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Analytic determinacy and 0#

A forcing-free proof of Harrington’s theorem

by

Ramez L. S a m i (Paris)

Abstract. We prove the following theorem: Given a ⊆ ω and 1 ≤ α < ωCK
1 , if for

some η < ℵ1 and all u ∈ WO of length η, a is Σ0
α(u), then a is Σ0

α. We use this result
to give a new, forcing-free, proof of Leo Harrington’s theorem: Σ1

1-Turing-determinacy
implies the existence of 0#.

A major step in delineating the precise connections between large cardi-
nals and game-determinacy hypotheses is the well-known theorem: For any
real a, Σ1

1(a) games are determined if and only if a# exists. The “if” part
is due to D. A. Martin [Mr2], and the “only if” part is Leo Harrington’s
[Hg] (1). Harrington’s proof of this result is quite complex, relying on a fine
analysis due to John Steel [Sl] of the ordinal-collapse forcing relation (a
variant of this proof is given in Mansfield and Weitkamp’s [MW].)

We propose here a new, forcing-free and quite elementary proof, The-
orem 3.9. Our proof is built upon a new ordinal-definability theorem, for
reals, which is interesting in its own right, namely Theorem 2.4:

For α < ωCK
1 , if a real is Σ0

α in (all codes of ) some countable ordinal , it
is Σ0

α.

A further simplification is brought about by the use of an easily defined
game (Definition 3.2) avoiding metamathematical notions. In §4, using the
same techniques, we sketch a proof of a related result of Harrington.

I wish to thank Alain Louveau for inspiring conversations during early
stages of this work.

1991 Mathematics Subject Classification: 03D55, 03D60, 03E15, 03E55, 03E60, 04A15.
(1) For an excellent mathematical and chronological account of the context of this last

result, describing inter alia the important contributions of H. Friedman and D. A. Martin,
see Kanamori’s [Kn], §31.
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1. Preliminaries and background

1.1. We refer to Moschovakis’ [Ms] for (effective) descriptive set theory
and for the theory of infinite games. C = P(ω) is the Cantor space or the set
of reals, R = P(ω×ω) is the space of relations on ω and S∞ is the space of
permutations of ω, each equipped with its usual recursively presented Polish
topology. Basic hyperarithmetic theory and the connection with admissible
sets and ordinals are assumed (see Sacks’ [Sc2] or [MW]). We will make use
of the effective Borel hierarchy Σ0

α, α < ωCK
1 , and its relativizations. The

reader who is averse to the effective hierarchy can easily recast all statements
and proofs below in terms of ∆1

1 sets. This leads to slightly shorter proofs of
somewhat less transparent statements. (We have stated, in Remarks 2.5(c)
and 3.7, “∆1

1 versions” of the key steps towards the main result.)

1.2. Let R ⊆ X × Y where Y is a topological space. Recall that the
category quantifier “∃∗y(R(x, y))” stands for: the set {y ∈ Y | R(x, y)}
is non-meager in Y. We will make use of the category computations from
Kechris’ [Kc]: For R ⊆ X × Y, where X and Y are recursively presented
Polish spaces and R is Σ0

α with α < ωCK
1 [resp. R is ∆1

1], the relation
∃∗y(R(−, y)) is Σ0

α [resp. ∆1
1].

1.3. Linear orderings will be taken to be reflexive, that is, non-strict.
LO = {r ⊆ ω × ω | r is a linear ordering of its field}. For r ∈ LO, 6r

is just r and <r has the usual meaning. Next, WO = {r ∈ LO | <r is
well founded}. For r ∈ WO, |r| will denote its length and for α < ℵ1,
WOα = {r ∈WO | |r| = α}. Given r, u ∈ LO, with the same order-type,
it is not necessarily the case that (ω, r) ∼= (ω, u); we will implicitly use the
easy fact that there is u′ 6T u such that (ω, r) ∼= (ω, u′). For k ∈ ω, define
the restriction r¹k = {(m,n) | m <r k & n <r k & m 6r k}. Note that if
k 6∈ Field(r), r¹k = ∅. The function (r, k) 7→ r|k is recursive.

1.4. The following result, due to J. Silver, is instrumental to the proof.
Martin was the first to use it to derive the existence of 0# from determinacy
hypotheses. A proof can be found in [MW, 7.22] or in [Hg, §1].

Theorem. If there is a real c such that every c-admissible ordinal is an
L-cardinal then 0# exists.

2. Reals simply defined from ordinals

2.1. Recall that r ∈ LO is called a pseudo-well-ordering if any non-empty
∆1

1(r) subset of Field(r) has an r-least element. pWO will denote the set of
such orderings. Obviously, pWO ⊇WO and, by a standard computation,
pWO is Σ1

1. Harrison in [Hn] has shown that, for any u ∈ pWO −WO,
OrderType(u) = ωu1 · (1+η)+%u, where η is the order-type of the rationals,
and %u < ωu1 .
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2.2. Lemma. Any r ∈ pWO for which ωr1 = ωCK
1 has an isomorphic

recursive copy.

P r o o f. If r is a well-ordering, then |r| < ωCK
1 . Thus the conclusion, by

definition of ωCK
1 .

If, instead, r ∈ pWO−WO, then OrderType(r) = ωCK
1 · (1 + η) + %r,

where %r < ωCK
1 . An easy boundedness argument shows that {u ∈ WO |

u is recursive} is not Σ1
1, whereas {u ∈ pWO |u is recursive} is Σ1

1. Pick a
recursive u ∈ pWO −WO. By trimming some excess, if needed, we may
assume OrderType(u) = ωCK

1 ·(1+η). Informally, then, by stringing together
u and a recursive well-ordering of length %r, one constructs a recursive copy
of r.

2.3. Given f ∈ S∞ and r ⊆ ω × ω we denote by f · r the isomorphic
copy of r by f . Note that (f, r) 7→ f · r is a recursive map S∞ × R → R.
Suppose r, u ⊆ ω × ω are isomorphic, say via g : (ω, r) → (ω, u). For any
Z ⊆ R, {f | f · r ∈ Z} = {f | f · u ∈ Z} ◦ g. Right multiplication by g being
a homeomorphism of S∞, the topological properties of {f | f · r ∈ Z} and
{f | f · u ∈ Z} are identical.

2.4. Theorem. Given a ∈ C and 1 6 α < ωCK
1 , if for some η < ℵ1 and

all u ∈WOη, a is Σ0
α(u), then a is, in fact , Σ0

α.

P r o o f. Let U ⊆ ω ×R× ω be ω-universal for the Σ0
α subsets of R× ω.

Fix r ∈WOη. From the hypothesis, for all f ∈ S∞ there is e ∈ ω such that
a = U(e, f · r,−). The Baire Category Theorem yields an e0 ∈ ω such that
{f | a = U(e0, f · r,−)} is non-meager in S∞. Set U0 = U(e0,−,−). Assume
now—towards a contradiction—that a is not Σ0

α. Consider the set

A = {(x, v) | x ∈ C is not Σ0
α & v ∈ pWO & ∃∗f ∈ S∞(x = U0(f · v,−))}.

We first check that A is Σ1
1. Indeed, “x is Σ0

α” is a ∆1
1 property of x,

pWO is Σ1
1. Finally, “x = U0(f ·v,−)” is a ∆1

1 property of (x, f, v), thus, by
the category computations of 1.2, the third conjunct in the definition of A is
∆1

1. Further since (a, r) ∈ A, A is not empty. By the Gandy Basis Theorem
[Gn], let (x0, v0) ∈ A be such that ω(x0,v0)

1 = ωCK
1 . It follows, a fortiori , that

ωv0
1 = ωCK

1 . Let now, by 2.2 above, w0 be a recursive copy of v0. By 2.3,
we have ∃∗f ∈ S∞(x0 = U0(f · w0,−)), since {f | x0 = U0(f · w0,−)} is a
translate in S∞ of {f | x0 = U0(f · v0,−)}. Let V ⊆ S∞ be a non-empty
basic open set such that {f | x0 = U0(f · w0,−)} is comeager in V . A
straightforward category argument now yields

k ∈ x0 ⇔ ∃∗f ∈ V (U0(f · w0, k)).

Note that, since w0 is recursive, “U0(f ·w0, k)”, as a relation in (f, k), is
Σ0
α. The category computations of 1.2 now yield that the R.H.S. is Σ0

α; yet,
by the definition of A, x0 is not Σ0

α. This contradiction finishes the proof.
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2.5. Remarks. (a) The case α = 1 of this result was proved, by a
different method, in the author’s [Sm, 2.5]. It was used there to establish a
weak precursor of Harrington’s theorem.

(b) Our proof shows: If for some u ∈ pWO, {f | a is Σ0
α(f · u)} is

non-meager in S∞, then a is, in fact , Σ0
α. This less quotable version of the

theorem could be easier to apply.
(c) The “∆1

1 version” of 2.4 should read: Given a ∈ C, if there is u ∈WO
and a ∆1

1 relation D ⊆ R × ω such that ∀f ∈ S∞(a = D(f · u,−)), then a
is ∆1

1.

3. Harrington’s theorem

3.1. As usual, 6T and 6h denote respectively Turing and hyperarith-
metic reducibility. A set of reals is said to be Turing-closed if it is closed
under Turing equivalence =T. Harrington’s theorem proceeds from the, a
priori weaker, hypothesis of determinacy of Σ1

1 games with Turing-closed
payoff sets (henceforth: Σ1

1-Turing-determinacy). For c ∈ C, define the Tur-
ing cone Cone(c) = {x ∈ C | c 6T x}. Recall Martin’s Lemma [Mr1]: For a
Turing-closed set A, the infinite game over A is determined if and only if A
or its complement includes a cone.

3.2. Definition. For a, b ∈ C, set

a @ b⇔ ∀x 6h a(x 6T b) & ωa1 = ωb1

and let S = {z ∈ C | ∃y(y @ z)}.
It is clear, by a direct computation, that the relation @ is Σ1

1. The set
S is the payoff set of the game we are going to use to derive the existence
of 0#.

3.3. Proposition. S is Σ1
1, Turing-closed and cofinal in the Turing

degrees.

P r o o f. That S is Turing-closed and Σ1
1 is immediate from its definition

and the complexity of the relation @. To prove that S is cofinal, let a ∈ C
and set A = {z ∈ C | ∀x 6h a(x 6T z)}. Then A is Σ1

1(a) and non-empty.
By Gandy’s Basis Theorem, let b ∈ A be such that ωb1 6 ωa1 . Note that
a 6T b; thus one gets ωa1 = ωb1 and hence a @ b. Consequently, b ∈ S.

We shall need the following well-known complexity computations; a proof
is sketched for the reader’s convenience. (The bound here is quite loose, for
optimal results see Stern’s [Sr].)

3.4. Lemma. For α < ℵ1,

(a) WOα is Σ0
α+2.

(b) Given r ∈WOα, the relation “u ∈WO|r¹k|” in (u, k) is Σ0
α+2(r).
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P r o o f. (a) is proved by induction on α. First, WO0 is Π0
1. Now, if α is

a limit ordinal, then

u ∈WOα ⇔
∧

ξ<α

∨

k<ω

(u¹k ∈WOξ) &
∧

k<ω

∨

ξ<α

(u¹k ∈WOξ)

(this holds even if Field(u) 6= ω). Using the inductive hypothesis, WOα is
computed to be in Π0

α+1 ⊆ Σ0
α+2. Finally, if α = β + 1, then

u ∈WOα ⇔ u ∈ LO & ∃k(k is 6u -maximum & u¹k ∈WOβ)

and the R.H.S. is readily checked to be in Σ0
β+2 ⊆ Σ0

α+2.
(b) is just the effective version of (a).

3.5. Given α < ℵ1, r ∈WOα and X ⊆ α, let ιr : (Field(r), r)→ (α,6)
be the canonical isomorphism, and set Code(X, r) = ι−1

r [X]. Observe that
if M is an admissible set and r ∈ M , then ιr ∈ M and thus X ∈ M ⇔
Code(X, r) ∈M .

We can now state the key technical property of the elements of S.

3.6. Lemma. Let a ∈ S, α < ωa1 and r ∈WOα. For all X ∈ P(α)∩Lωa1 ,
Code(X, r) is Σ0

α+2(a, r).

P r o o f. Let a′ @ a. Since ωa
′

1 = ωa1 , we have α < ωa
′

1 ; let then r′ ∈WOα

be recursive in a′ and such that (ω, r′) ∼= (ω, r). Set x = Code(X, r) and
x′ = Code(X, r′). Since X, r′ ∈ Lωa′1 [a′], it follows by 3.5 that x′ ∈ Lωa′1 [a′].
Consequently, x′ 6h a

′ and, since a′ @ a, x′ 6T a. Now, for k ∈ ω, one can
easily verify that

k ∈ x⇔ ∃k′(k′ ∈ x′ & (ω, r′, k′) ∼= (ω, r, k)).

We claim that the R.H.S. is Σ0
α+2(a, r). Indeed, since x′ 6T a, “k′ ∈ x′”

is a Σ0
1(a) property of k′. Set now Ir(r′, k′, k) ⇔ (ω, r′, k′) ∼= (ω, r, k).

Since (ω, r′) ∼= (ω, r), Ir(r′, k′, k) is equivalent to [k ∈ Field(r) ⇔ k′ ∈
Field(r′)] & r′¹k′ ∈ WO|r¹k|. By 3.4(b), Ir is Σ0

α+2(r), and since r′ 6T a,
Ir(r′,−,−) is Σ0

α+2(a, r). Thus the claim follows.

3.7. Remark. The, somewhat less intuitive, “∆1
1 version” of this last

result should read: Given r ∈ WO, and setting α = |r|, there is a ∆1
1(r)

set Dr ⊆ C × ω × ω such that , for any a ∈ S, if ωa1 > α then for all
X ∈ P(α) ∩ Lωa1 , there is e ∈ ω such that Code(X, r) = Dr(a, e,−).

The next proposition is the heart of the proof we are aiming at. Its proof
makes essential use of Theorem 2.4.

3.8. Proposition. If a Turing cone Cone(c) is included in S then every
c-admissible ordinal is an L-cardinal.

P r o o f. By a standard downward Löwenheim–Skolem argument, it suf-
fices to verify that every countable c-admissible ordinal is an L-cardinal. Fur-
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ther, we know that by Sacks’ Theorem [Sc1] every countable c-admissible or-
dinal > ω has the form ωd1 , for some d ∈ Cone(c). For such a d, Cone(d) ⊆ S.
It suffices, thus, to show that Cone(c) ⊆ S implies that ωc1 is an L-cardinal.

Assume the contrary. Thus there is % < ωc1 and W ⊆ %×%, a constructible
well-ordering of %, of length ωc1. Fix r ∈WO% recursive in c. Via some simple
constructible bijection % → % × %, code W as a subset A ⊆ %. Say A ∈ Lσ,
where σ < ℵ1. Pick any s ∈ WOσ; since σ < ωs1 6 ωc⊕s1 , A ∈ Lωc⊕s1

. Now
c ⊕ s ∈ Cone(c) ⊆ S, thus, applying Lemma 3.6 to c ⊕ s, Code(A, r) is
Σ0
%+2(c⊕ s, r). Consequently, since r 6T c, Code(A, r) is Σ0

%+2(c⊕ s). This
being true for every s ∈ WOσ, Theorem 2.4 relativized to c yields that
Code(A, r) is Σ0

%+2(c). Thus Code(A, r) ∈ Lωc1 [c] and, since r 6T c, this
entails that A ∈ Lωc1 [c] and thus W ∈ Lωc1 [c]. This in turn contradicts the
admissibility of Lωc1 [c].

Our concluding statement is now but a direct consequence of what pre-
cedes.

3.9. Theorem (Harrington [Hg]). Σ1
1-Turing-determinacy implies the

existence of 0#.

P r o o f. Since S is Σ1
1 and cofinal in the degrees, Σ1

1-Turing-determinacy
implies, via Martin’s Lemma, that there is a cone Cone(c) ⊆ S. By 3.8,
every c-admissible ordinal is an L-cardinal. Thus, by Silver’s Theorem 1.4,
0# exists.

4. Borel reducibility of analytic sets

4.1. For A,B ⊆ C let A 6B B stand for: A is many-one reducible to B
via a Borel function. In [Hg] Harrington proves the following:

4.2. Theorem. If for all Σ1
1 sets A, B, A 6B B whenever B is not

Borel , then 0# exists.

The technique used in the previous section can be easily adapted to prove
this result as well. We just sketch the main steps.

Let U be the closure under isomorphism of pWO−WO. Then U is Σ1
1

and it is easily checked that neither U nor S is Borel. From the hypothesis,
let F : R → R be a Borel reduction of U to S.

Observe first that for all ξ < ℵ1 there is u ∈ U such that ∃∗f(ξ <

ω
F (f ·u)
1 ). Indeed, otherwise, one argues that for some ξ < ℵ1,

u ∈ U ⇔ ∀∗f(F (f · u) ∈ {x ∈ S | ωx1 ≤ ξ})
and the R.H.S. is Borel.

F being in ∆1
1, say F is ∆1

1(c). We claim that every c-admissible ordinal
is an L-cardinal. For that it suffices to show that ωc1 is such.
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Argue as in 3.8. Let % < ωc1, and A ⊆ % be constructible. Say A ∈ Lσ, with
σ countable. To show A ∈ Lωc1 [c] let u ∈ U be such that ∃∗f(σ < ω

F (f ·u)
1 ).

For any r ∈WO%, using 3.6 one gets

∃∗f(Code(A, r) is Σ0
%+2(F (f · u), r)).

Now we can assume % to be large enough relative to the Borel rank of F and
r 6T c. It follows that ∃∗f(Code(A, r) is Σ0

%+2(f · u, c)). Using Theorem 2.4
(as generalized in 2.5(b)) one concludes that Code(A, r) is Σ0

%+2(c). Thus
A ∈ Lωc1 [c], as desired.
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