Analytic determinacy and $0^{\#}$ A forcing-free proof of Harrington's theorem

by

Ramez L. Sami (Paris)

Abstract. We prove the following theorem: Given $a \subseteq \omega$ and $1 \leq \alpha < \omega_1^{\text{CK}}$, if for some $\eta < \aleph_1$ and all $u \in \mathbf{WO}$ of length η , a is $\Sigma^0_{\alpha}(u)$, then a is Σ^0_{α} . We use this result to give a new, forcing-free, proof of Leo Harrington's theorem: Σ^1_1 -Turing-determinacy implies the existence of $0^{\#}$.

A major step in delineating the precise connections between large cardinals and game-determinacy hypotheses is the well-known theorem: For any real a, $\Sigma_1^1(a)$ games are determined if and only if $a^{\#}$ exists. The "if" part is due to D. A. Martin [Mr2], and the "only if" part is Leo Harrington's [Hg] (¹). Harrington's proof of this result is quite complex, relying on a fine analysis due to John Steel [Sl] of the ordinal-collapse forcing relation (a variant of this proof is given in Mansfield and Weitkamp's [MW].)

We propose here a new, forcing-free and quite elementary proof, Theorem 3.9. Our proof is built upon a new ordinal-definability theorem, for reals, which is interesting in its own right, namely Theorem 2.4:

For $\alpha < \omega_1^{\text{CK}}$, if a real is Σ_{α}^0 in (all codes of) some countable ordinal, it is Σ_{α}^0 .

A further simplification is brought about by the use of an easily defined game (Definition 3.2) avoiding metamathematical notions. In §4, using the same techniques, we sketch a proof of a related result of Harrington.

I wish to thank Alain Louveau for inspiring conversations during early stages of this work.

¹⁹⁹¹ Mathematics Subject Classification: 03D55, 03D60, 03E15, 03E55, 03E60, 04A15. (¹) For an excellent mathematical and chronological account of the context of this last result, describing *inter alia* the important contributions of H. Friedman and D. A. Martin, see Kanamori's [Kn], §31.

^[153]

1. Preliminaries and background

1.1. We refer to Moschovakis' [Ms] for (effective) descriptive set theory and for the theory of infinite games. $C = \mathcal{P}(\omega)$ is the Cantor space or the set of reals, $\mathcal{R} = \mathcal{P}(\omega \times \omega)$ is the space of relations on ω and S_{∞} is the space of permutations of ω , each equipped with its usual recursively presented Polish topology. Basic hyperarithmetic theory and the connection with admissible sets and ordinals are assumed (see Sacks' [Sc2] or [MW]). We will make use of the effective Borel hierarchy Σ^0_{α} , $\alpha < \omega_1^{CK}$, and its relativizations. The reader who is averse to the effective hierarchy can easily recast all statements and proofs below in terms of Δ_1^1 sets. This leads to slightly shorter proofs of somewhat less transparent statements. (We have stated, in Remarks 2.5(c) and 3.7, " Δ_1^1 versions" of the key steps towards the main result.)

1.2. Let $R \subseteq \mathcal{X} \times \mathcal{Y}$ where \mathcal{Y} is a topological space. Recall that the category quantifier " $\exists^* y(R(x,y))$ " stands for: the set $\{y \in \mathcal{Y} \mid R(x,y)\}$ is non-meager in \mathcal{Y} . We will make use of the category computations from Kechris' [Kc]: For $R \subseteq \mathcal{X} \times \mathcal{Y}$, where \mathcal{X} and \mathcal{Y} are recursively presented Polish spaces and R is Σ^0_{α} with $\alpha < \omega_1^{\text{CK}}$ [resp. R is Δ_1^1], the relation $\exists^* y(R(-,y))$ is Σ^0_{α} [resp. Δ_1^1].

1.3. Linear orderings will be taken to be reflexive, that is, non-strict. $\mathbf{LO} = \{r \subseteq \omega \times \omega \mid r \text{ is a linear ordering of its field}\}$. For $r \in \mathbf{LO}$, \leq_r is just r and $<_r$ has the usual meaning. Next, $\mathbf{WO} = \{r \in \mathbf{LO} \mid <_r \text{ is well founded}\}$. For $r \in \mathbf{WO}$, |r| will denote its length and for $\alpha < \aleph_1$, $\mathbf{WO}_{\alpha} = \{r \in \mathbf{WO} \mid |r| = \alpha\}$. Given $r, u \in \mathbf{LO}$, with the same order-type, it is not necessarily the case that $(\omega, r) \cong (\omega, u)$; we will implicitly use the easy fact that there is $u' \leq_T u$ such that $(\omega, r) \cong (\omega, u')$. For $k \in \omega$, define the restriction $r \upharpoonright k = \{(m, n) \mid m <_r k \& n <_r k \& m \leqslant_r k\}$. Note that if $k \notin \text{Field}(r), r \upharpoonright k = \emptyset$. The function $(r, k) \mapsto r \upharpoonright k$ is recursive.

1.4. The following result, due to J. Silver, is instrumental to the proof. Martin was the first to use it to derive the existence of $0^{\#}$ from determinacy hypotheses. A proof can be found in [MW, 7.22] or in [Hg, §1].

THEOREM. If there is a real c such that every c-admissible ordinal is an L-cardinal then $0^{\#}$ exists.

2. Reals simply defined from ordinals

2.1. Recall that $r \in \mathbf{LO}$ is called a *pseudo-well-ordering* if any non-empty $\Delta_1^1(r)$ subset of Field(r) has an r-least element. **pWO** will denote the set of such orderings. Obviously, **pWO** \supseteq **WO** and, by a standard computation, **pWO** is Σ_1^1 . Harrison in [Hn] has shown that, for any $u \in \mathbf{pWO} - \mathbf{WO}$, OrderType $(u) = \omega_1^u \cdot (1 + \eta) + \varrho_u$, where η is the order-type of the rationals, and $\varrho_u < \omega_1^u$.

2.2. LEMMA. Any $r \in \mathbf{pWO}$ for which $\omega_1^r = \omega_1^{CK}$ has an isomorphic recursive copy.

Proof. If r is a well-ordering, then $|r| < \omega_1^{\text{CK}}$. Thus the conclusion, by definition of ω_1^{CK} .

If, instead, $r \in \mathbf{pWO} - \mathbf{WO}$, then $\operatorname{OrderType}(r) = \omega_1^{\operatorname{CK}} \cdot (1 + \eta) + \varrho_r$, where $\varrho_r < \omega_1^{\operatorname{CK}}$. An easy boundedness argument shows that $\{u \in \mathbf{WO} \mid u \text{ is recursive}\}$ is not Σ_1^1 , whereas $\{u \in \mathbf{pWO} \mid u \text{ is recursive}\}$ is Σ_1^1 . Pick a recursive $u \in \mathbf{pWO} - \mathbf{WO}$. By trimming some excess, if needed, we may assume $\operatorname{OrderType}(u) = \omega_1^{\operatorname{CK}} \cdot (1 + \eta)$. Informally, then, by stringing together u and a recursive well-ordering of length ϱ_r , one constructs a recursive copy of r.

2.3. Given $f \in S_{\infty}$ and $r \subseteq \omega \times \omega$ we denote by $f \cdot r$ the isomorphic copy of r by f. Note that $(f, r) \mapsto f \cdot r$ is a recursive map $S_{\infty} \times \mathcal{R} \to \mathcal{R}$. Suppose $r, u \subseteq \omega \times \omega$ are isomorphic, say via $g : (\omega, r) \to (\omega, u)$. For any $Z \subseteq \mathcal{R}, \{f \mid f \cdot r \in Z\} = \{f \mid f \cdot u \in Z\} \circ g$. Right multiplication by g being a homeomorphism of S_{∞} , the topological properties of $\{f \mid f \cdot r \in Z\}$ and $\{f \mid f \cdot u \in Z\}$ are identical.

2.4. THEOREM. Given $a \in C$ and $1 \leq \alpha < \omega_1^{CK}$, if for some $\eta < \aleph_1$ and all $u \in \mathbf{WO}_{\eta}$, a is $\Sigma^0_{\alpha}(u)$, then a is, in fact, Σ^0_{α} .

Proof. Let $U \subseteq \omega \times \mathcal{R} \times \omega$ be ω -universal for the Σ_{α}^{0} subsets of $\mathcal{R} \times \omega$. Fix $r \in \mathbf{WO}_{\eta}$. From the hypothesis, for all $f \in S_{\infty}$ there is $e \in \omega$ such that $a = U(e, f \cdot r, -)$. The Baire Category Theorem yields an $e_{0} \in \omega$ such that $\{f \mid a = U(e_{0}, f \cdot r, -)\}$ is non-meager in S_{∞} . Set $U_{0} = U(e_{0}, -, -)$. Assume now—towards a contradiction—that a is not Σ_{α}^{0} . Consider the set

 $A = \{(x, v) \mid x \in \mathcal{C} \text{ is not } \Sigma^0_\alpha \& v \in \mathbf{pWO} \& \exists^* f \in S_\infty(x = U_0(f \cdot v, -))\}.$

We first check that A is Σ_1^1 . Indeed, "x is Σ_{α}^0 " is a Δ_1^1 property of x, **pWO** is Σ_1^1 . Finally, " $x = U_0(f \cdot v, -)$ " is a Δ_1^1 property of (x, f, v), thus, by the category computations of 1.2, the third conjunct in the definition of A is Δ_1^1 . Further since $(a, r) \in A$, A is not empty. By the Gandy Basis Theorem [Gn], let $(x_0, v_0) \in A$ be such that $\omega_1^{(x_0, v_0)} = \omega_1^{\text{CK}}$. It follows, a fortiori, that $\omega_1^{v_0} = \omega_1^{\text{CK}}$. Let now, by 2.2 above, w_0 be a recursive copy of v_0 . By 2.3, we have $\exists^* f \in S_{\infty}(x_0 = U_0(f \cdot w_0, -))$, since $\{f \mid x_0 = U_0(f \cdot w_0, -)\}$ is a translate in S_{∞} of $\{f \mid x_0 = U_0(f \cdot v_0, -)\}$. Let $V \subseteq S_{\infty}$ be a non-empty basic open set such that $\{f \mid x_0 = U_0(f \cdot w_0, -)\}$ is comeager in V. A straightforward category argument now yields

$$k \in x_0 \Leftrightarrow \exists^* f \in V(U_0(f \cdot w_0, k)).$$

Note that, since w_0 is recursive, " $U_0(f \cdot w_0, k)$ ", as a relation in (f, k), is Σ^0_{α} . The category computations of 1.2 now yield that the R.H.S. is Σ^0_{α} ; yet, by the definition of A, x_0 is not Σ^0_{α} . This contradiction finishes the proof.

2.5. REMARKS. (a) The case $\alpha = 1$ of this result was proved, by a different method, in the author's [Sm, 2.5]. It was used there to establish a weak precursor of Harrington's theorem.

(b) Our proof shows: If for some $u \in \mathbf{pWO}$, $\{f \mid a \text{ is } \Sigma^0_{\alpha}(f \cdot u)\}$ is non-meager in S_{∞} , then a is, in fact, Σ^0_{α} . This less quotable version of the theorem could be easier to apply.

(c) The " Δ_1^1 version" of 2.4 should read: Given $a \in C$, if there is $u \in \mathbf{WO}$ and a Δ_1^1 relation $D \subseteq \mathcal{R} \times \omega$ such that $\forall f \in S_{\infty}(a = D(f \cdot u, -))$, then a is Δ_1^1 .

3. Harrington's theorem

3.1. As usual, \leq_{T} and \leq_{h} denote respectively Turing and hyperarithmetic reducibility. A set of reals is said to be *Turing-closed* if it is closed under Turing equivalence $=_{\mathrm{T}}$. Harrington's theorem proceeds from the, a priori weaker, hypothesis of determinacy of Σ_1^1 games with Turing-closed payoff sets (henceforth: Σ_1^1 -*Turing-determinacy*). For $c \in \mathcal{C}$, define the *Turing cone* Cone $(c) = \{x \in \mathcal{C} \mid c \leq_{\mathrm{T}} x\}$. Recall Martin's Lemma [Mr1]: For a *Turing-closed set A*, the infinite game over A is determined if and only if A or its complement includes a cone.

3.2. DEFINITION. For $a, b \in C$, set

$$a \sqsubset b \Leftrightarrow \forall x \leqslant_{\mathrm{h}} a(x \leqslant_{\mathrm{T}} b) \& \omega_1^a = \omega_1^b$$

and let $\mathcal{S} = \{ z \in \mathcal{C} \mid \exists y(y \sqsubset z) \}.$

It is clear, by a direct computation, that the relation \sqsubset is Σ_1^1 . The set \mathcal{S} is the payoff set of the game we are going to use to derive the existence of $0^{\#}$.

3.3. PROPOSITION. S is Σ_1^1 , Turing-closed and cofinal in the Turing degrees.

Proof. That \mathcal{S} is Turing-closed and Σ_1^1 is immediate from its definition and the complexity of the relation \Box . To prove that \mathcal{S} is cofinal, let $a \in \mathcal{C}$ and set $A = \{z \in \mathcal{C} \mid \forall x \leq_h a(x \leq_T z)\}$. Then A is $\Sigma_1^1(a)$ and non-empty. By Gandy's Basis Theorem, let $b \in A$ be such that $\omega_1^b \leq \omega_1^a$. Note that $a \leq_T b$; thus one gets $\omega_1^a = \omega_1^b$ and hence $a \sqsubset b$. Consequently, $b \in \mathcal{S}$.

We shall need the following well-known complexity computations; a proof is sketched for the reader's convenience. (The bound here is quite loose, for optimal results see Stern's [Sr].)

3.4. LEMMA. For $\alpha < \aleph_1$,

(a)
$$\mathbf{WO}_{\alpha}$$
 is $\Sigma^{0}_{\alpha+2}$.

(b) Given $r \in \mathbf{WO}_{\alpha}$, the relation " $u \in \mathbf{WO}_{|r|k|}$ " in (u,k) is $\Sigma^0_{\alpha+2}(r)$.

Proof. (a) is proved by induction on α . First, **WO**₀ is Π_1^0 . Now, if α is a limit ordinal, then

$$u \in \mathbf{WO}_{\alpha} \Leftrightarrow \bigwedge_{\xi < \alpha} \bigvee_{k < \omega} (u \restriction k \in \mathbf{WO}_{\xi}) \ \& \ \bigwedge_{k < \omega} \bigvee_{\xi < \alpha} (u \restriction k \in \mathbf{WO}_{\xi})$$

(this holds even if Field(u) $\neq \omega$). Using the inductive hypothesis, \mathbf{WO}_{α} is computed to be in $\mathbf{\Pi}_{\alpha+1}^0 \subseteq \mathbf{\Sigma}_{\alpha+2}^0$. Finally, if $\alpha = \beta + 1$, then

$$u \in \mathbf{WO}_{\alpha} \Leftrightarrow u \in \mathbf{LO} \& \exists k(k \text{ is } \leq_{u} \text{-maximum } \& u \upharpoonright k \in \mathbf{WO}_{\beta})$$

and the R.H.S. is readily checked to be in $\Sigma^0_{\beta+2} \subseteq \Sigma^0_{\alpha+2}$.

(b) is just the effective version of (a). \blacksquare

3.5. Given $\alpha < \aleph_1, r \in \mathbf{WO}_{\alpha}$ and $X \subseteq \alpha$, let $\iota_r : (\text{Field}(r), r) \to (\alpha, \leqslant)$ be the canonical isomorphism, and set $\text{Code}(X, r) = \iota_r^{-1}[X]$. Observe that if M is an admissible set and $r \in M$, then $\iota_r \in M$ and thus $X \in M \Leftrightarrow$ $\text{Code}(X, r) \in M$.

We can now state the key technical property of the elements of \mathcal{S} .

3.6. LEMMA. Let $a \in S$, $\alpha < \omega_1^a$ and $r \in \mathbf{WO}_{\alpha}$. For all $X \in \mathcal{P}(\alpha) \cap \mathsf{L}_{\omega_1^a}$, $\operatorname{Code}(X, r)$ is $\Sigma_{\alpha+2}^0(a, r)$.

Proof. Let $a' \sqsubset a$. Since $\omega_1^{a'} = \omega_1^a$, we have $\alpha < \omega_1^{a'}$; let then $r' \in \mathbf{WO}_{\alpha}$ be recursive in a' and such that $(\omega, r') \cong (\omega, r)$. Set $x = \operatorname{Code}(X, r)$ and $x' = \operatorname{Code}(X, r')$. Since $X, r' \in \mathsf{L}_{\omega_1^{a'}}[a']$, it follows by 3.5 that $x' \in \mathsf{L}_{\omega_1^{a'}}[a']$. Consequently, $x' \leq_{\mathsf{h}} a'$ and, since $a' \sqsubset a, x' \leq_{\mathsf{T}} a$. Now, for $k \in \omega$, one can easily verify that

$$k \in x \Leftrightarrow \exists k'(k' \in x' \& (\omega, r', k') \cong (\omega, r, k)).$$

We claim that the R.H.S. is $\Sigma_{\alpha+2}^{0}(a, r)$. Indeed, since $x' \leq_{\mathrm{T}} a$, " $k' \in x'$ " is a $\Sigma_{1}^{0}(a)$ property of k'. Set now $I_{r}(r', k', k) \Leftrightarrow (\omega, r', k') \cong (\omega, r, k)$. Since $(\omega, r') \cong (\omega, r)$, $I_{r}(r', k', k)$ is equivalent to $[k \in \mathrm{Field}(r) \Leftrightarrow k' \in \mathrm{Field}(r')]$ & $r' \upharpoonright k' \in \mathbf{WO}_{|r \upharpoonright k|}$. By 3.4(b), I_{r} is $\Sigma_{\alpha+2}^{0}(r)$, and since $r' \leq_{\mathrm{T}} a$, $I_{r}(r', -, -)$ is $\Sigma_{\alpha+2}^{0}(a, r)$. Thus the claim follows.

3.7. REMARK. The, somewhat less intuitive, " Δ_1^1 version" of this last result should read: Given $r \in \mathbf{WO}$, and setting $\alpha = |r|$, there is a $\Delta_1^1(r)$ set $D_r \subseteq \mathcal{C} \times \omega \times \omega$ such that, for any $a \in \mathcal{S}$, if $\omega_1^a > \alpha$ then for all $X \in \mathcal{P}(\alpha) \cap \mathsf{L}_{\omega_1^a}$, there is $e \in \omega$ such that $\mathrm{Code}(X, r) = D_r(a, e, -)$.

The next proposition is the heart of the proof we are aiming at. Its proof makes essential use of Theorem 2.4.

3.8. PROPOSITION. If a Turing cone Cone(c) is included in S then every *c*-admissible ordinal is an L-cardinal.

Proof. By a standard downward Löwenheim–Skolem argument, it suffices to verify that every *countable c*-admissible ordinal is an L-cardinal. Further, we know that by Sacks' Theorem [Sc1] every countable *c*-admissible ordinal > ω has the form ω_1^d , for some $d \in \text{Cone}(c)$. For such a d, $\text{Cone}(d) \subseteq S$. It suffices, thus, to show that $\text{Cone}(c) \subseteq S$ implies that ω_1^c is an L-cardinal.

Assume the contrary. Thus there is $\rho < \omega_1^c$ and $W \subseteq \rho \times \rho$, a constructible well-ordering of ρ , of length ω_1^c . Fix $r \in \mathbf{WO}_{\rho}$ recursive in c. Via some simple constructible bijection $\rho \to \rho \times \rho$, code W as a subset $A \subseteq \rho$. Say $A \in \mathsf{L}_{\sigma}$, where $\sigma < \aleph_1$. Pick any $s \in \mathbf{WO}_{\sigma}$; since $\sigma < \omega_1^s \leq \omega_1^{c\oplus s}$, $A \in \mathsf{L}_{\omega_1^{c\oplus s}}$. Now $c \oplus s \in \operatorname{Cone}(c) \subseteq S$, thus, applying Lemma 3.6 to $c \oplus s$, $\operatorname{Code}(A, r)$ is $\Sigma_{\rho+2}^0(c \oplus s, r)$. Consequently, since $r \leq_{\mathrm{T}} c$, $\operatorname{Code}(A, r)$ is $\Sigma_{\rho+2}^0(c \oplus s)$. This being true for every $s \in \mathbf{WO}_{\sigma}$, Theorem 2.4 relativized to c yields that $\operatorname{Code}(A, r)$ is $\Sigma_{\rho+2}^0(c)$. Thus $\operatorname{Code}(A, r) \in \mathsf{L}_{\omega_1^c}[c]$ and, since $r \leq_{\mathrm{T}} c$, this entails that $A \in \mathsf{L}_{\omega_1^c}[c]$ and thus $W \in \mathsf{L}_{\omega_1^c}[c]$. This in turn contradicts the admissibility of $\mathsf{L}_{\omega_1^c}[c]$.

Our concluding statement is now but a direct consequence of what precedes.

3.9. THEOREM (Harrington [Hg]). Σ_1^1 -Turing-determinacy implies the existence of $0^{\#}$.

Proof. Since S is Σ_1^1 and cofinal in the degrees, Σ_1^1 -Turing-determinacy implies, *via* Martin's Lemma, that there is a cone $\text{Cone}(c) \subseteq S$. By 3.8, every *c*-admissible ordinal is an L-cardinal. Thus, by Silver's Theorem 1.4, $0^{\#}$ exists.

4. Borel reducibility of analytic sets

4.1. For $A, B \subseteq C$ let $A \leq_{\mathcal{B}} B$ stand for: A is many-one reducible to B via a Borel function. In [Hg] Harrington proves the following:

4.2. THEOREM. If for all Σ_1^1 sets $A, B, A \leq_{\mathcal{B}} B$ whenever B is not Borel, then $0^{\#}$ exists.

The technique used in the previous section can be easily adapted to prove this result as well. We just sketch the main steps.

Let U be the closure under isomorphism of $\mathbf{pWO} - \mathbf{WO}$. Then U is Σ_1^1 and it is easily checked that neither U nor S is Borel. From the hypothesis, let $F : \mathcal{R} \to \mathcal{R}$ be a Borel reduction of U to S.

Observe first that for all $\xi < \aleph_1$ there is $u \in U$ such that $\exists^* f(\xi < \omega_1^{F(f \cdot u)})$. Indeed, otherwise, one argues that for some $\xi < \aleph_1$,

$$u \in U \Leftrightarrow \forall^* f(F(f \cdot u) \in \{x \in \mathcal{S} \mid \omega_1^x \le \xi\})$$

and the R.H.S. is Borel.

F being in Δ_1^1 , say F is $\Delta_1^1(c)$. We claim that every c-admissible ordinal is an L-cardinal. For that it suffices to show that ω_1^c is such.

Argue as in 3.8. Let $\rho < \omega_1^c$, and $A \subseteq \rho$ be constructible. Say $A \in \mathsf{L}_{\sigma}$, with σ countable. To show $A \in \mathsf{L}_{\omega_1^c}[c]$ let $u \in U$ be such that $\exists^* f(\sigma < \omega_1^{F(f \cdot u)})$. For any $r \in \mathbf{WO}_{\rho}$, using 3.6 one gets

$$\exists^* f(\operatorname{Code}(A, r) \text{ is } \Sigma^0_{o+2}(F(f \cdot u), r)).$$

Now we can assume ρ to be large enough relative to the Borel rank of F and $r \leq_{\mathrm{T}} c$. It follows that $\exists^* f(\operatorname{Code}(A, r) \text{ is } \Sigma^0_{\rho+2}(f \cdot u, c))$. Using Theorem 2.4 (as generalized in 2.5(b)) one concludes that $\operatorname{Code}(A, r)$ is $\Sigma^0_{\rho+2}(c)$. Thus $A \in \mathsf{L}_{\omega_1^c}[c]$, as desired.

References

- [Gn] R. O. Gandy, On a problem of Kleene's, Bull. Amer. Math. Soc. 66 (1960), 501–502.
- [Hg] L. A. Harrington, Analytic determinacy and 0[#], J. Symbolic Logic 43 (1978), 685-693.
- [Hn] J. Harrison, Recursive pseudo-well-orderings, Trans. Amer. Math. Soc. 131 (1968), 526-543.
- [Kn] A. Kanamori, The Higher Infinite, 2nd printing, Springer, Berlin, 1997.
- [Kc] A. S. Kechris, Measure and category in effective descriptive set-theory, Ann. Math. Logic 5 (1973), 337–384.
- [MW] R. Mansfield and G. Weitkamp, Recursive Aspects of Descriptive Set Theory, Oxford Univ. Press, Oxford, 1985.
- [Mr1] D. A. Martin, The axiom of determinacy and reduction principles in the analytical hierarchy, Bull. Amer. Math. Soc. 74 (1968), 687–689.
- [Mr2] —, Measurable cardinals and analytic games, Fund. Math. 66 (1970), 287–291.
- [Ms] Y. N. Moschovakis, Descriptive Set Theory, North-Holland, Amsterdam, 1980.
- [Sc1] G. E. Sacks, Countable admissible ordinals and hyperdegrees, Adv. Math. 19 (1976), 213–262.
- [Sc2] —, Higher Recursion Theory, Springer, Berlin, 1990.
- [Sm] R. L. Sami, Questions in descriptive set theory and the determinacy of infinite games, Ph.D. Dissertation, Univ. of California, Berkeley, 1976.
- [Sl] J. Steel, Forcing with tagged trees, Ann. Math. Logic 15 (1978), 55–74.
- [Sr] J. Stern, Evaluation du rang de Borel de certains ensembles, C. R. Acad. Sci. Paris Sér. I 286 (1978), 855–857.

UFR de Mathématiques Université Paris 7 75251 Paris Cedex 05, France E-mail: sami@logique.jussieu.fr

> Received 10 December 1997; in revised form 20 September 1998