im z ≤ (2N + 1)π − arg λ,

νλ ≤ Re z ≤ log
3πN

λ

}
.

Hence if nλ ≤ s ≤ N then Ls(K) ⊂ K. We consider the subset of Cλ,N

consisting of those endpoints which never visit the strips P (0), . . . , P (nλ−1)
under iteration of Eλ and in the same way as before we prove that for N
sufficiently large the Hausdorff dimension of this subset is greater than 1.

4. The set of endpoints for the sine family. In the proof of
Theorem 3 we use a method analogous to that for Theorem 1. We follow the
notation used in the introduction: q+

λ and q−λ are the repelling fixed points
(real), q+

λ = −q−λ . For k ∈ Z define

S+
k = {z ∈ C : Re z ≥ q+

λ , Im z ∈ (−π/2 + kπ, π/2 + kπ)},
S−

k = {z ∈ C : Re z ≤ q−λ , Im z ∈ (π/2 + kπ, 3/2π + kπ)}.
Let Sk = S+

k ∪ S−
k and S =

⋃
k∈Z

Sk.

The part of the preimage of the vertical line V + = {z ∈ C : Re z = q+
λ }

contained in Sk has two components: one in S+
k and one in S−

k . Note
that k must be even. Hence there are two branches of the inverse function
mapping the right half-plane H+ into Sk for k even; we use the same notation
Lk : H+ → Sk for both. Similarly, V − = {z ∈ C : Re z = q−λ } has two
preimages in Sk for k odd, Lk : H− → Sk.

We pack every Sk with boxes that have sides of length π:

B1
k,j = {z ∈ S+

k : q+
λ + jπ < Re z < q+

λ + (j + 1)π} for j = 0, 1, . . . ,

B−1
k,j = {z ∈ S−

k : q−λ + (j − 1)π < Re z < q−λ + jπ} for j = 0,−1, . . .

Let C be a constant such that

(3) λ(eC − e−C)/2 > C > 104/λ.

Let g(x) = ex. Note that for every x ≥ C we have Fλ(2x) > λe2x/4 > 2g(x).
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Hence for every n ∈ N,

(4) Fλ(2gn(C)) > 2gn+1(C).

We take a box Bs0
∈ {z : 2C < Re z < 3C} (i.e. B1

s0,j for some j) and
we inductively define the following collection Kn of sets:

• K0 = {Bs0
},

• Kn consists of the connected sets Kn satisfying the following conditions:

(i) there exists a box Bsn
⊂ {z : |Re z| > 2gn(C)} such that

Fn
λ (Kn) = Bsn

,

(ii) Kn ⊂ Kn−1 for some Kn−1 ∈ Kn−1 and

π|sn| ≥ ( sup
z∈F n

λ (Kn−1)

|Im z|)3/4.

Condition (4) guarantees that Kn+1 is nonempty for every n ∈ N (Fn+1
λ (Kn)

lies outside the disk of radius Fλ(2gn(C)); see Fig. 5).

Fig. 5. Fn+1
λ
(Kn) packed with boxes which belong to F

n+1
λ
(Kn+1)

If Kn+1 ∈ Kn+1 then Kn+1 = Ls0
◦ . . . ◦Lsn

(Bε
sn+1

) for some box Bε
sn+1

,
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where ε = ±1. The choice of the branches of Lsi
in the above composition

(we choose the branch going to S+
si

or to S−
si

) depends only on the parity
of the numbers si. Note that ε = 1 (resp. −1) if and only if sn is even
(resp. odd). If si−1 (for i = 1, . . . , n) is even then we choose Lsi

going
to S+

si
, otherwise we take Lsi

going to S−
si

. Since Kn+1 ⊂ H+, Ls0
goes

to S+
s0

.

Proposition 4.1. Let n ∈ N and ε ∈ {−1, 1}. Then for every box

Bε
sn+1

⊂ Fn+1
λ (Kn) ∩ {z : |Re z| ≥ 2gn+1(C)} ∩ Ssn+1

where π|sn+1| ≥ (supz∈F n+1
λ (Kn) |Im z|)3/4 the following holds:

dist(Ls0
◦ . . . ◦ Lsn

(Bε
sn+1

), Ls0
◦ . . . ◦ Lsn

(qλ + πisn+1)) ≤ 3C(3/4)n

where qλ = q+
λ if ε = 1 and qλ = q−λ if ε = −1.

P r o o f. For every box Bε
s1

⊂ Fλ(Bs0
) and for every b ∈ Bε

s1
we have

dist(Ls0
(b), Ls0

(qλ + πis1)) ≤ 3C.

Let Bε
sn+1

be a box satisfying the assumption and let b ∈ Bε
sn+1

=

Fn+1
λ (Kn+1). We prove by induction that

dist(Ls0
◦ . . . ◦ Lsn

(b), Ls0
◦ . . . ◦ Lsn

(qλ + πisn+1)) ≤ 3C(3/4)n.

We use the same notation as in the proof of Proposition 2.1:

an
n−k = Lsk

◦ . . . ◦ Lsn
(qλ),

bn
n−k = Lsk

◦ . . . ◦ Lsn
(b),

cn
n−k = Lsk

◦ . . . ◦ Lsn
(qλ + πisn+1),

where qλ = q+
λ if ε = 1 and qλ = q−λ if ε = −1.

If t = exp(bn
0 ) then t satisfies the equation t2 − 2bt/λ − 1 = 0.

Since Re b is greater than 2gn+1(C) it is easy to see that

log
|b|
3λ

≤ |Re bn
0 | ≤ log

3|b|
λ

.

Moreover,

|b| ≥ R3/4 − π where R = sup
z∈F

(n+1)
λ (Kn)

|Im z|.

Hence

|Re bn
0 −Re an

0 | = |Re bn
0 − qλ| ≥ log

|b|
3λ

− |qλ| ≥
3

4
log R − (log λ + |qλ|+ 2).

Since |b| ≤ R and π|sn+1| ≥ R3/4 we see that

|Re bn
0 − Re cn

0 | ≤ log 9
|b|

|qλ + πisn+1|
≤ log(9R1/3).
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Hence

(5) dist(bn
0 , cn

0 ) ≤ 1
2 |Re bn

0 − Re an
0 |.

Let k ≥ 0 denote the first time when dist(an
k , bn

k ) < d (here d is a fixed
constant with d > 4 + 2π), i.e.:

(6) ∀i = 0, . . . , k − 1, dist(an
i , bn

i ) ≥ d and dist(an
k , bn

k ) < d.

If k = 0 then it follows from (5) that the points a0, b0, c0 lie in some set
of diameter smaller than 2d. Therefore by the Koebe distortion theorem
(Fλ has only two critical values: λi,−λi, all of its postcritical values are
attracted to 0, and it has no finite asymptotic values) the distortion for the
iterates of Fλ is bounded. The distortion is smaller than 10/9 (because C
satisfies (3)). Hence dist(bn

n, cn
n) ≤ 3

4 dist(bn
n, an

n).

Now assume that k > 0. First we show that dist(bn
1 , cn

1 ) ≤ 2 + π. It
follows from (5) that

dist(cn
0 , bn

0 ) ≤ |cn
0 | and

1

2
≤ |bn

0 |
|cn

0 |
≤ 2.

Because |bn
0 | > 2gn(C) and |cn

0 | > gn(C), we have

|Re bn
1 − Re cn

1 | ≤ 2.

Thus for each i > 1, dist(bn
i , cn

i ) ≤ 2 + π and the condition (6) means that

(7) ∀i = 0, . . . , k − 1, dist(bn
i , cn

i ) ≤ 1
2 dist(an

i , bn
i ).

The points an
k , bn

k , cn
k are contained in a set Ak of a fixed diameter so it

is enough to show

(8) dist(bn
k , cn

k ) ≤ 2
3

dist(an
k , bn

k).

Assume that the above inequality is false. Then we can use the bounded
distortion argument to obtain a contradiction with (7):

9

10
· dist(an

k−1, b
n
k−1)

dist(bn
k−1, c

n
k−1)

≤ dist(an
k , bn

k )

dist(bn
k , cn

k )
≤ 3

2
.

Since the distortion of the iterates of Fλ on Ak is bounded by 10/9 it follows
from (8) that

dist(bn
n, cn

n) ≤ 3
4 dist(an

n, bn
n).

But an
n = cn−1

n−1, hence by induction

dist(bn
n, cn

n) ≤ 3C(3/4)n.

Another way to prove the above inequality is to apply the Koebe one-
quarter theorem to (5) (this remark is due to F. Przytycki).
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It follows from the above proof that for every n,

dist(cn
1 , cn+1

2 ) ≤ dist(cn
1 , bn

1 ) + dist(bn
1 , bn+1

2 ) + dist(bn+1
2 , cn+1

2 ) ≤ 4 + 3π.

We apply this simple observation to prove the following:

Proposition 4.2. The points from
⋂

n∈N

⋃
K∈Kn

K are accessible from

the basin of attraction along curves of universally bounded length.

P r o o f. Let z ∈ ⋂
n∈N

⋃
K∈Kn

K and let s(z) = (s0, s1, . . .) be the
itinerary of z. By Proposition 4.1, z = limn→∞ Ls0

◦. . .◦Lsn
(qλ+πisn+1) =

limn→∞ cn
n. For every n and every pair of points cn

1 , cn
2 we can find a pair

of points ξn
1 , ξn

2 such that Re ξn
1 = Re cn

1 , Re ξn
2 = Re cn+1

2 , Im ξn
1 = Im ξn

2

and the straight line segment γn joining ξn
1 and ξn

2 is contained in the basin
of attraction. For every n the length of γn is bounded by 4 + 3π and
γn ⊂ {z : |Re z| ≥ 2gn−1(C) − d}.

Now we define the curve ζs taking the preimages of segments γn in the
same way as for exponential maps (see the proof of Proposition 2.2). Since
Fλ is expanding in the region {z : |Re z| ≥ 2gn(C)− d}, the curve ζs(t) has
the unique limit point z.

Now we show that the set
⋂

n∈N

⋃
K∈Kn

K has positive Lebesgue mea-
sure.

Proposition 4.3. There exists a constant ∆ > 0 such that

vol
( ⋂

n∈N

⋃

K∈Kn

K
)
≥ ∆ vol Bs0

.

P r o o f. Let K̃n =
⋃

K∈Kn
K. Since the distortion of Fn+1

λ on Kn is
bounded, we have

vol(Kn ∩ K̃n+1)

vol(Kn)
≥ 1 − O

(
vol(Fn+1

λ (Kn \ K̃n+1))

vol(Fn+1
λ (Kn))

)
.

Let R = sup
z∈F

(n+1)
λ (Kn)

|Im z|. By the definition of the family Kn,

R >
λ

2
(e2gn(C) − e−2gn(C)) >

λ

4
e2gn(C).

We have (see Fig. 5)

vol(Fn+1
λ (Kn \ K̃n+1)) = O(Rgn+1(C)) + O(R7/4)

and therefore

vol(Fn+1
λ (Kn \ K̃n+1))

vol(Fn+1
λ (Kn))

= O

(
gn+1(C)

R

)
+ O(R−1/4)

≤ O

(
1

egn(C)
+

1

(egn(C))1/4

)
.
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We can take C large enough to guarantee that the sums
∑∞

n=1 1/gn(C)
and

∑∞
n=1 1/(gn(C))1/4 are small. Therefore there exists a constant ∆ > 0

such that

vol(
⋂

n∈N

⋃
K∈Kn

K)

vol Bs0

≥
∞∏

n=1

(
1 − O

(
1

egn(C)
+

1

(egn(C))1/4

))
≥ ∆.
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