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On Whitney pairs
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Abstract. A simple arc φ is said to be a Whitney arc if there exists a non-constant
function f such that

lim
x→x0

|f(x)− f(x0)|
|φ(x)− φ(x0)| = 0

for every x0. G. Petruska raised the question whether there exists a simple arc φ for which
every subarc is a Whitney arc, but for which there is no parametrization satisfying

lim
t→t0

|t− t0|
|φ(t)− φ(t0)| = 0.

We answer this question partially, and study the structural properties of possible mono-
tone, strictly monotone and V BG∗ functions f and associated Whitney arcs.

1. Introduction. A simple arc φ : [0, 1] → Rn is said to be a Whitney
arc if there exists a non-constant function f such that

(∗) lim
x→x0

|f(x)− f(x0)|
|φ(x)− φ(x0)| = 0

for every x0 ∈ [0, 1].
Several constructions of Whitney arcs are known ([5]). In particular, in

[3] the authors construct a Whitney arc φ : [0, 1]→ [0, 1]2 such that

(∗∗) lim
t→t0

|t− t0|
|φ(t)− φ(t0)| = 0

for every t0 ∈ [0, 1]. G. Petruska raised the question whether there exists
a simple arc for which every subarc is a Whitney arc, but for which there
is no parametrization satisfying (∗∗). We show that for every n > 2 there
exists a simple arc φ : [0, 1] → [0, 1]n with the required property, however,
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the planar case remains open. We also study the structural properties of
possible Whitney arcs.

Definition 1. A simple arc φ : [0, 1]→ Rn and a non-constant function
f : [0, 1] → R are said to form an (n-dimensional) Whitney pair (φ, f) if
they satisfy (∗). That is, φ is a Whitney arc iff there exists an f for which
(φ, f) is a Whitney pair. Analogously, we say that f is an (n-dimensional)
Whitney function if there exists a φ : [0, 1] → Rn for which (φ, f) is a
Whitney pair.

It is immediate from the definition that any n-dimensional Whitney pair
is an m-dimensional Whitney pair for every m ≥ n. Therefore the existence
of a simple arc φ : [0, 1] → R2 satisfying (∗∗) means that id[0,1] is an n-
dimensional Whitney function for every n ≥ 2. This implies immediately
that every continuous function f is an n-dimensional Whitney function for
n ≥ 3. Indeed, let (φ0, id[0,1]) be a 2-dimensional Whitney pair, and for a
given continuous function f define φ : [0, 1]→ R3 ⊂ Rn as follows:

φ(x) = (φ0(f(x)), x) ∈ R2+1,

where the third coordinate of the three-dimensional point φ(x) is indicated
following the two-dimensional point φ0(f(x)). Now, φ is a simple arc, and
|φ(x)−φ(x0)| ≥ |φ0(f(x))−φ0(f(x0))|. If f is constant in a neighbourhood
of x0 then (∗) obviously holds; in the other case we have

lim
x→x0

|f(x)− f(x0)|
|φ(x)− φ(x0)| ≤ lim

x→x0, f(x)6=f(x0)

|f(x)− f(x0)|
|φ0(f(x))− φ0(f(x0))|

= lim
t→t0=f(x0)

|t− t0|
|φ0(t)− φ0(t0)| = 0.

The construction of injective arcs on the plane is much more difficult, and
the characterization of the 2-dimensional Whitney functions is only partly
solved. It is easy to see that if f is a Whitney function and h : [0, 1]→ [0, 1]
is a homeomorphism, then f ◦ h is a Whitney function as well (since the
composition with h means only a re-parametrization of the curve φ). Thus,
since id[0,1] is a 2-dimensional Whitney function, every strictly monotone
continuous function f : [0, 1] → R is a 2-dimensional Whitney function.
Now, it is almost immediate that every monotone continuous function is a
2-dimensional Whitney function, and hence piecewise monotone continuous
functions are 2-dimensional Whitney functions as well.

The Whitney property easily extends to continuous functions f of
bounded variation as follows. Let f = g1−g2, where the functions g1 and g2

are increasing, and let h = g1+g2. Since h is monotone, we have a simple arc
φ : [0, 1] → R2 such that (∗) holds for h and φ. Now, for every x, y ∈ [0, 1]
we have |f(x)− f(y)| ≤ |h(x)− h(y)|, thus (∗) holds for f and φ as well.
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As a generalization of this remark we will show that every continuous
V BG∗ function is a 2-dimensional Whitney function. (Property V BG∗ is
discussed in detail in [4] or [2]. The only fact that is needed here is a theorem
of R. Fleissner and J. Foran, saying that every continuous V BG∗ function
can be transformed into a differentiable function by an inner homeomor-
phism (see [1], [2])).

Definition 2. A Whitney pair (φ, f) is said to be monotone, strictly
monotone, or V BG∗ if f is monotone, strictly monotone, or V BG∗, respec-
tively. A Whitney arc φ is called monotone, strictly monotone, or V BG∗ if
there exists a monotone, strictly monotone, or V BG∗ function f for which
(φ, f) is a Whitney pair.

Remarks. (i) We remark that the “monotone”, “strictly monotone”
and “V BG∗” attributes refer to the Whitney function and not to the
Whitney arc. Therefore, for example, a V BG∗ Whitney arc φ : [0, 1]→ Rn
is not necessarily a V BG∗ arc in Rn. On the other hand, “n-dimensional”
refers to the arc, all the n-dimensional Whitney functions are from R
to R.

(ii) Every strictly monotone Whitney arc is obviously a monotone Whit-
ney arc, and likewise, every monotone Whitney arc is V BG∗. We will study
the possible reverse implications under suitable assumptions.

(iii) If (φ, f) is a Whitney pair and h is a homeomorphism of [0, 1] onto
itself, then (φ◦h, f ◦h) is again a Whitney pair. By the theorem of R. Fleiss-
ner and J. Foran mentioned above, every continuous V BG∗ function can
be transformed into a differentiable function by an inner homeomorphism.
Therefore in order to prove that every continuous V BG∗ function is a 2-
dimensional Whitney function it is enough to show that every differentiable
function is a 2-dimensional Whitney function.

(iv) φ is a strictly monotone Whitney arc if and only if it admits a
parametrization satisfying (∗∗).

2. Monotone, strictly monotone and V BG∗ Whitney pairs

Theorem 1. Every continuous V BG∗ function f is an n-dimensional
Whitney function for every n ≥ 2. Moreover , for every given continuous
V BG∗ function f and strictly monotone Whitney arc φ there is a homeo-
morphism h of [0, 1] for which (φ ◦ h, f) is a Whitney pair.

P r o o f. Let φ : [0, 1] → Rn be a strictly monotone Whitney arc. We
can suppose that (∗∗) holds and we choose a homeomorphism h such that
f ◦ h−1 is differentiable (see remark (iii) above). Now, for every x0 we have
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lim
x→x0

|f(h−1(x))− f(h−1(x0))|
|φ(x)− φ(x0)|

= lim
x→x0

|f(h−1(x))− f(h−1(x0))|
|x− x0| · |x− x0|

|φ(x)− φ(x0)| = |(f ◦ h−1)′(x0)| · 0 = 0.

Putting x = h(y) we have

lim
y→y0

|f(y)− f(y0)|
|φ(h(y))− φ(h(y0))| = 0,

thus (φ ◦ h, f) is a Whitney pair, as required.

We shall prove that a 2-dimensional Whitney function is not necessarily
V BG∗. But the following problems remain open:

Problem 1. Does there exist a continuous function which is not a 2-
dimensional Whitney function?

Problem 2. Does there exist a non-V BG∗ Whitney arc?

Problem 3. Does there exist an n-dimensional Whitney arc φ such that
for every n-dimensional Whitney function there is a homeomorphism h of
[0, 1] for which (φ ◦ h, f) is a Whitney pair?

Theorem 2. There exists a non-V BG∗ 2-dimensional Whitney function.

P r o o f. In [3] the authors construct a simple arc φ : [0, 1] → [0, 1]2 for
which 3/7n ≤ |t1 − t2| ≤ 3/7n−1 implies |φ(t1) − φ(t2)| ≥ 1/5n. We choose
an arbitrary number 1 < c < 7/5, and a small number εm for every m.
Let fm(t) : [0, 1] → [0, εm] be defined as the distance of the number cmt
and the sequence {0, 2εm, 4εm, . . .}. It is clear that if the numbers εm are
small enough then the function f =

∑
m fm exists and f is not of bounded

variation on any subinterval of [0, 1], hence f is not V BG∗. We can also
assume that εm < 3/7m for every m. Now, 3/7n ≤ |t1 − t2| ≤ 3/7n−1

implies

|f(t2)− f(t1)|
|φ(t2)− φ(t1)| ≤

∑
m |fm(t2)− fm(t1)|
|t2 − t1| · |t2 − t1|

|φ(t2)− φ(t1)| ,

where∑
m |fm(t2)− fm(t1)|
|t2 − t1| ≤

∑n
m=1 |fm(t2)− fm(t1)|

|t2 − t1| +
εn+1 + εn+2 + . . .

|t2 − t1|

≤ c+ c2 + c3 + . . .+ cn +
3

7n+1 + 3
7n+2 + . . .
3

7n
< ncn

if n is large enough, and

|t2 − t1|
|φ(t2)− φ(t1)| ≤

3
7n−1 · 5n = 21

(
5
7

)n
.
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Thus
|f(t2)− f(t1)|
|φ(t2)− φ(t1)| ≤ 21n

(
5c
7

)n
.

Since c < 7/5, we have

lim
t2→t1

|f(t2)− f(t1)|
|φ(t2)− φ(t1)| = 0,

as required.

It will be useful to study functions defined only on a closed subset of the
interval [0, 1]. Clearly, Theorem 1 remains true if rather than property (∗),

(∗∗∗) lim
x∈A, x→x0

|f(x)− f(x0)|
|φ(x)− φ(x0)| = 0 ∀x0 ∈ A

is to be satisfied, where φ : [0, 1] → Rn is a strictly monotone Whitney arc
and f is defined on a given closed subset A ⊂ [0, 1].

For functions defined only on the closed subset A ⊂ [0, 1] it makes sense
to study also the 1-dimensional “arcs”. We characterize the “1-dimensional
Whitney functions on A”.

Theorem 3. For every function f : A→ R the following two properties
are equivalent :

(i) there exists a homeomorphism φ : [0, 1]→ [0, 1] such that (∗∗∗) holds;
(ii) f is continuous, V BG∗ and λ(f(A)) = 0.

P r o o f. Suppose f is continuous, V BG∗ and λ(f(A)) = 0.
Since f is continuous and V BG∗, there is a homeomorphism h such that

f ◦ h−1 is differentiable on h(A). Since f(A) = (f ◦ h−1)(h(A)) we can
suppose that f is differentiable.

If f is differentiable and λ(f(A)) = 0, then f ′(x) = 0 for a.e. x ∈ A.
Let B = {x ∈ A : f ′(x) 6= 0}. Since λ(B) = 0, there are open intervals
I1, I2, . . . covering the interval [0, 1] such that every x ∈ B is contained in
infinitely many intervals and

∑
n |In| < ∞. Let m(x) be the number of

intervals covering x, and let M =
T1
0m(x) dx. It is immediate that M =∑

n |In ∩ [0, 1]| <∞. We define φ(x) = M−1
Tx
0 m(t) dt.

For every x, y ∈ A we have |φ(y)−φ(x)| ≥M−1|y−x| (because m(x) ≥ 1
for every x ∈ [0, 1]), thus

∣∣∣∣
f(y)− f(x)

y − x

∣∣∣∣ ≥
1
M
·
∣∣∣∣
f(y)− f(x)
φ(y)− φ(x)

∣∣∣∣.

From this it is immediate that (∗∗∗) holds for every x0 ∈ A \ B. Consider
a point x0 ∈ B with |f ′(x0)| = c > 0. The intervals In are open, and x0 is
contained in infinitely many intervals, thus for a fixed N there is a positive
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d such that m(x) > N for every x ∈ [x0 − d, x0 + d]. We can suppose that d
is so small that x ∈ [x0 − d, x0 + d] implies∣∣∣∣

f(x)− f(x0)
x− x0

∣∣∣∣ ≤ 2c.

Now,

|φ(x)− φ(x0)| ≥ N

M
|(x− x0)| ≥ N

M
· |f(x)− f(x0)|

2c
,

and hence ∣∣∣∣
f(x)− f(x0)
φ(x)− φ(x0)

∣∣∣∣ ≤
2Mc

N

for every N if |x− x0| is small enough.
The other direction is clear. Indeed, f ◦ φ−1 is differentiable and we

have (f ◦ φ−1)′(x) = 0 on φ(A), thus f ◦ φ−1 is continuous, V BG∗, and
0 = λ(f ◦ φ−1(φ(A))) = λ(f(A)). Finally, since φ−1 is a homeomorphism,
the function f is continuous and V BG∗, as required.

We know that every monotone Whitney arc is V BG∗. Now we prove the
reverse implication.

Theorem 4. Every V BG∗ Whitney arc is also a monotone Whitney arc.

P r o o f. Let φ : [0, 1] → Rn be a V BG∗ Whitney arc with the V BG∗
function f . Without loss of generality we suppose that f is differentiable.

Let Z = {x ∈ [0, 1] : f ′(x) = 0}. Since f is a non-constant continuous
function on [0, 1], we have λ(Z) < 1. Take an open covering set Z ⊂ G with
λ(G) < 1. Let χ(x) be the characteristic function of [0, 1] \G, and defining
g(x) =

Tx
0 χ(t) dt, for the upper derivative we have g′(x) ≤ 1 for every x.

Now we show that (φ, g) is a Whitney pair, i.e. (∗) holds for g and φ. If
x0 ∈ G, then there is a neighbourhood of x0 where g is a constant, thus (∗)
is trivial. If x0 6∈ G, then as 0 ≤ g′(x0) ≤ 1 and f ′(x0) 6= 0 we obtain

lim
x→x0

|g(x)− g(x0)|
|φ(x)− φ(x0)| = lim

x→x0

|g(x)− g(x0)|
|x− x0| · |x− x0|

|f(x)− f(x0)| ·
|f(x)− f(x0)|
|φ(x)−φ(x0)|

≤ 1 · 1
|f ′(x0)| · 0 = 0,

as stated. It is obvious that g is continuous, monotone, and since λ(G) < 1
it is not a constant.

3. Structural properties. In this section we study the structure of the
possible monotone but not strictly monotone Whitney arcs.

Lemma 1. Let φ : [0, 1]→ Rn be a simple arc, and suppose that for every
interval I ⊂ [0, 1] there is a function f = fI such that
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(i) the derivative f ′ exists and is non-zero on a subset of I of positive
measure: λ({x ∈ I : ∃f ′(x) 6= 0}) > 0, and

(ii) (φ|I , fI) is a Whitney pair.

Let

R =
{
x0 ∈ [0, 1] : lim sup

x→x0

|x− x0|
|φ(x)− φ(x0)| > 0

}
.

If R is of first category , then φ is a strictly monotone Whitney arc.

P r o o f. Let R =
⋃
nAn, where the sets An are nowhere dense.

Since (φ|I , fI) is a Whitney pair, the sets {x ∈ I : ∃f ′I(x) 6= 0} and R
are disjoint. Thus, by (i) we have λ(I \ R) > 0 for every subinterval I. We
define a series of monotone functions fn such that the sum of the series is a
strictly monotone function satisfying (∗).

We arrange the rational intervals (i.e. the intervals [a, b] where a, b ∈ Q)
in a sequence I1 = [0, 1], I2, . . . , and put f0 = 0. Suppose that the func-
tions f0, f1, . . . , fn−1 have been defined. In the nth step we consider the nth
rational interval In.

0 1

[ [ ] ]

an a
∗

n b
∗

n bn

( ) ( )

0

dn

2n
λ(J∗∗

n )

��
��

��

Fig. 1. Graph of fn

We choose a subinterval Jn = [an, bn] ⊂ In disjoint from A1, . . . , An.
Denote the middle 1/3 of Jn by J∗n = [a∗n, b

∗
n], and choose an open cover

G ⊃ R ∩ J∗n such that λ(G) < |J∗n|. Let J∗∗n = J∗n \ G. Let dn denote
the minimum of the distances between the subarcs φ([0, an]), φ([a∗n, 1]) and
φ([0, b∗n]), φ([bn, 1]), and define

fn(x) =
dn
2n
λ([0, x] ∩ J∗∗n ) (x ∈ [0, 1])

(see Figure 1 above). Now, fn is a non-constant monotone function such
that for every x, y we have

(1)
|fn(x)− fn(y)|
|x− y| ≤ dn

2n
≤ diamφ([0, 1])

2n
.

Thus fn satisfies (∗), because for x0 ∈ R there is a neighbourhood where fn
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is constant, and for x0 6∈ R we have

lim sup
x→x0

|fn(x)− fn(x0)|
|φ(x)− φ(x0)| = lim sup

x→x0

|fn(x)− fn(x0)|
|x− x0| · |x− x0|

|φ(x)− φ(x0)|

≤ diamφ([0, 1])
2n

· 0 = 0.

Now we put f =
∑
n fn. It is clear that f is strictly monotone. In order

to verify (∗) we consider first x0 ∈ R. For such points there is an N such
that n > N implies x0 6∈ Jn. Put m ≥ N . If x0 does not belong to Jn
then x0 ∈ [0, an] or x0 ∈ [bn, 1]. It is easy to see from the definition that
fn is constant on the intervals [0, a∗n] and [b∗n, 1], thus fn(x) = fn(x0) or
x0 ∈ [0, an], x ∈ [a∗n, 1], or x0 ∈ [bn, 1], x ∈ [0, b∗n]. In the last two cases, by
the choice of dn we have

|fn(x)− fn(x0)|
|φ(x)− φ(x0)| =

1
2n
· λ([x0, x] ∩ J∗∗n ) · dn

|φ(x)− φ(x0)| ≤
1
2n
· 1 · 1,

and hence

|∑∞k=m+1 fk(x)−∑∞k=m+1 fk(x0)|
|φ(x)− φ(x0)| ≤

∞∑

k=m+1

|fk(x)− fk(x0)|
|φ(x)− φ(x0)| ≤

1
2m

.

Since
∑m
k=1 fk is a Whitney function, (∗) follows.

On the other hand, at a point x0 6∈ R, that is, if

lim sup
x→x0

|x− x0|
|φ(x)− φ(x0)| = 0,

then the finite upper derivative of f (see (1)) guarantees (∗).

Corollary 1. If φ is a Whitney arc and for a dense sequence of pairwise
disjoint closed subintervals Iα ⊂ [0, 1], φ|Iα is a strictly monotone Whitney
arc, then so is φ itself.

P r o o f. Indeed, let the union
⋃
n In of pairwise disjoint closed inter-

vals be everywhere dense, and assume that there exists a strictly monotone
function fn : [0, 1]→ R satisfying (∗) on In. Re-parametrizing the intervals
In = [an, bn] we can suppose that every fn is linear. Indeed, let Tn be the
linear bijection

[an, bn] Tn−→ [fn(an), fn(bn)],

and put φ∗(t) = φ(f−1
n (Tnt)) for every t ∈ [an, bn] and φ∗(t) = φ(t) for every

t 6∈ ⋃n In. Then (∗) obviously holds for every x0 ∈ int In, φ∗ and f = id[0,1]:
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putting u = f−1
n (Tnx) we have

lim
x→x0

|x− x0|
|φ∗(x)− φ∗(x0)| = lim

x→x0

|x− x0|
|φ(f−1

n (Tnx))− φ(f−1
n (Tnx0))|

= lim
u→u0

|T−1
n fn(u)− T−1

n fn(u0)|
|φ(u)− φ(u0)|

= lim
u→u0

bn − an
f(bn)− f(an)

· |fn(u)− fn(u0)|
|φ(u)− φ(u0)| = 0.

Since f ′(x) = 1, the set

R =
{
x0 ∈ [0, 1] : lim sup

x→x0

|x− x0|
|φ∗(x)− φ∗(x0)| > 0

}

is disjoint from the interior of our intervals In, thus it is nowhere dense.
Finally, for every subinterval I = [a, b] ⊂ [0, 1] there exists an interval In =
[an, bn] for which λ(In∩I) > 0, and for the function fI defined by fI(x) = an
if x ∈ [0, an], fI(x) = x if x ∈ [an, bn] = In, fI(x) = bn if x ∈ [bn, 1]
we find that (φ∗|I , fI) is a Whitney pair and f ′I(x) = 1 for every x ∈
int(In ∩ I). Lemma 1 shows that φ∗ is strictly monotone, and then φ is
strictly monotone, as stated.

This means that if a simple arc φ : [0, 1]→ Rn is not a strictly monotone
Whitney arc, then it has a subarc which has no strictly monotone subarc.
Thus, in order to study monotone but not strictly monotone Whitney arcs
it is enough to consider Whitney arcs having no strictly monotone subarc.

Definition 3. Given a simple arc φ : [0, 1]→ Rn and a nowhere dense
closed subset H ⊂ [0, 1] we say that a non-constant monotone function f is
associated with H if

(i) (φ, f) is a Whitney pair;
(ii) f is constant on every interval contiguous to H;

(iii) f is φ-Lipschitz , that is, the set
{ |f(x)− f(y)|
|φ(x)− φ(y)| : x, y ∈ [0, 1], x 6= y

}

is bounded.

Lemma 2. Given a simple arc φ, every nowhere dense closed set P ⊂ [0, 1]
admits a disjoint decomposition P = A ∪⋃nBn such that

(i) A is a closed set , and for every portion A ∩ I there is a function f
associated with cl(A ∩ I);

(ii) Bn ⊂ [an, bn] and the intervals [an, bn] are non-overlapping ;
(iii) there is no monotone function f associated with the closure of Bn.
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P r o o f. Let B∗ be the set of points x ∈ P such that for every function
f associated with P , f is constant on a neighbourhood of x. Let B be the
relative interior of B∗ in P , and let Bn denote the relative components of B.
(Thus every Bn is a portion of P , B =

⋃
nBn, and (ii) holds.)

By the definition of B∗, a function f associated with P could only have
countably many different values on B∗. Thus if it is constant on the intervals
contiguous to the closure of some Bn ⊂ B∗ as well, then since Bn is a portion
of P we see that it is a continuous function of countable range, thus it must
be constant on the whole interval [0, 1]. So (iii) is proved.

Let A = P \ B. If for an interval I = (a, b) the intersection A ∩ I
is a portion of A, then there is a point x ∈ I \ B, and then in a small
neighbourhood there is a point y ∈ I \B∗. Thus, there exists an f associated
with P which is not constant on I. We can suppose that f is constant on the
intervals of [0, 1] \ I. It is enough to show that f is constant on the intervals
contiguous to clA in I.

Since f is monotone, we have f(t) = f(a) + λ(f([a, t] ∩ A)) +
∑
n fn(t)

for every t ∈ I, where fn(t) = λ(f([a, t] ∩ Bn)). Since (φ, f) is a Whitney
pair and f is φ-Lipschitz, so is fn, and it is immediate that fn is constant on
the intervals contiguous to clBn. Thus (iii) implies that fn ≡ 0 for every n,
hence f(t) = f(a)+λ(f([a, t]∩A)), f is constant on the intervals contiguous
to clA, and the proof is complete.

The main result of this section is the following theorem.

Theorem 5. Let φ : [0, 1] → Rn be a Whitney arc for which every
subarc is a monotone Whitney arc. Then the following two properties are
equivalent :

(1) φ has no strictly monotone Whitney subarc;
(2) φ can be parametrized so that [0, 1] = R ∪ P ∪A, P ∩A = ∅, and

(2.1) the set R = {x0 : lim supx→x0
|x− x0|/|φ(x)− φ(x0)| > 0} is

residual ;
(2.2) P =

⋃
n Pn is dense in [0, 1], and the sets Pn are closed and

nowhere dense; Pn ⊂ [an, bn] where bn − an → 0 and for every
m 6= n we have Pm ∩ (an, bn) = ∅ or Pn ∩ (am, bm) = ∅;

(2.3) no monotone function is associated with Pn;
(2.4) A is a nowhere dense set.

P r o o f. (2)⇒(1). Suppose that a subarc of φ is strictly monotone, i.e.
there is a function f which is strictly monotone on I = [a, b] ⊂ [0, 1], and for
which (∗) holds. By (2.4) we can suppose that I ∩A = ∅. It is clear that we
can suppose that f(a) = 0 and f is constant on the components of [0, 1] \ I.

For x ∈R clearly f ′(x) = 0, and since f is monotone we have λ(f(R)) = 0.
Thus, on I we have f =

∑
n fn, where fn(x) = λ(f([a, x] ∩ Pn)).
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Since f has property (∗), so does fn. Moreover, fn is clearly monotone,
continuous and constant on the intervals contiguous to Pn. Hence, according
to (2.3), either fn ≡ 0 or fn is not φ-Lipschitz; in the second case we can
find points x, y ∈ [an, bn] for which

|fn(y)− fn(x)|
|φ(y)− φ(x)| > 1.

Since fn and φ are continuous, the same inequality holds in a small neigh-
bourhood of x and y. Now, (2.2) and the fact that f is strictly monotone
and fn is constant on the intervals contiguous to Pn imply that every subin-
terval of [0, 1] contains an interval [an, bn] for some n where fn is not φ-
Lipschitz, thus we can find intervals I ⊃ [an1 , bn1 ] ⊃ [an2 , bn2 ] ⊃ . . . and
points y1, y2, . . . such that yi ∈ [ani , bni ] \ [ani+1 , bni+1 ], bni − ani → 0, and
for every xi ∈ [ani+1 , bni+1 ] we have

|fni(yi)− fni(xi)|
|φ(yi)− φ(xi)| > 1.

This means that for {x} =
⋂
i[ani , bni ] there is a sequence yi → x and a

sequence n1, n2, . . . of integers such that

|fni(yi)− fni(x)|
|φ(yi)− φ(x)| > 1.

Since the functions fni are monotone we have

|f(yi)− f(x)|
|φ(yi)− φ(x)| > 1,

a contradiction to (∗).
(1)⇒(2). By assumption for every subarc there exists a non-constant

monotone function satisfying (∗) on the corresponding subinterval. It is easy
to see that there is a parametrization of [0, 1] such that for every subinterval
there is a non-constant monotone differentiable function satisfying (∗). Since
R is a Borel set which by Lemma 1 is not of first category in any subinterval
of [0, 1], we obtain (2.1).

Thus, the complement of R can be covered by pairwise disjoint nowhere
dense closed sets F 1, F 2, . . . Applying Lemma 2 to each of the sets Fn we
obtain Fn = An ∪⋃k Bnk . Put A =

⋃
nA

n and P =
⋃
n

⋃
k B

n
k .

It is easy to see that the sets Bnk can be further decomposed into the
union of closed sets satisfying all of (2.2) but for the density of P . Since there
is no monotone function f associated with Bnk , it is automatic that there is
no monotone function associated with a closed subset of Bnk , i.e. (2.3) holds.
For every subarc of φ there is a non-constant monotone function satisfying
(∗), thus the set R cannot contain an interval. Hence it is enough to show
that A is nowhere dense, which implies that P is also dense.
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Suppose that A is dense in an interval I. By the definition of A we have
monotone functions f1, f2, . . . satisfying (∗) such that the set{ |fi(x)− fi(y)|

|φ(x)− φ(y)| : x, y ∈ [0, 1], x 6= y

}

is bounded, say, by Ki, and on every subinterval J ⊂ I some fi is non-
constant.

Now, let K∗i = max |fi(x)|, and put

f(x) =
∑

i

fi(x)
2i max(Ki,K∗i )

.

It is easy to check that the series converges uniformly, f is strictly monotone
on I, and (∗) holds. This contradicts (1) and completes our proof.

4. Construction of a Whitney arc Φ which is not strictly mono-
tone but for which every subarc is Whitney

Theorem 6. There exists a simple arc φ : [0, 1] → [0, 1]3, a Cantor set
C ⊂ [0, 1] and a non-constant function f such that

(i) f is constant on the intervals contiguous to C ;
(ii) (φ, f) is a monotone Whitney pair ;

(iii) for every function f satisfying (i) and (ii), the set{ |f(y)− f(x)|
|φ(y)− φ(x)| : x, y ∈ [0, 1], x 6= y

}

is unbounded ; that is, there is no function associated with C.

P r o o f. Let φ0 : [0, 1] → [0, 1]2 be a strictly monotone Whitney arc
with a strictly monotone function f0, φ0(0) = (0, 0), φ0(1) = (1, 1), and let
C0 ⊂ [0, 1] be a Cantor set for which λ(f0(C0)) > 0.

Let I0 = ∅, and let

In = {In0 , In1 , . . . , Inmn} = {[an0 , bn0 ], [an1 , b
n
1 ], . . . , [anmn , b

n
mn ]}

be a finite set of pairwise disjoint intervals disjoint from C0 and indexed by
the real ordering such that

• an0 = bn0 = 0, anmn = bnmn = 1, and ank < bnk for every 0 < k < mn;
• In ⊂ In+1;
• |φ0(ank )− φ0(bnk−1)| < 1/(3 · 2n);
• |φ0(b)− φ0(a)| < 1/(3 · 2n) for every interval [a, b] ∈ In \ In−1.

For every interval [a, b] = [ank , b
n
k ] ∈ In \ In−1 let u = ua,b : [(2a+ b)/3,

(a+ 2b)/3]→ [0, 1]2 be a polygon connecting φ0(a) and φ0(b) such that

• max |u(t)− φ0(a)| < 1/2n;
• φ0(anl ) 6= u(t) 6= φ0(bnl ) (anl 6= t 6= bnl );
• the distance of the polygons uank ,bnk , uank+1,b

n
k+1

is less than 1/(mn · 2n).
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We choose a sequence (say, an equidistant subdivision) 1/2n < dn0 <
dn1 < . . . < dnmn < 1/2n−1, and let

φ(t) =





(φ0(t), 0) if t is not covered by int
⋃
n

⋃
I∈In I;

(u(t), dnk ) if t ∈ [(2a+ b)/3, (a+ 2b)/3],
[a, b] = [ank , b

n
k ] ∈ In \ In−1;

linear on [a, (2a+ b)/3] and [(a+ 2b)/3, b], where [a, b] ∈ In,
where the third coordinate of the three-dimensional point φ(t) is indicated
following a two-dimensional point φ0(t) and u(t), respectively.

Since dnk → 0 and max |φ0(ank ) − u(t)| → 0, the function φ : [0, 1] →
[0, 1]3 is continuous, and it is easy to see that it is a simple arc as well. Let
C = [0, 1] \ int

⋃
n

⋃
I∈In I.

The function f(x) = λ(f0([0, x] ∩ C)) is monotone and non-constant,
since C0 ⊂ C and λ(f0(C0)) > 0. It is clear that f is constant on the
intervals contiguous to C, and |f(x) − f(x0)| ≤ |f0(x) − f0(x0)|. We claim
that (∗) holds for f and φ.

This is clear on the intervals contiguous to C, since f is constant on
these intervals. If x0 ∈ C then φ(x0) = (φ0(x0), 0), and there are two possi-
bilities:

If there is no interval [a, b] ∈ ⋃n In for which x ∈ [(2a+ b)/3, (a+ 2b)/3],
then φ(x) = (φ0(x), y) for a y ∈ [0, 1], thus |φ(x)−φ(x0)| ≥ |φ0(x)−φ0(x0)|.
If x ∈ [(2a+ b)/3, (a+ 2b)/3] for an interval [a, b] = Ink ∈ In \ In−1, then
(using the trivial inequality q2/2 ≤ (q − r)2 + s2 for every 0 ≤ q and 0 ≤
r ≤ s) the inequality d = dnk > 1/2n > max |u(t)− φ0(a)| implies

|φ0(a)− φ0(x0)|2
2

≤ (|φ0(a)− φ0(x0)| − |φ0(a)− u(x)|)2 + d2

≤ |u(x)− φ0(x0)|2 + d2 = |φ(x)− φ(x0)|2.
Hence, in all cases we have

|φ(x)− φ(x0)| ≥ |φ0(x)− φ0(x0)|√
2

and |f(x)− f(x0)| ≤ |f0(x)− f0(x0)|,

thus

lim sup
x→x0

|f(x)− f(x0)|
|φ(x)− φ(x0)| ≤

√
2 · lim sup

x→x0

|f0(x)− f0(x0)|
|φ0(x)− φ0(x0)| = 0.

Finally, we show (iii). Let f be an arbitrary monotone function satisfying
|f(y) − f(x)| ≤ K|φ(y) − φ(x)|, and which is constant on the intervals
contiguous to C. We show that f is constant on [0, 1].

For a given n, let ck denote the value of f on [ank , b
n
k ]. Then
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|f(1)− f(0)| ≤
mn∑

i=1

|ci − ci−1| ≤ K
mn∑

i=1

dist(φ([ani , b
n
i ]), φ([ani−1, b

n
i−1]))

≤ K
mn∑

i=1

dist(uani ,bni , uani−1,b
n
i−1

) ≤ K ·mn · 1
mn · 2n =

K

2n

for every n. Hence f must indeed be constant on [0, 1].

The main result of this paper is the following theorem:

Theorem 7. There exists a Whitney arc Φ which is not strictly monotone
but for which every subarc is Whitney.

P r o o f. We construct this arc by an iterative process.

Step I. The notation below follows that of Theorem 6.
The iteration is started by applying Theorem 6 as it is. Then for every

interval [a, b] ∈ ⋃n In we choose a Cantor set Ta,b ⊂ [a, b] with appropriately
short contiguous intervals and a set of small cubes Ca,b such that

(i)
⋃{Ca,b : [a, b] ∈ ⋃n In} is a pairwise disjoint system of subcubes of

[0, 1]3;
(ii) all cubes have a base with diagonal lying on a side of the polygon

φ([a, b]), and the cube has no other point in common with φ([0, 1]);
(iii) every segment of φ([a, b]) is covered by the cubes except for the

Cantor set φ(Ta,b);
(iv) the cubes are so small that if [a, b] and [c, d] are distinct intervals of⋃

n In, then for any x ∈ Q1 ∈ Ca,b, y ∈ Q2 ∈ Cc,d, x1 ∈ Q1∩φ and y1 ∈ Q2∩φ
we have |x1 − y1| ≤ 2|x − y|, and for all x ∈ Q1 ∈ Ca,b, x1 ∈ Q1 ∩ φ and
z ∈ φ(C) we have |x1 − z| ≤ 2|x− z|.

It is important to note that for every simple arc ψ such that

ψ ⊂ φ(C) ∪
⋃

a,b

⋃

Q∈Ca,b
Q,

ψ(t) = φ(t) (∀t ∈ C),

ψ(t) ∈ φ([a, b]) ∪
⋃

Q∈Ca,b
Q

(
∀t ∈ [a, b] ∈

⋃
n

In
)
,

the requirements (i)–(iii) of Theorem 6 hold with the same Cantor set C and
monotone function f . Indeed, f is constant on the intervals [a, b] ∈ ⋃n In,
thus for given u, v ∈ [0, 1] either we have f(u) = f(v) or there is no interval
[a, b] ∈ ⋃n In for which u, v ∈ [a, b]. In the latter case by (iv) we have

|φ(t)− φ(u)| ≤ 2|ψ(t)− ψ(u)|,
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thus
|f(u)− f(v)|
|φ(u)− φ(v)| ≥

|f(u)− f(v)|
2|ψ(u)− ψ(v)| for every u, v.

Now, we take subcubes in all our cubes in the sets Ca,b, as follows. For
every cube Q ∈ Ca,b we take a dense set of pairwise disjoint subintervals on
its diagonal Q∩φ([a, b]) = φ([c, d]) such that the measure of the union of the
subintervals is less than d− c. Then we re-parametrize the segment φ([c, d])
by the same interval [c, d] so that all the subintervals considered have an
arc length parametrization. Next we place a subcube on each subinterval
as before (that is, each subinterval is the diagonal of a face of a new small
subcube). Finally, we regularly divide the base of each subcube containing
one of our subintervals as a diagonal into 9 smaller squares, the middle one
again into 9 squares, etc., and we place subcubes on the squares on the
diagonal. See Figure 2 below.

Fig 2. A typical step in the construction

Let Sc,d be the set of those points x ∈ [c, d] for which φ(x) is not inside a
cube getting into this regular subdivision, that is, the points not belonging
to the subintervals and the set of dividing points.

Step I concludes with the re-parametrized Whitney arc φ∗, a Cantor set
C, a monotone Whitney function f , Cantor sets Ta,b, nowhere dense closed
sets Sc,d, and an infinite system of new cubes lying on φ∗ (say Q(1), Q(2), . . .),
where all the diagonals lying on φ∗ are parametrized by arc length.

For each of these cubes we now apply Step II below.

Step II. If there is given a cube Qα with a distinguished face (called the
base) and a diagonal of the base with a given parametric interval [u, v] where
the length of the diagonal is v−u, then Step II consists of an application of
Step I, such that the parametric interval [0, 1], the points (0, 0, 0), (1, 1, 0),
and the cube [0, 1]3 are replaced by the given parametric interval, the end-
points of the diagonal of the base of the cube Qα, and the cube itself.

In more detail, let L : [u, v] → [0, 1] and Λ : Qα → [0, 1]3 be linear
bijections, where the Λ-image of the base of Qα is [0, 1]2 × {0} and the
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Λ-image of the distinguished diagonal is the segment with endpoints (0, 0, 0)
and (1, 1, 0). With these notations and φ∗, C, f constructed in Step I, this
step results in a Whitney curve φα : [u, v]→ Qα, a Cantor set Cα ⊂ [u, v], a
non-constant monotone function fα : [u, v] → R, where φα(t) = Λ−1φ(Lt),
Cα = L−1C and fα(t) = f(Lt). It is clear that fα is constant on the intervals
contiguous to Cα, (φα, fα) is a monotone Whitney pair, and there is no
monotone function associated with Cα. At the end of Step II we also get
Cantor sets of type Ta,b and nowhere dense closed sets of type Sa,b (these
are the sets Tαa,b = L−1Ta,b and Sαa,b = L−1Sa,b), and we get a new infinite
system of subcubes, the Λ−1-image of the cubes Q(1), Q(2), . . . It is easy to
see that the diagonals are parametrized by arc length.

Then we apply Step II again for these new subcubes.
Our induction process yields a simple arc Φ. We show that Φ and a

suitable decomposition [0, 1] = R ∪ P (and A = ∅) satisfy requirement (2)
of Theorem 5.

Let P denote the set of points whose image is not inside any cube from a
certain step, i.e. P is the union of the Cantor sets Cα, the Cantor sets Tαa,b,
and the nowhere dense closed sets Sαa,b.

It is clear by the very definition that P satisfies (2.2) of Theorem 5. It
is also clear that the Cantor sets Cα satisfy (2.3). To verify (2.3) for the
nowhere dense closed sets Tαa,b and Sαa,b we note that the Φ-image of each
set is contained in a polygon, thus the measure of the image of these sets by
a hypothetical associated function must be 0, as a consequence of a trivial
application of Theorem 3. Thus (2.3) is trivial for these sets.

Finally, (2.1) is verified as follows. Let R∗ be the set of points of [0, 1]
belonging to a nested sequence of our cubes. It is clear that R∗ is residual;
we have to show that

R∗ ⊂ R :=
{
x0 : lim sup

x→x0

|x− x0|
|φ(x)− φ(x0)| > 0

}
.

For every point x = Φ(u) of a cube Qα of our construction we can find
another cube Qβ of the same size, namely, the one in a centrally symmetrical
position on the diagonal of the previous base, such that for every point
y = Φ(v) of Qβ we have |u− v| ≥ dist(Qα, Qβ), and

|Φ(u)− Φ(v)| = |x− y| ≤ dist(Qα, Qβ)
√

(1 + 1 + 1)2 + 1/2

(see Figure 3 below).
Thus,

|u− v|
|Φ(u)− Φ(v)| ≥

dist(Qα, Qβ)

dist(Qα, Qβ)
√

(1 + 1 + 1)2 + 1/2
=
√

2/19.
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Fig. 3. Distances

Now, for every x0 ∈ R∗ we have

lim sup
x→x0

|x− x0|
|Φ(x)− Φ(x0)| ≥

√
2/19 > 0,

which was to be proved.
That is, we constructed a curve Φ satisfying (2) of Theorem 5. We also

have to show that every subarc is monotone. But this is immediate, since
we know that for every Cantor set Cα there is a non-constant monotone
function fα satisfying (∗).

The following two problems remain open.

Problem 4. Does there exist an everywhere monotone but nowhere
strictly monotone Whitney arc on the plane?

Problem 5. Does there exist a Whitney arc φ which is not a strictly
monotone Whitney arc, but for which there is a V BG∗ (or arbitrary) no-
where constant function f such that (φ, f) is a Whitney pair?
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