Analytic determinacy and $0^{\#}$ A forcing-free proof of Harrington's theorem

by

Ramez L. Sami (Paris)

Abstract

We prove the following theorem: Given $a \subseteq \omega$ and $1 \leq \alpha<\omega_{1}^{\mathrm{CK}}$, if for some $\eta<\aleph_{1}$ and all $u \in \mathbf{W O}$ of length η, a is $\Sigma_{\alpha}^{0}(u)$, then a is Σ_{α}^{0}. We use this result to give a new, forcing-free, proof of Leo Harrington's theorem: Σ_{1}^{1}-Turing-determinacy implies the existence of $0^{\#}$.

A major step in delineating the precise connections between large cardinals and game-determinacy hypotheses is the well-known theorem: For any real $a, \Sigma_{1}^{1}(a)$ games are determined if and only if a ${ }^{\#}$ exists. The "if" part is due to D. A. Martin [Mr2], and the "only if" part is Leo Harrington's $[\mathrm{Hg}]\left({ }^{1}\right)$. Harrington's proof of this result is quite complex, relying on a fine analysis due to John Steel [Sl] of the ordinal-collapse forcing relation (a variant of this proof is given in Mansfield and Weitkamp's [MW].)

We propose here a new, forcing-free and quite elementary proof, Theorem 3.9. Our proof is built upon a new ordinal-definability theorem, for reals, which is interesting in its own right, namely Theorem 2.4:

For $\alpha<\omega_{1}^{\mathrm{CK}}$, if a real is Σ_{α}^{0} in (all codes of) some countable ordinal, it is Σ_{α}^{0}.

A further simplification is brought about by the use of an easily defined game (Definition 3.2) avoiding metamathematical notions. In §4, using the same techniques, we sketch a proof of a related result of Harrington.

I wish to thank Alain Louveau for inspiring conversations during early stages of this work.

[^0]
1. Preliminaries and background

1.1. We refer to Moschovakis' [Ms] for (effective) descriptive set theory and for the theory of infinite games. $\mathcal{C}=\mathcal{P}(\omega)$ is the Cantor space or the set of reals, $\mathcal{R}=\mathcal{P}(\omega \times \omega)$ is the space of relations on ω and S_{∞} is the space of permutations of ω, each equipped with its usual recursively presented Polish topology. Basic hyperarithmetic theory and the connection with admissible sets and ordinals are assumed (see Sacks' [Sc2] or [MW]). We will make use of the effective Borel hierarchy $\Sigma_{\alpha}^{0}, \alpha<\omega_{1}^{\mathrm{CK}}$, and its relativizations. The reader who is averse to the effective hierarchy can easily recast all statements and proofs below in terms of Δ_{1}^{1} sets. This leads to slightly shorter proofs of somewhat less transparent statements. (We have stated, in Remarks 2.5(c) and 3.7, " Δ_{1}^{1} versions" of the key steps towards the main result.)
1.2. Let $R \subseteq \mathcal{X} \times \mathcal{Y}$ where \mathcal{Y} is a topological space. Recall that the category quantifier " $\exists^{*} y(R(x, y)$)" stands for: the set $\{y \in \mathcal{Y} \mid R(x, y)\}$ is non-meager in \mathcal{Y}. We will make use of the category computations from Kechris' $[\mathrm{Kc}]:$ For $R \subseteq \mathcal{X} \times \mathcal{Y}$, where \mathcal{X} and \mathcal{Y} are recursively presented Polish spaces and R is Σ_{α}^{0} with $\alpha<\omega_{1}^{\mathrm{CK}}$ [resp. R is Δ_{1}^{1}], the relation $\exists^{*} y(R(-, y))$ is $\Sigma_{\alpha}^{0}\left[\right.$ resp. $\left.\Delta_{1}^{1}\right]$.
1.3. Linear orderings will be taken to be reflexive, that is, non-strict. $\mathbf{L O}=\{r \subseteq \omega \times \omega \mid r$ is a linear ordering of its field $\}$. For $r \in \mathbf{L O}, \leqslant_{r}$ is just r and $<_{r}$ has the usual meaning. Next, $\mathbf{W O}=\left\{r \in \mathbf{L O} \mid<_{r}\right.$ is well founded\}. For $r \in \mathbf{W O},|r|$ will denote its length and for $\alpha<\aleph_{1}$, $\mathbf{W O}_{\alpha}=\{r \in \mathbf{W O}| | r \mid=\alpha\}$. Given $r, u \in \mathbf{L O}$, with the same order-type, it is not necessarily the case that $(\omega, r) \cong(\omega, u)$; we will implicitly use the easy fact that there is $u^{\prime} \leqslant_{\mathrm{T}} u$ such that $(\omega, r) \cong\left(\omega, u^{\prime}\right)$. For $k \in \omega$, define the restriction $r \upharpoonright k=\left\{(m, n) \mid m<_{r} k \& n<_{r} k \& m \leqslant_{r} k\right\}$. Note that if $k \notin \operatorname{Field}(r), r \upharpoonright k=\emptyset$. The function $(r, k) \mapsto r \mid k$ is recursive.
1.4. The following result, due to J. Silver, is instrumental to the proof. Martin was the first to use it to derive the existence of $0^{\#}$ from determinacy hypotheses. A proof can be found in [MW, 7.22] or in $[\mathrm{Hg}, \S 1]$.

Theorem. If there is a real c such that every c-admissible ordinal is an L -cardinal then $0^{\#}$ exists.

2. Reals simply defined from ordinals

2.1. Recall that $r \in \mathbf{L O}$ is called a pseudo-well-ordering if any non-empty $\Delta_{1}^{1}(r)$ subset of Field (r) has an r-least element. pWO will denote the set of such orderings. Obviously, $\mathbf{p W O} \supseteq \mathbf{W O}$ and, by a standard computation, $\mathbf{p W O}$ is Σ_{1}^{1}. Harrison in $[\mathrm{Hn}]$ has shown that, for any $u \in \mathbf{p W O}-\mathbf{W O}$, $\operatorname{OrderType}(u)=\omega_{1}^{u} \cdot(1+\boldsymbol{\eta})+\varrho_{u}$, where $\boldsymbol{\eta}$ is the order-type of the rationals, and $\varrho_{u}<\omega_{1}^{u}$.
2.2. Lemma. Any $r \in \mathbf{p W O}$ for which $\omega_{1}^{r}=\omega_{1}^{\mathrm{CK}}$ has an isomorphic recursive copy.

Proof. If r is a well-ordering, then $|r|<\omega_{1}^{\mathrm{CK}}$. Thus the conclusion, by definition of ω_{1}^{CK}.

If, instead, $r \in \mathbf{p W O}-\mathbf{W O}$, then OrderType $(r)=\omega_{1}^{\mathrm{CK}} \cdot(1+\boldsymbol{\eta})+\varrho_{r}$, where $\varrho_{r}<\omega_{1}^{\mathrm{CK}}$. An easy boundedness argument shows that $\{u \in \mathbf{W O} \mid$ u is recursive $\}$ is not Σ_{1}^{1}, whereas $\{u \in \mathbf{p W O} \mid u$ is recursive $\}$ is Σ_{1}^{1}. Pick a recursive $u \in \mathbf{p W O}-\mathbf{W O}$. By trimming some excess, if needed, we may assume $\operatorname{OrderType}(u)=\omega_{1}^{\mathrm{CK}} \cdot(1+\boldsymbol{\eta})$. Informally, then, by stringing together u and a recursive well-ordering of length ϱ_{r}, one constructs a recursive copy of r.
2.3. Given $f \in S_{\infty}$ and $r \subseteq \omega \times \omega$ we denote by $f \cdot r$ the isomorphic copy of r by f. Note that $(f, r) \mapsto f \cdot r$ is a recursive map $S_{\infty} \times \mathcal{R} \rightarrow \mathcal{R}$. Suppose $r, u \subseteq \omega \times \omega$ are isomorphic, say via $g:(\omega, r) \rightarrow(\omega, u)$. For any $Z \subseteq \mathcal{R},\{f \mid f \cdot r \in Z\}=\{f \mid f \cdot u \in Z\} \circ g$. Right multiplication by g being a homeomorphism of S_{∞}, the topological properties of $\{f \mid f \cdot r \in Z\}$ and $\{f \mid f \cdot u \in Z\}$ are identical.
2.4. Theorem. Given $a \in \mathcal{C}$ and $1 \leqslant \alpha<\omega_{1}^{\mathrm{CK}}$, if for some $\eta<\aleph_{1}$ and all $u \in \mathbf{W O}_{\eta}$, a is $\Sigma_{\alpha}^{0}(u)$, then a is, in fact, Σ_{α}^{0}.

Proof. Let $U \subseteq \omega \times \mathcal{R} \times \omega$ be ω-universal for the Σ_{α}^{0} subsets of $\mathcal{R} \times \omega$. Fix $r \in \mathbf{W O}_{\eta}$. From the hypothesis, for all $f \in S_{\infty}$ there is $e \in \omega$ such that $a=U(e, f \cdot r,-)$. The Baire Category Theorem yields an $e_{0} \in \omega$ such that $\left\{f \mid a=U\left(e_{0}, f \cdot r,-\right)\right\}$ is non-meager in S_{∞}. Set $U_{0}=U\left(e_{0},-,-\right)$. Assume now-towards a contradiction-that a is not Σ_{α}^{0}. Consider the set
$A=\left\{(x, v) \mid x \in \mathcal{C}\right.$ is not $\left.\Sigma_{\alpha}^{0} \& v \in \mathbf{p W O} \& \exists^{*} f \in S_{\infty}\left(x=U_{0}(f \cdot v,-)\right)\right\}$.
We first check that A is Σ_{1}^{1}. Indeed, " x is Σ_{α}^{0} " is a Δ_{1}^{1} property of x, $\mathbf{p W O}$ is Σ_{1}^{1}. Finally, " $x=U_{0}(f \cdot v,-)$ " is a Δ_{1}^{1} property of ($\left.x, f, v\right)$, thus, by the category computations of 1.2 , the third conjunct in the definition of A is Δ_{1}^{1}. Further since $(a, r) \in A, A$ is not empty. By the Gandy Basis Theorem [Gn], let $\left(x_{0}, v_{0}\right) \in A$ be such that $\omega_{1}^{\left(x_{0}, v_{0}\right)}=\omega_{1}^{\mathrm{CK}}$. It follows, a fortiori, that $\omega_{1}^{v_{0}}=\omega_{1}^{\mathrm{CK}}$. Let now, by 2.2 above, w_{0} be a recursive copy of v_{0}. By 2.3 , we have $\exists^{*} f \in S_{\infty}\left(x_{0}=U_{0}\left(f \cdot w_{0},-\right)\right)$, since $\left\{f \mid x_{0}=U_{0}\left(f \cdot w_{0},-\right)\right\}$ is a translate in S_{∞} of $\left\{f \mid x_{0}=U_{0}\left(f \cdot v_{0},-\right)\right\}$. Let $V \subseteq S_{\infty}$ be a non-empty basic open set such that $\left\{f \mid x_{0}=U_{0}\left(f \cdot w_{0},-\right)\right\}$ is comeager in V. A straightforward category argument now yields

$$
k \in x_{0} \Leftrightarrow \exists^{*} f \in V\left(U_{0}\left(f \cdot w_{0}, k\right)\right) .
$$

Note that, since w_{0} is recursive, " $U_{0}\left(f \cdot w_{0}, k\right)$ ", as a relation in (f, k), is Σ_{α}^{0}. The category computations of 1.2 now yield that the R.H.S. is Σ_{α}^{0}; yet, by the definition of A, x_{0} is not Σ_{α}^{0}. This contradiction finishes the proof.
2.5. Remarks. (a) The case $\alpha=1$ of this result was proved, by a different method, in the author's [$\mathrm{Sm}, 2.5$]. It was used there to establish a weak precursor of Harrington's theorem.
(b) Our proof shows: If for some $u \in \mathbf{p W O},\left\{f \mid a\right.$ is $\left.\Sigma_{\alpha}^{0}(f \cdot u)\right\}$ is non-meager in S_{∞}, then a is, in fact, Σ_{α}^{0}. This less quotable version of the theorem could be easier to apply.
(c) The " Δ_{1}^{1} version" of 2.4 should read: Given $a \in C$, if there is $u \in \mathbf{W O}$ and a Δ_{1}^{1} relation $D \subseteq \mathcal{R} \times \omega$ such that $\forall f \in S_{\infty}(a=D(f \cdot u,-))$, then a is Δ_{1}^{1}.

3. Harrington's theorem

3.1. As usual, \leqslant_{T} and \leqslant_{h} denote respectively Turing and hyperarithmetic reducibility. A set of reals is said to be Turing-closed if it is closed under Turing equivalence $=_{\mathrm{T}}$. Harrington's theorem proceeds from the, a priori weaker, hypothesis of determinacy of Σ_{1}^{1} games with Turing-closed payoff sets (henceforth: Σ_{1}^{1}-Turing-determinacy). For $c \in \mathcal{C}$, define the Turing cone Cone $(c)=\left\{x \in \mathcal{C} \mid c \leqslant_{\mathrm{T}} x\right\}$. Recall Martin's Lemma [Mr1]: For a Turing-closed set A, the infinite game over A is determined if and only if A or its complement includes a cone.

3.2. Definition. For $a, b \in \mathcal{C}$, set

$$
a \sqsubset b \Leftrightarrow \forall x \leqslant_{\mathrm{h}} a\left(x \leqslant_{\mathrm{T}} b\right) \& \omega_{1}^{a}=\omega_{1}^{b}
$$

and let $\mathcal{S}=\{z \in \mathcal{C} \mid \exists y(y \sqsubset z)\}$.
It is clear, by a direct computation, that the relation \sqsubset is Σ_{1}^{1}. The set \mathcal{S} is the payoff set of the game we are going to use to derive the existence of 0 \#.
3.3. Proposition. \mathcal{S} is Σ_{1}^{1}, Turing-closed and cofinal in the Turing degrees.

Proof. That \mathcal{S} is Turing-closed and Σ_{1}^{1} is immediate from its definition and the complexity of the relation \sqsubset. To prove that \mathcal{S} is cofinal, let $a \in \mathcal{C}$ and set $A=\left\{z \in \mathcal{C} \mid \forall x \leqslant_{\mathrm{h}} a\left(x \leqslant_{\mathrm{T}} z\right)\right\}$. Then A is $\Sigma_{1}^{1}(a)$ and non-empty. By Gandy's Basis Theorem, let $b \in A$ be such that $\omega_{1}^{b} \leqslant \omega_{1}^{a}$. Note that $a \leqslant \mathrm{~T} b$; thus one gets $\omega_{1}^{a}=\omega_{1}^{b}$ and hence $a \sqsubset b$. Consequently, $b \in \mathcal{S}$.

We shall need the following well-known complexity computations; a proof is sketched for the reader's convenience. (The bound here is quite loose, for optimal results see Stern's [Sr].)
3.4. Lemma. For $\alpha<\aleph_{1}$,
(a) $\mathbf{W O}_{\alpha}$ is $\boldsymbol{\Sigma}_{\alpha+2}^{0}$.
(b) Given $r \in \mathbf{W} \mathbf{O}_{\alpha}$, the relation " $u \in \mathbf{W} \mathbf{O}_{|r \upharpoonright k|}$ " in (u, k) is $\Sigma_{\alpha+2}^{0}(r)$.

Proof. (a) is proved by induction on α. First, $\mathbf{W O}_{0}$ is Π_{1}^{0}. Now, if α is a limit ordinal, then

$$
u \in \mathbf{W O}_{\alpha} \Leftrightarrow \bigwedge_{\xi<\alpha} \bigvee_{k<\omega}\left(u \upharpoonright k \in \mathbf{W O}_{\xi}\right) \& \bigwedge_{k<\omega} \bigvee_{\xi<\alpha}\left(u \upharpoonright k \in \mathbf{W O}_{\xi}\right)
$$

(this holds even if $\operatorname{Field}(u) \neq \omega$). Using the inductive hypothesis, $\mathbf{W O}_{\alpha}$ is computed to be in $\boldsymbol{\Pi}_{\alpha+1}^{0} \subseteq \boldsymbol{\Sigma}_{\alpha+2}^{0}$. Finally, if $\alpha=\beta+1$, then

$$
u \in \mathbf{W} \mathbf{O}_{\alpha} \Leftrightarrow u \in \mathbf{L O} \& \exists k\left(k \text { is } \leqslant u \text {-maximum \& } u \upharpoonright k \in \mathbf{W O}_{\beta}\right)
$$

and the R.H.S. is readily checked to be in $\boldsymbol{\Sigma}_{\beta+2}^{0} \subseteq \boldsymbol{\Sigma}_{\alpha+2}^{0}$.
(b) is just the effective version of (a).
3.5. Given $\alpha<\aleph_{1}, r \in \mathbf{W O}_{\alpha}$ and $X \subseteq \alpha$, let $\iota_{r}:(\operatorname{Field}(r), r) \rightarrow(\alpha, \leqslant)$ be the canonical isomorphism, and set $\operatorname{Code}(X, r)=\iota_{r}^{-1}[X]$. Observe that if M is an admissible set and $r \in M$, then $\iota_{r} \in M$ and thus $X \in M \Leftrightarrow$ Code $(X, r) \in M$.

We can now state the key technical property of the elements of \mathcal{S}.
3.6. Lemma. Let $a \in \mathcal{S}, \alpha<\omega_{1}^{a}$ and $r \in \mathbf{W O}_{\alpha}$. For all $X \in \mathcal{P}(\alpha) \cap \mathrm{L}_{\omega_{1}^{a}}$, $\operatorname{Code}(X, r)$ is $\Sigma_{\alpha+2}^{0}(a, r)$.

Proof. Let $a^{\prime} \sqsubset a$. Since $\omega_{1}^{a^{\prime}}=\omega_{1}^{a}$, we have $\alpha<\omega_{1}^{a^{\prime}} ;$ let then $r^{\prime} \in \mathbf{W O}_{\alpha}$ be recursive in a^{\prime} and such that $\left(\omega, r^{\prime}\right) \cong(\omega, r)$. Set $x=\operatorname{Code}(X, r)$ and $x^{\prime}=\operatorname{Code}\left(X, r^{\prime}\right)$. Since $X, r^{\prime} \in \mathrm{L}_{\omega_{1}^{a^{\prime}}}\left[a^{\prime}\right]$, it follows by 3.5 that $x^{\prime} \in \mathrm{L}_{\omega_{1}^{a^{\prime}}}\left[a^{\prime}\right]$. Consequently, $x^{\prime} \leqslant_{\mathrm{h}} a^{\prime}$ and, since $a^{\prime} \sqsubset a, x^{\prime} \leqslant_{\mathrm{T}} a$. Now, for $k \in \omega$, one can easily verify that

$$
k \in x \Leftrightarrow \exists k^{\prime}\left(k^{\prime} \in x^{\prime} \&\left(\omega, r^{\prime}, k^{\prime}\right) \cong(\omega, r, k)\right) .
$$

We claim that the R.H.S. is $\Sigma_{\alpha+2}^{0}(a, r)$. Indeed, since $x^{\prime} \leqslant \mathrm{T} a$, " $k^{\prime} \in x^{\prime \prime}$ " is a $\Sigma_{1}^{0}(a)$ property of k^{\prime}. Set now $I_{r}\left(r^{\prime}, k^{\prime}, k\right) \Leftrightarrow\left(\omega, r^{\prime}, k^{\prime}\right) \cong(\omega, r, k)$. Since $\left(\omega, r^{\prime}\right) \cong(\omega, r), I_{r}\left(r^{\prime}, k^{\prime}, k\right)$ is equivalent to $\left[k \in \operatorname{Field}(r) \Leftrightarrow k^{\prime} \in\right.$ Field $\left.\left(r^{\prime}\right)\right] \& r^{\prime} \upharpoonright k^{\prime} \in \mathbf{W} \mathbf{O}_{|r| k \mid}$. By 3.4(b), I_{r} is $\Sigma_{\alpha+2}^{0}(r)$, and since $r^{\prime} \leqslant \mathrm{T} a$, $I_{r}\left(r^{\prime},-,-\right)$ is $\Sigma_{\alpha+2}^{0}(a, r)$. Thus the claim follows.
3.7. Remark. The, somewhat less intuitive, " Δ_{1}^{1} version" of this last result should read: Given $r \in \mathbf{W O}$, and setting $\alpha=|r|$, there is a $\Delta_{1}^{1}(r)$ set $D_{r} \subseteq \mathcal{C} \times \omega \times \omega$ such that, for any $a \in \mathcal{S}$, if $\omega_{1}^{a}>\alpha$ then for all $X \in \mathcal{P}(\alpha) \cap \mathrm{L}_{\omega_{1}^{a}}$, there is $e \in \omega$ such that $\operatorname{Code}(X, r)=D_{r}(a, e,-)$.

The next proposition is the heart of the proof we are aiming at. Its proof makes essential use of Theorem 2.4.
3.8. Proposition. If a Turing cone Cone (c) is included in \mathcal{S} then every c-admissible ordinal is an L-cardinal.

Proof. By a standard downward Löwenheim-Skolem argument, it suffices to verify that every countable c-admissible ordinal is an L-cardinal. Fur-
ther, we know that by Sacks' Theorem [Sc1] every countable c-admissible ordinal $>\omega$ has the form ω_{1}^{d}, for some $d \in \operatorname{Cone}(c)$. For such a d, $\operatorname{Cone}(d) \subseteq \mathcal{S}$. It suffices, thus, to show that $\operatorname{Cone}(c) \subseteq \mathcal{S}$ implies that ω_{1}^{c} is an L-cardinal.

Assume the contrary. Thus there is $\varrho<\omega_{1}^{c}$ and $W \subseteq \varrho \times \varrho$, a constructible well-ordering of ϱ, of length ω_{1}^{c}. Fix $r \in \mathbf{W O}_{\varrho}$ recursive in c. Via some simple constructible bijection $\varrho \rightarrow \varrho \times \varrho$, code W as a subset $A \subseteq \varrho$. Say $A \in \mathrm{~L}_{\sigma}$, where $\sigma<\aleph_{1}$. Pick any $s \in \mathbf{W O}_{\sigma}$; since $\sigma<\omega_{1}^{s} \leqslant \omega_{1}^{c \oplus s}, A \in \mathrm{~L}_{\omega_{1}^{c \oplus s} .}$. Now $c \oplus s \in \operatorname{Cone}(c) \subseteq \mathcal{S}$, thus, applying Lemma 3.6 to $c \oplus s$, $\operatorname{Code}(A, r)$ is $\Sigma_{\varrho+2}^{0}(c \oplus s, r)$. Consequently, since $r \leqslant_{\mathrm{T}} c$, $\operatorname{Code}(A, r)$ is $\Sigma_{\varrho+2}^{0}(c \oplus s)$. This being true for every $s \in \mathbf{W O}_{\sigma}$, Theorem 2.4 relativized to c yields that $\operatorname{Code}(A, r)$ is $\Sigma_{\varrho+2}^{0}(c)$. Thus Code $(A, r) \in \mathrm{L}_{\omega_{1}^{c}}[c]$ and, since $r \leqslant_{\mathrm{T}} c$, this entails that $A \in \mathrm{~L}_{\omega_{1}^{c}}[c]$ and thus $W \in \mathrm{~L}_{\omega_{1}^{c}}[c]$. This in turn contradicts the admissibility of $\mathrm{L}_{\omega_{1}^{c}}[c]$.

Our concluding statement is now but a direct consequence of what precedes.
3.9. Theorem (Harrington $[\mathrm{Hg}]$). Σ_{1}^{1}-Turing-determinacy implies the existence of 0 \#.

Proof. Since \mathcal{S} is Σ_{1}^{1} and cofinal in the degrees, Σ_{1}^{1}-Turing-determinacy implies, via Martin's Lemma, that there is a cone Cone $(c) \subseteq \mathcal{S}$. By 3.8, every c-admissible ordinal is an L-cardinal. Thus, by Silver's Theorem 1.4, $0^{\#}$ exists.

4. Borel reducibility of analytic sets

4.1. For $A, B \subseteq \mathcal{C}$ let $A \leqslant_{\mathcal{B}} B$ stand for: A is many-one reducible to B via a Borel function. In $[\mathrm{Hg}]$ Harrington proves the following:
4.2. Theorem. If for all Σ_{1}^{1} sets $A, B, A \leqslant \mathcal{B} B$ whenever B is not Borel, then $0^{\#}$ exists.

The technique used in the previous section can be easily adapted to prove this result as well. We just sketch the main steps.

Let U be the closure under isomorphism of $\mathbf{p W O}-\mathbf{W O}$. Then U is Σ_{1}^{1} and it is easily checked that neither U nor \mathcal{S} is Borel. From the hypothesis, let $F: \mathcal{R} \rightarrow \mathcal{R}$ be a Borel reduction of U to \mathcal{S}.

Observe first that for all $\xi<\aleph_{1}$ there is $u \in U$ such that $\exists^{*} f(\xi<$ $\left.\omega_{1}^{F(f \cdot u)}\right)$. Indeed, otherwise, one argues that for some $\xi<\aleph_{1}$,

$$
u \in U \Leftrightarrow \forall^{*} f\left(F(f \cdot u) \in\left\{x \in \mathcal{S} \mid \omega_{1}^{x} \leq \xi\right\}\right)
$$

and the R.H.S. is Borel.
F being in $\boldsymbol{\Delta}_{1}^{1}$, say F is $\Delta_{1}^{1}(c)$. We claim that every c-admissible ordinal is an L-cardinal. For that it suffices to show that ω_{1}^{c} is such.

Argue as in 3.8. Let $\varrho<\omega_{1}^{c}$, and $A \subseteq \varrho$ be constructible. Say $A \in \mathrm{~L}_{\sigma}$, with σ countable. To show $A \in \mathrm{~L}_{\omega_{1}^{c}}[c]$ let $u \in U$ be such that $\exists^{*} f\left(\sigma<\omega_{1}^{F(f \cdot u)}\right)$. For any $r \in \mathbf{W O}_{\varrho}$, using 3.6 one gets

$$
\exists^{*} f\left(\operatorname{Code}(A, r) \text { is } \Sigma_{\varrho+2}^{0}(F(f \cdot u), r)\right)
$$

Now we can assume ϱ to be large enough relative to the Borel rank of F and $r \leqslant_{\mathrm{T}} c$. It follows that $\exists^{*} f\left(\operatorname{Code}(A, r)\right.$ is $\left.\Sigma_{\varrho+2}^{0}(f \cdot u, c)\right)$. Using Theorem 2.4 (as generalized in $2.5(\mathrm{~b})$) one concludes that $\operatorname{Code}(A, r)$ is $\Sigma_{\varrho+2}^{0}(c)$. Thus $A \in \mathrm{~L}_{\omega_{1}^{c}}[c]$, as desired.

References

[Gn] R. O. Gandy, On a problem of Kleene's, Bull. Amer. Math. Soc. 66 (1960), 501-502.
[Hg] L. A. Harrington, Analytic determinacy and 0\#, J. Symbolic Logic 43 (1978), 685-693.
[Hn] J. Harrison, Recursive pseudo-well-orderings, Trans. Amer. Math. Soc. 131 (1968), 526-543.
[Kn] A. Kanamori, The Higher Infinite, 2nd printing, Springer, Berlin, 1997.
[Kc] A. S. Kechris, Measure and category in effective descriptive set-theory, Ann. Math. Logic 5 (1973), 337-384.
[MW] R. Mansfield and G. Weitkamp, Recursive Aspects of Descriptive Set Theory, Oxford Univ. Press, Oxford, 1985.
[Mr1] D. A. Martin, The axiom of determinacy and reduction principles in the analytical hierarchy, Bull. Amer. Math. Soc. 74 (1968), 687-689.
[Mr2] -, Measurable cardinals and analytic games, Fund. Math. 66 (1970), 287-291.
[Ms] Y. N. Moschovakis, Descriptive Set Theory, North-Holland, Amsterdam, 1980.
[Sc1] G. E. Sacks, Countable admissible ordinals and hyperdegrees, Adv. Math. 19 (1976), 213-262.
[Sc2] -, Higher Recursion Theory, Springer, Berlin, 1990.
[Sm] R. L. Sami, Questions in descriptive set theory and the determinacy of infinite games, Ph.D. Dissertation, Univ. of California, Berkeley, 1976.
[Sl] J. Steel, Forcing with tagged trees, Ann. Math. Logic 15 (1978), 55-74.
[Sr] J. Stern, Evaluation du rang de Borel de certains ensembles, C. R. Acad. Sci. Paris Sér. I 286 (1978), 855-857.

UFR de Mathématiques
Université Paris 7
75251 Paris Cedex 05, France
E-mail: sami@logique.jussieu.fr

Received 10 December 1997;
in revised form 20 September 1998

[^0]: 1991 Mathematics Subject Classification: 03D55, 03D60, 03E15, 03E55, 03E60, 04A15.
 $\left({ }^{1}\right)$ For an excellent mathematical and chronological account of the context of this last result, describing inter alia the important contributions of H. Friedman and D. A. Martin, see Kanamori's [Kn], $\S 31$.

