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On z◦-ideals in C(X)

by

F. A z a r p a n a h, O. A. S. K a r a m z a d e h and
A. R e z a i A l i a b a d (Ahvaz)

Abstract. An ideal I in a commutative ring R is called a z◦-ideal if I consists of
zero divisors and for each a ∈ I the intersection of all minimal prime ideals containing a
is contained in I. We characterize topological spaces X for which z-ideals and z◦-ideals
coincide in C(X), or equivalently, the sum of any two ideals consisting entirely of zero
divisors consists entirely of zero divisors. Basically disconnected spaces, extremally dis-
connected and P-spaces are characterized in terms of z◦-ideals. Finally, we construct two
topological almost P-spaces X and Y which are not P-spaces and such that in C(X) every
prime z◦-ideal is either a minimal prime ideal or a maximal ideal and in C(Y ) there exists
a prime z◦-ideal which is neither a minimal prime ideal nor a maximal ideal.

1. Introduction. An ideal I of a commutative ring R is called a z-
ideal if whenever any two elements of R are contained in the same set of
maximal ideals and I contains one of them, then it also contains the other
one (see [5], 4A.5, for an equivalent definition). These ideals which are both
algebraic and topological objects were first introduced by Kohls (see [5])
and play a fundamental role in studying the ideal structure of C(X), the
ring of real-valued continuous functions on a completely regular Hausdorff
space X. Maximal ideals, minimal prime ideals and most of the important
ideals in C(X) are z-ideals.

In this article we investigate ideals in C(X) which we call z◦-ideals. It
turns out that the concept of z◦-ideals is very useful when dealing with ideals
in C(X) consisting of zero divisors.

This article consists of three sections. In Section 2, z◦-ideals are stud-
ied in C(X), and it is also shown that every ideal in C(X) consisting of
zero divisors is contained in a prime z◦-ideal. This immediately shows that
every maximal ideal in C(X) consisting of zero divisors is a z◦-ideal. We
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characterize topological spaces X such that z-ideals and z◦-ideals coincide
in C(X). We also investigate topological spaces X such that the sum of
any two z◦-ideals in C(X) is either C(X) or a z◦-ideal. Characterizations
of basically disconnected, extremally disconnected and P-spaces are given
in terms of z◦-ideals. Finally, we present two natural questions concerning
z◦-ideals in C(X) which are answered in Section 3.

We first recall some general information from [5]. If f ∈ C(X), then
Z(f) = {x ∈ X : f(x) = 0} is the zero set of f and Coz(f) = X − Z(f) its
cozero set . A subspace Y of X is said to be C-embedded in X if the map
that sends each f ∈ C(X) to its restriction to Y is onto. An ideal I of C(X)
is called a z-ideal if Z(f) = Z(g) and f ∈ I imply that g ∈ I. X is called
extremally (basically) disconnected if each open (cozero) set has an open
closure, or equivalently, if the interior of each closed set (zero set) is closed.
If A ⊆ X, then OA = {f ∈ C(X) : A ⊆ intZ(f)}, and if A ⊆ βX, then
OA = {f ∈ C(X) : A ⊆ intβX clβX Z(f)}, where βX is the Stone–Čech
compactification of X. We also recall that every maximal ideal M of C(X)
is of the form M = Mp = {f ∈ C(X) : p ∈ clβX Z(f)}, where p ∈ βX, and
if p ∈ X, then Mp = Mp = {f ∈ C(X) : f(p) = 0}. For each S ⊆ C(X),
by the annihilator of S we mean Ann(S) = {f ∈ C(X) : Sf = 0}. For
undefined terms and notations, the readers are referred to [5].

2. z◦-ideals and C(X). For each f ∈ R let Pf be the intersection of
all minimal prime ideals containing f ; by convention, the intersection of an
empty set of ideals is C(X). Next we give the definition of z◦-ideals.

Definition. A proper ideal I in C(X) is called a z◦-ideal if for each
f ∈ I we have Pf ⊆ I. Clearly, Pf is a z◦-ideal which is called a basic
z◦-ideal .

We begin with the following lemma.

Lemma 2.1. If f, g ∈ C(X), then intZ(f) ⊆ intZ(g) if and only if
Ann(f) ⊆ Ann(g).

P r o o f. Let intZ(f) ⊆ intZ(g) and h ∈ Ann(f); then hf = 0 im-
plies that X − Z(h) ⊆ intZ(f) ⊆ Z(g). This means that gh = 0 and
therefore h ∈ Ann(g). Conversely, let Ann(f) ⊆ Ann(g). To prove that
intZ(f) ⊆ intZ(g), it suffices to show that intZ(f) ⊆ Z(g). Suppose
x ∈ intZ(f) and x 6∈ Z(g). Since x 6∈ X − intZ(f), there is 0 6= h ∈ C(X)
with h(X− intZ(f)) = {0} and h(x) = 1. Clearly hf = 0 and hg 6= 0, which
is impossible.

The following propositions are now immediate.

Proposition 2.2. If I is a proper ideal in C(X), then the following
statements are equivalent :
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(1) I is a z◦-ideal in R.
(2) Pf = Pg and g ∈ I imply that f ∈ I.
(3) Ann(f) = Ann(g) and f ∈ I imply that g ∈ I.
(4) f ∈ I implies that Ann(Ann(f)) ⊆ I.
(5) intZ(f) = intZ(g) and f ∈ I imply that g ∈ I.
(6) If Ann(S) ⊆ Ann(g) and S ⊂ I is a finite set , then g ∈ I.

Proposition 2.3. For every f ∈ C(X) we have

Pf = {g ∈ C(X) : Ann(f) ⊆ Ann(g)}.
It would be interesting to characterize reduced rings such that conditions

(1) and (6) in Proposition 2.2 are equivalent.

Examples of z◦-ideals in C(X). (1) If S is a regular closed set in X, i.e.,
cl(intS) = S, then the ideal MS = {f ∈ C(X) : S ⊆ Z(f)} is a z◦-ideal.

(2) Ox for x ∈ X, and more generally, OA for A ⊆ βX, are z◦-ideals in
C(X).

(3) If X is a noncompact space, then the ideal CK(X) of functions with
compact support is a z◦-ideal.

(4) Every maximal ideal of C(X) consisting of zero divisors is a z◦-ideal
(see Corollary 2.6).

(5) Every minimal prime ideal in C(X) is a z◦-ideal. More generally, one
can prove that if I is a z◦-ideal in C(X) and P is a prime ideal in C(X)
minimal over I, then P is a prime z◦-ideal.

(6) Every intersection of z◦-ideals in C(X) is a z◦-ideal.

Remark 2.4. Clearly, every z◦-ideal in C(X) is a z-ideal but the converse
is not true. To see this, let I = {f ∈ C(X) : [0, 1] ∪ {2} ⊆ Z(f)}.

Theorem 2.5. If I is an ideal in C(X) consisting of zero divisors, then
I is contained in a z◦-ideal.

P r o o f. We define I0 = I and I1 =
∑
f∈I0 Ann(Ann(f)). If α is a limit

ordinal we define Iα =
⋃
β<α Iβ , where β is an ordinal, and if α = β+ 1, we

set Iα =
∑
f∈Iβ Ann(Ann(f)). Thus we get an ascending chain I0 ⊆ I1 ⊆

. . . ⊆ Iα ⊆ Iα+1 ⊆ . . . and since C(X) is a set, there exists the smallest
ordinal α such that Iα = Iγ for all γ ≥ α. We claim that Iα is a proper ideal
which is also a z◦-ideal. If Iα is a proper ideal, it certainly is a z◦-ideal, for
Iα = Iα+1 =

∑
f∈Iα Ann(Ann(f)). This means that Ann(Ann(f)) ⊆ Iα for

all f ∈ Iα and therefore, by Proposition 2.2, we are through.
Thus, it remains to be shown that Iα is a proper ideal. To see this, it

suffices to prove that for each α, Iα consists entirely of zero divisors. We
proceed by transfinite induction on α. For α = 0, the result is evident. Let
us assume it is true for all ordinals β < α and prove it for α. If α is a limit
ordinal, then Iα =

⋃
β<α Iβ and therefore Iα consists of zero divisors. Now
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let α = β+1 be a nonlimit ordinal; then Iα =
∑
f∈Iβ Ann(Ann(f)). We must

show that each element g of Iα is a zero divisor. Put g = g1 + . . .+gn, where
gi ∈ Ann(Ann(fi)), fi ∈ Iβ , i = 1, . . . , n. But by the induction hypothesis
each element of Iβ is a zero divisor. Now since every finitely generated ideal
in C(X) consisting of zero divisors has a nonzero annihilator, there exists
0 6= h ∈ Ann(f1C(X) + . . .+ fnC(X)), i.e., gh = 0.

Corollary 2.6. Every maximal ideal in C(X) consisting only of zero
divisors is a z◦-ideal.

Corollary 2.7. If I is an ideal in C(X) consisting of zero divisors,
then there is the smallest z◦-ideal containing I and also there is a maximal
z◦-ideal containing I which is also a prime z◦-ideal.

The following shows that certain z-ideals in C(X) are z◦-ideals.

Proposition 2.8. (i) Every finitely generated z-ideal (even a semiprime
ideal) in C(X) is a basic z◦-ideal generated by an idempotent.

(ii) If X is compact , then every countably generated z-ideal in C(X) is
a z◦-ideal.

P r o o f. (i) is clear.
(ii) If I is a countably generated z-ideal in C(X), where X is compact,

then by the Corollary of the main Theorem in [4], we have I =
⋂
p∈AOp,

where A is a zero set of X. But we have seen that each Op is a z◦-ideal, i.e.,
I is a z◦-ideal.

Remark 2.9. In [4], De Marco has given a direct proof that every f.g.
semiprime ideal in C(X) is generated by an idempotent.

Next we give an algebraic characterization of basically and extremally
disconnected spaces in terms of z◦-ideals.

Theorem 2.10. (i) Every basic z◦-ideal in C(X) is principal if and only
if X is basically disconnected.

(ii) Every intersection of basic z◦-ideals in C(X) is principal if and only
if X is extremally disconnected.

P r o o f. (i) Suppose every basic z◦-ideal is principal. We are to show
that intZ(f) is closed for f ∈ C(X). It suffices to prove this for f ∈ C(X)
which is a zero divisor, for if Ann(f) = (0), then intZ(f) = ∅. Now let
Pf = (g) and Ann(f) 6= (0). Then by Proposition 2.8, we have Pf = (e),
where e = e2. Hence f ∈ (e) implies that Z(e) ⊆ Z(f) and e ∈ Pf implies
that intZ(f) ⊆ intZ(e) = Z(e). Hence Z(e) = intZ(f) is closed.

Conversely, let X be a basically disconnected space and f ∈ C(X) with
Ann(f) 6= (0). Then F = intZ(f) 6= ∅ is a closed set. Now we may define
e ∈ C(X) with e(F ) = {0} and e(X−F ) = {1}. Clearly e = e2 and Pf = (e),
for we recall that Pf = {g ∈ C(X) : intZ(f) ⊆ intZ(g)}.
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(ii) Suppose every intersection of basic z◦-ideals is principal and G is an
open set in X. Then there is S ⊆ C(X) such that G =

⋃
f∈S intZ(f) (see [5],

p. 38). But by our hypothesis, there is g ∈ C(X) such that
⋂
f∈S Pf = (g).

Then (g) is a z◦-ideal, i.e., (g) is a z-ideal and therefore by Proposition 2.8,
(g) = (e), where e = e2. This shows that Z(g) = Z(e) is open.

We now claim that clG = Z(g). To see this, we note that g ∈ Pf for all
f ∈ S, i.e., intZ(f) ⊆ intZ(g) ⊆ Z(g) for all f ∈ S. Hence G ⊆ Z(g) implies
that clG ⊆ Z(g). Now suppose for contradiction that x ∈ Z(g) and x 6∈ clG.
Define h ∈ C(X) with h(clG) = {0}, h(x) = 1, i.e., intZ(f) ⊆ Z(h) for
all f ∈ S. Hence by the definition of Pf , we have h ∈ Pf for all f ∈ S.
This shows that h ∈ ⋂f∈S Pf = (g). But x ∈ Z(g) and h(x) = 1 imply that
Z(g) 6⊆ Z(h), i.e., h 6∈ (g), which is our desired contradiction.

Conversely, let X be an extremally disconnected space and let I =⋂
f∈S Pf , S ⊆ C(X). Since G = cl(

⋃
f∈S intZ(f)) is an open set, there

exists an idempotent e ∈ C(X) with e(G) = {0} and e(X − G) = {1}.
Clearly intZ(f) ⊆ intZ(e) for all f ∈ S, which means that e ∈ Pf for all
f ∈ S. Hence (e) ⊆ I and we also claim that I ⊆ (e). To show this, let g ∈ I;
then intZ(f) ⊆ intZ(g) for all f ∈ S, which means that G ⊆ Z(g). Hence
g = ge, i.e., I ⊆ (e) and therefore I = (e).

Remark 2.11. The previous result immediately shows that every prime
z◦-ideal in C(X), where X is a basically disconnected space, is a minimal
prime ideal. To see this, let P ⊆ C(X) be a prime z◦-ideal and Q ⊂ P be any
prime ideal. Then there exists f ∈ P−Q. By the proof of the previous result,
f ∈ Pf = (e) ⊆ P , where e = e2. Hence e 6∈ Q implies that 1− e ∈ Q ⊆ P ,
which is impossible.

We recall that an element f ∈ C(X) is a non-zero divisor if and only if
intZ(f) = ∅. We know that an ideal consisting entirely of zero divisors may
not be a z◦-ideal. For example, if f ∈ C(R), where f(x) = x for x ≤ 0 and
f(x) = 0 for x > 0, then the principal ideal (f) is not a z◦-ideal (not even
a z-ideal), but clearly intZ(f) 6= ∅ or Ann(f) 6= (0), i.e., every member of
(f) is a zero divisor.

The next result shows that in any space which is not a P-space there
exists an example similar to the previous one. Before stating the result, we
recall a definition and some well-known facts.

Definition. A completely regular space X is called an almost P-space if
every non-empty zero set of X has a non-empty interior. This is equivalent
to saying that every element of C(X) is either a unit or a zero divisor
(i.e., C(X) is its own classical ring of quotients), or equivalently, for every
f ∈ C(X), Z(f) is a regular closed set (see [10], [11]). Almost P-spaces were
first introduced by A. I. Veksler in [11] as a generalization of P-spaces and
were further studied by R. Levy in [10].
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Proposition 2.12. The following statements are equivalent :

(1) X is a P-space.
(2) Every ideal in C(X) consisting of zero divisors is a z◦-ideal.
(3) Every nonunit element of C(X) is a zero divisor and Pf is a principal

ideal in C(X) for all f ∈ C(X).

P r o o f. (1)⇒(2) is clear.
(2)⇒(3). Let f be a nonunit element in C(X). First we show that f is a

zero divisor. We may assume that f ≥ 0 for otherwise we consider |f | (note
that f is a zero divisor if and only if |f | is). If f(X) is finite set, then it is
clear that f is a zero divisor. Hence let f take the values 0 < a < b. Now
put {y ∈ X : f(y) ≥ a} = Z(g) and {z ∈ X : f(z) ≤ a} = Z(h) for some
g, h ∈ C(X). Clearly g 6= 0 6= h and fgh = 0 imply that Ann(fg) 6= (0).
Hence by (2), (fg) is a z◦-ideal and by Proposition 2.8, (fg) = (e), where
e2 = e. Thus Z(fg) = Z(e) is an open set. But Z(fg) = Z(f) ∪ Z(g) and
Z(f)∩Z(g) = ∅ imply that Z(f) = Z(fg)−Z(g) is open, i.e., Ann(f) 6= (0),
for we recall that Ann(f) 6= (0) if and only if intZ(f) 6= ∅. Now by (2) again,
(f) is a z◦-ideal. But by the definition of z◦-ideals, we have f ∈ Pf ⊆ (f)
and clearly (f) ⊆ Pf , i.e., Pf = (f).

(3)⇒(1). Let f ∈ C(X) be a nonunit element and Pf = (g) 6= C(X) for
some g ∈ C(X). Then by Proposition 2.8, Pf =(e), where e=e2. But f ∈(e)
implies that Z(e) ⊆ Z(f) and e ∈ Pf implies that intZ(f) ⊆ intZ(e) =
Z(e), i.e., Z(e) = intZ(f). This shows that intZ(f) 6= ∅ whenever Z(f) 6= ∅,
i.e.,X is an almost P-space. But in an almost P-space, we have cl(intZ(f)) =
Z(f), i.e., Z(f) = Z(e) is an open set, which means that X is a P-space.

We recall that the sum of two z-ideals in C(X) is either a z-ideal or C(X)
(see [5], p. 198). But the sum of two z◦-ideals in C(X) may be a proper ideal
which is not a z◦-ideal, for if S = [0,∞) and T = (−∞, 0], then MS and MT

are z◦-ideals in C(R) (see Example (1) earlier in this section). But MS+MT

is not a z◦-ideal, since the function i ∈ C(R), where i(x) = x for x ∈ R, is
in MS +MT , but clearly Ann(i) = (0). We also note that MS +MT ⊆M0,
i.e., MS +MT 6= C(X).

Next we are going to investigate topological spaces X such that the sum
of two z◦-ideals in C(X) either is a z◦-ideal or equals C(X). For a similar
result, see Theorem 4.4 in [7]. We have not been able to characterize all
topological spaces such that the sum of any two z◦-ideals is either a z◦-ideal
or C(X).

Proposition 2.13. If X is a basically disconnected space, then the sum
of two z◦-ideals is either a z◦-ideal or C(X).

P r o o f. Let I and J be two z◦-ideals in C(X) and suppose that I + J 6=
C(X). Let f ∈ I + J and intZ(f) = intZ(g) for some g ∈ C(X). We are
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to show that g ∈ I + J . We have f = k + h, where k ∈ I and h ∈ J .
We may assume that k 6= 0 6= h, for otherwise we clearly have g ∈ I + J .
Now since X is a basically disconnected space, intZ(k) and intZ(h) are
closed sets and since I and J are z◦-ideal, we have intZ(k) 6= ∅ 6= intZ(h).
Then we put A = X − intZ(k) and note that A and intZ(k) are two
disjoint open and closed sets. Thus there exists k′ ∈ C(X) with k′(A) = {1}
and k′(intZ(k)) = {0}. Therefore Z(k′) = intZ(k). Similarly, there exists
h′ ∈ C(X) with Z(h′) = intZ(h). Since I and J are z◦-ideals, we infer
that k′ ∈ I and h′ ∈ J . But Z(k′2 + h′2) = intZ(k) ∩ intZ(h) implies that
Z(k′2 + h′2) ⊆ intZ(f) = intZ(g). Now it is clear that g is a multiple of
k′2 + h′2 (see [5], 1D), i.e., g ∈ I + J .

The next result, which is an algebraic characterization of almost
P-spaces, immediately shows that the sum of z◦-ideals in C(X), where X is
an almost P-space, is either a z◦-ideal or C(X).

Theorem 2.14. The following statements are equivalent :

(1) X is an almost P-space.
(2) Every z-ideal in C(X) is a z◦-ideal.
(3) Every maximal ideal (prime z-ideal) in C(X) is a z◦-ideal.
(4) Every maximal ideal in C(X) consists entirely of zero divisors.
(5) The sum of any two ideals consisting of zero divisors either is C(X)

or consists of zero divisors.
(6) For each nonunit element f ∈ C(X), there exists a nonzero g ∈ C(X)

with Pf ⊆ Ann(g).

P r o o f. (1)⇒(2). Let I be a z-ideal and intZ(f) = intZ(g), f ∈ I. Since
X is an almost P-space, Z(f) = cl(intZ(f)) = cl(intZ(g)) = Z(g), i.e.,
f ∈ I implies that g ∈ I.

(2)⇒(3)⇒(4)⇒(5) are evident.
(5)⇒(1)⇒(6). Let f ∈ C(X) be a nonunit element; we show that intZ(f)

6= ∅. We may assume that x, y 6∈ Z(f) with x 6= y. Now we define g, h ∈
C(X) with g, h ≥ 0 and Z(g) ∩ Z(h) = ∅, where g ∈ Ox and h ∈ Oy
(see [5], Theorem 1.15 and statement (b) on page 38). Hence (fg) and (fh)
consist only of zero divisors and since (fg) + (fh) 6= C(X), by (5) we have
∅ 6= intZ(fg+ fh) = int(Z(f)∪Z(g+h)) = intZ(f). Next we observe that
(1) clearly implies (6): let 0 6= g ∈ Ann(f), i.e., f ∈ Ann(g), which means
that Pf ⊆ Ann(g).

(6)⇒(1). Let Pf ⊆ Ann(g), where f is a nonunit element of C(X) and
0 6= g ∈ C(X). Now fg = 0 implies that X − Z(g) ⊆ intZ(f) 6= ∅. This
means that X is an almost P-space.

It is easy to see that if every prime z◦-ideal in C(X) is maximal, then X
is a P-space. This shows that for a non-P-space which is an almost P-space,
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there exists a prime z◦-ideal in C(X) which is not a maximal ideal. We also
note that by Theorem 2.14, for an almost P-space X which is not a P-space,
there exists a prime z◦-ideal which is not a minimal prime ideal. Thus, the
following questions are now in order.

Question 1. Does there exist an almost P-space X which is not a
P-space and has the property that every prime z◦-ideal in C(X) is either a
minimal prime ideal or a maximal ideal?

Question 2. Does there exist an almost P-space X with a prime z◦-ideal
in C(X) which is neither a minimal prime ideal nor a maximal ideal?

It seems that the spaces we are after are rare animals indeed, but we are
going to catch them in the next section.

3. Some peculiar almost P-spaces which are not P-spaces. We
conclude this article with catching the rare animals we are after.

First we recall some well-known facts. We observe that if F and E are
two distinct maximal chains of prime ideals in C(R) such that E ∩ F is an
infinite set (see [5], 14I.8), then P =

⋂
F and Q =

⋂
E are minimal prime

ideals and P ∈ F and Q ∈ E. This shows that P +Q ∈ F ∩ E. To see this,
we first observe that P 6= Q, for otherwise E ∪ F becomes a chain, which
is impossible. Now if P ⊇ A for some A ∈ E ∩ F , then P = A = Q, which
is absurd. Hence we must have P ⊆ A for all A ∈ E ∩ F , i.e., P + Q ⊆ A
for all A ∈ E ∩ F . This means that P +Q 6= C(X) is also a z-ideal (see [5],
p. 198). But a z-ideal containing a prime ideal is a prime ideal, i.e., P +Q
is a prime ideal. This shows that C(R) contains a prime z-ideal (namely,
P +Q) which is neither a maximal nor a minimal prime ideal.

Now we construct an almost P-space Y which is not a P-space but there
exists an epimorphism φ : C(Y )→ C(R). Then φ−1(P+Q) is a prime z-ideal
(i.e., a prime z◦-ideal, by Theorem 2.14) in C(Y ) which is neither a maximal
nor a minimal prime ideal. Of course, since φ is onto, the contractions of
z-ideals in C(R) are z-ideals in C(Y ). Thus, once we construct Y , we will
have an affirmative answer to our second question. In what follows, we con-
struct the space Y .

Let D be an uncountable discrete space and let X = D ∪ {a}, a 6∈ D,
be the one-point compactification of D. Clearly X is an almost P-space.
Now put Y = X × R, and define a topology on Y as follows. Every basic
neighborhood of (a, r) ∈ Y , r ∈ R, is of the form G × H, where G is an
open set in X containing a and H ⊆ R is an open set containing r, and let
the other points of Y be isolated, i.e., each (x, r) with x 6= a and r ∈ R is
isolated. Clearly Y is a locally compact space, i.e., Y is completely regular
Hausdorff. We also observe that Y is an almost P-space, for if ∅ 6= Z ∈ Z(Y )
and (a, r) 6∈ Z for all r ∈ R, then Z is an open set. Hence let (a, r) ∈ Z for
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some r ∈ R. Now if we put X ′ = X × {r}, then X ′ is homeomorphic to X,
i.e., X ′ is an almost P-space, and therefore intX′(Z∩X ′) 6= ∅. In other words
there is x 6= a with (x, r) ∈ Z ∩ X ′, which means that (x, r) ∈ intZ 6= ∅.
Thus, Y is an almost P-space and it is clear that Y is not a P-space. We
also note that A = {a} × R, which is homeomorphic to R, is C-embedded
in Y , for if f : {a} × R → R is a continuous map we define f : Y → R
by f(x, r) = f(a, r) for x ∈ X. Hence R is C-embedded in Y and the map
φ : C(Y )→ C(R) defined by φ(g) = g|R is onto, and now we are through.

Finally, we are going to give our affirmative answer to the first question.
Again let us recall some well-known facts. Let Y and Z be arbitrary topolog-
ical spaces and let D = Y +Z denote the disjoint union of Y and Z. Suppose
that A is the subspace of D consisting of two points y0 ∈ Y and z0 ∈ Z.
Then the quotient space obtained from D by collapsing A = {y0, z0} to a
point is called the one-point union of Y and Z with base points y0 ∈ Y and
z0 ∈ Z, denoted by Y ∨Z. We can consider Y and Z as subspaces of Y ∨Z
in the obvious way, and Y ∨ Z can be considered as a subspace of Y × Z
with the product topology by means of the embedding i : Y ∨ Z → Y × Z
defined by i(y) = (y, z0) if y ∈ Y and i(z) = (y0, z) if z ∈ Z. Note that
i(Y )∩ i(Z) = {y0, z0}. Hence without losing generality, we may assume that
Y ∨Z = Y ∪Z, where Y ∩Z = {a} and Y −{a} and Z −{a} are open sets
in Y ∨ Z. Clearly if Y and Z are completely regular Hausdorff spaces, then
so is X = Y ∨ Z. We also note that Y and Z are C-embedded in X, for if
f ∈ C(Y ), then we define f ∈ C(X) by f |Y = f and f(x) = f(a) for x ∈ Z,
and similarly for Z.

In what follows we always have X = Y ∨Z, i.e., X = Y ∪Z, Y ∩Z = {a}.
We now have the following facts.

(1) If X = Y ∪ Z and Y ∩ Z = {a}, then we define φ1 : C(X) → C(Y )
by φ1(f) = f |Y and φ2 : C(X) → C(Z) by φ2(f) = f |Z . It is easy to see
that

Oa(X) = φ−1
1 (Oa(Y )) ∩ φ−1

2 (Oa(Z)),

where for any space W and a ∈W , Oa(W ) = {f ∈ C(W ) : a ∈ intW Z(f)}.
When we write φi, i = 1, 2, we always mean these maps.

(2) βX = βY ∪ βZ and βY ∩ βZ = {a}.
(3) If a 6= p ∈ βX, then either

C(X)/Op(X) ∼= C(Y )/Op(Y ) or C(X)/Op(X) ∼= C(Z)/Op(Z).

To see this, note that p ∈ βX implies p ∈ βY or p ∈ βZ. Let p ∈ βY , and
define θ : C(X)→ C(Y )/Op(Y ) by θ(f) = φ1(f) +Op(Y ). Clearly θ is onto
and ker θ = Op(X).

(4) As we have noted in the previous fact, if a 6= p ∈ βY , then there is
a one-one correspondence between prime ideals in C(X) containing Op(X),
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and prime ideals in C(Y ) containing Op(Y ), and there is a similar correspon-
dence if p ∈ βZ. We also observe that if P is an ideal in C(X) containing
Oa(X), then P is a prime ideal if and only if P = φ−1

1 (Q1) or P = φ−1
2 (Q2),

where Q1 and Q2 are prime ideals in C(Y ) and C(Z) containing Oa(Y )
and Oa(Z) respectively. To see this, we recall that Oa(X) = φ−1

1 (Oa(Y )) ∩
φ−1

2 (Oa(Z)) ⊆ P and if P is a prime ideal, then either φ−1
1 (Oa(Y )) ⊆ P or

φ−1
2 (Oa(Z)) ⊆ P . Let φ−1

1 (Oa(Y )) ⊆ P , i.e., φ1(P ) = Q1 is a prime ideal
containing Oa(Y ), for kerφ1 ⊆ P and φ1 is onto. It is clear that if P is a
minimal prime ideal which is not maximal, then so is Q1.

(5) Let X be any topological space, p ∈ βX and Op(X) ⊆ I 6= Mp(X),
where I is an ideal which is not a z◦-ideal. Then there are f ∈ I and
g ∈ Mp(X) − I with intZ(f) ⊆ intZ(g). To see this, we use the fact
that there are f1 ∈ I and h ∈ C(X) with intZ(f1) ⊆ intZ(h) and h 6∈
I. If h ∈ Mp(X), then we are through. Hence let p 6∈ clβX Z(h); then
there is k ∈ Op(X) with Z(k) ∩ Z(h) = ∅. Clearly k2 + f2

1 ∈ I and
intZ(k2 + f2

1 ) = intZ(k) ∩ intZ(f1) ⊆ int(Z(h) ∩ Z(k)) = ∅. Hence it
suffices to take f = k2 + f2

1 and let g be any element of Mp(X)− I.

Now we are ready to give our promised example.
Let Y be a nondiscrete P-space and y0 be a nonisolated point in Y .

Take Z = Σ = N ∪ {σ}, where σ 6∈ N, and let F be a free ultrafilter on N.
All points of N are isolated and the neighborhoods of σ are sets G ∪ {σ}
for G ∈ F (see [5], 4M for some interesting properties of Z). Since Z is
extremally disconnected, by Remark 2.11 every prime z◦-ideal in C(Z) is
a minimal prime ideal. We also note that for each p 6= σ in βZ, Mp(Z)
is a minimal prime ideal and Mp(Z) = Op(Z). Now let X = Y ∨ Z be the
one-point union of Y and Z with base points y0 ∈ Y and z0 = σ ∈ Z. Hence
we may assume that X = Y ∪ Z, Y ∩ Z = {a}.

Now we claim that X is an almost P-space such that every prime z◦-ideal
is either a minimal prime ideal or a maximal ideal. Hence let f ∈ C(X) be
nonunit. Then since a ∈ Y is a nonisolated point and Y is a P-space, we have
{a} 6= Z(f), i.e., there is x ∈ X with a 6= x ∈ Z(f). Now if x ∈ Z, then x 6= σ
and therefore {x} is open in Z, i.e., {x} is open in X. If x ∈ Y , then x 6= y0

and x ∈ intZ(f ′), where f ′ = f |Y . Clearly intZ(f ′) ∩ (Y − {a}) ⊆ intZ(f)
and therefore in any case we have intZ(f) 6= ∅, i.e., X is an almost P-space
and clearly not a P-space, for Z = Σ is not a P-space.

Finally, assume that P is a nonmaximal prime z◦-ideal in C(X). We then
claim that P is a minimal prime ideal. By what we have already said in facts
(1)–(5), P = φ1

−1(Q1) or P = φ2
−1(Q2), where Q1 and Q2 are prime ideals

in C(Y ) and C(Z) respectively. Since P is not maximal, P 6= φ1
−1(Q1),

for otherwise Q1 is maximal (note that Y is a P-space), and therefore P
is a maximal ideal, which is absurd. Hence P = φ2

−1(Q2), i.e., Q2 is a
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prime ideal which is not maximal. Now since Z is extremally disconnected,
it is basically disconnected and therefore it suffices to show that φ2(P ) is
a z◦-ideal, for then, by Remark 2.11, φ2(P ) is a minimal prime ideal and
therefore P is a minimal prime ideal.

Assume for contradiction that φ2(P ) is not a z◦-ideal. It is clear that
Ox = Mx in C(Z) for x 6= σ and Oa ⊆ φ2(P ) 6= Ma. But by fact (5),
there are f ∈ φ2(P ) and g ∈ Ma(Z) − φ2(P ) with intZ Z(f) ⊆ intZ Z(g).
Now we have intX Z(f) ⊆ intX Z(g), where f |Z = f and g|Z = g and
also f |Y = 0 = g|Y . But f ∈ φ−1

2 (φ2(P )) = P , which is impossible, for P
is a z◦-ideal, and intZ(f) ⊆ intZ(g) and f ∈ P imply that g ∈ P , i.e.,
g ∈ φ2(P ), which is absurd.
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