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Countable partitions of the sets of points and lines

by

James H. S c h m e r l (Storrs, Conn.)

Abstract. The following theorem is proved, answering a question raised by Davies in
1963. If L0 ∪L1 ∪L2 ∪ . . . is a partition of the set of lines of Rn, then there is a partition
Rn = S0 ∪ S1 ∪ S2 ∪ . . . such that |` ∩ Si| ≤ 2 whenever ` ∈ Li. There are generalizations
to some other, higher-dimensional subspaces, improving recent results of Erdős, Jackson
& Mauldin.

0. Introduction. A series of papers, beginning in 1919 with Sierpiński
[7] and ending with the 1963 paper of Davies [1], culminates in the following
theorem. Simms [8] presents a detailed and fascinating account of the history
of this and related theorems.

Theorem 0.1 (Davies). If m < ω, then the following are equivalent :

(1) 2ℵ0 ≤ ℵm;
(2) if 2 ≤ n < ω and L = L0 ∪ L1 ∪ . . . ∪ Lm+1 is a partition of the set

of lines of Rn, then there is a partition Rn = S0 ∪S1 ∪ . . .∪Sm+1 such that
for each ` ∈ Li, ` ∩ Si is finite;

(3) there are pairwise nonparallel lines d0, d1, . . . , dm+1 in R2 and a par-
tition R2 = S0 ∪ S1 ∪ . . . ∪ Sm such that if a line ` is parallel to di, then
` ∩ Si is finite.

Prior to the publication of this result, yet motivated by some similar
results on finite partitions, Erdős [3] had asked about infinite partitions: If
L = L0∪L1∪L2∪. . . is a countable partition of the set of lines of R2, is there
a partition R2 = S0∪S1∪S2∪. . . such that for each ` ∈ Li, |`∩Si| ≤ 1? This
question was answered negatively by Davies [2]. However, on the positive
side, Davies [2] proved the following two closely related theorems.
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Theorem 0.2. Let L = L0 ∪L1 ∪L2 ∪ . . . be a countable partition of the
set of lines of Rn. Then there is a countable partition Rn = S0∪S1∪S2∪ . . .
such that whenever ` ∈ Li, then ` ∩ Si is finite.

Theorem 0.3. (Assume 2ℵ0 ≤ ℵm.) Let L = L0 ∪ L1 ∪ L2 ∪ . . . be
a countable partition of the set of lines of Rn. Then there is a countable
partition Rn = S0 ∪ S1 ∪ S2 ∪ . . . such that whenever ` ∈ Li, then |` ∩ Si| ≤
m+ 1.

Some generalizations of Theorems 0.2 and 0.3 can be found in Erdős,
Jackson & Mauldin [4]. Influenced by (2)⇒(1) of Theorem 0.1, Davies [2]
suggested that the converse of Theorem 0.3 might be true (more precisely:
that ZFC proves that the statement in Theorem 0.3 implies that 2ℵ0 ≤ ℵm),
and in [4] it is asked if it is true (or consistent) that the conclusion of
Theorem 0.2 can be strengthened to |` ∩ Si| ≤ 2, perhaps for just n = 2.
It was then subsequently proved by Erdős, Jackson & Mauldin [5] that it
is consistent that the converse of Theorem 0.3 does not hold for n = 2 and
m ≥ 2; specifically, it was proved that Martin’s Axiom (MA) implies that
the conclusion in Theorem 0.2 could be replaced by |` ∩ Si| ≤ 3. However,
this still left open the possibility that the converse of Theorem 0.3 held when
m = 1. These questions, and similar ones, are answered in this paper, the
main result of which is the following definitive improvement to Theorems
0.2 and 0.3.

Theorem 0.4. Let L = L0 ∪L1 ∪L2 ∪ . . . be a countable partition of the
set of lines of Rn. Then there is a countable partition Rn = S0∪S1∪S2∪ . . .
of the set of points such that whenever ` ∈ Li, then |` ∩ Si| ≤ 2.

A proof of this theorem and some other theorems on partitions of the
sets of points and lines will be given in §2, and in §3 there are some gener-
alizations concerning partitions of the sets of points and hyperplanes. The
method of proof of Theorem 0.4 is derived from [6] where some similar sorts
of theorems are proved. In §1 we review some preliminary material from [6]
and, at the same time, establish some conventions, terminology and nota-
tion.

1. Preliminaries. If X is any set and n < ω, then [X]n is the set of
n-element subsets of X and [X]<ω is the set of finite subsets of X. We let
σ0, σ1, σ2, . . . be a fixed enumeration of all finite sequences of elements of Q,
the set of rationals.

If A ∈ [R]<ω and we write A = {a0, a1, . . . , an−1}<, then it is to be
understood that a0 < a1 < . . . < an−1. We say that a set {r0, r1, . . . , rn}<
of rationals is a rational separator for A if

r0 < a0 < r1 < a1 < r2 < . . . < rn−1 < an−1 < rn .
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We will think of R as an ordered field. Let A ⊆ R. If D ⊆ Rk is definable
by a first-order formula in the language of ordered fields with parameters
from A, then we say that D is A-definable. If D is ∅-definable, then it is
definable. Let ϕ0, ϕ1, ϕ2, . . . be a fixed enumeration of all definable analytic
functions ϕ : U → Rn, where k, n < ω and U ⊆ Rk is a definable open set.

Let T ⊆ R be some fixed transcendence basis for R. If t ∈ T , then {t}
is not (T \ {t})-definable. For each a ∈ Rn, {a} is T -definable; moreover,
there is a unique smallest (finite) subset of T , which we call the support
of a and denote by supp(a), such that {a} is supp(a)-definable. If a ∈ Rn
and supp(a) = {t0, t1, . . . , tk−1}<, then there is a definable analytic function
ϕ(x0, x1, . . . , xk−1) mapping some open neighborhood U of 〈t0, t1, . . . , tk−1〉
into Rn such that a = ϕ(t0, t1, . . . , tk−1). We call the function ϕj the
defining function for a if j is the least such that a = ϕj(t0, t1, . . . , tk−1).
For such a function ϕj , all the partial derivatives at 〈t0, t1, . . . , tk−1〉 are
nonzero. We call the function θ(x) = ϕj(t0, t1, . . . , tp−1, x, tp+1, . . . , tk−1)
the pth coordinate function for a. Notice that the pth coordinate function
is {t0, t1, . . . , tp−1, tp+1, . . . , tk−1}-definable. We refer to the line which con-
tains a and is parallel to θ′(tp) as the pth tangent line at a.

If V is a vector space over R and X ⊆ V , then the span of X, denoted
by Span(X), is the smallest subspace of V containing X. A line of V is a
translate of a 1-dimensional subspace. Let L(V ) be the set of lines of V .

2. Points and lines. Theorem 0.4 is a consequence of the following
theorem, which will have some other consequences as well. Notice that The-
orem 0.4 concerns Rn as an n-dimensional vector space over R, whereas The-
orem 2.1 concerns some infinite-dimensional vector spaces. Nothing would
be lost if in Theorem 2.1 we considered some specific 2ℵ0 -dimensional vec-
tor space, such as a separable real Hilbert space or the space Rω of all real
sequences.

Theorem 2.1. Let V be a vector space over R such that dim(V ) ≤ 2ℵ0 .
Then there are functions π : V → ω and λ : V → [L(V )]<ω such that
whenever ` ∈ L(V ), a, b, c ∈ ` are distinct and π(a) = π(b) = π(c), then
` ∈ λ(a) ∩ λ(b) ∩ λ(c).

Before proving Theorem 2.1, we show how it implies Theorem 0.4.

Proof of Theorem 0.4. To deduce Theorem 0.4 from Theorem 2.1, we will
need the latter theorem only in the case where V = Rn. Let π and λ be as
in Theorem 2.1. Given a ∈ Rn, we will determine how to color a; that is, we
will determine some i < ω and then declare that a ∈ Si.

Let i, s < ω be such that σi = 〈π(a), s〉 and λ(a) ∩ Li = ∅. There are
such i, s since λ(a) is finite. Now let a ∈ Si.
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The partition Rn = S0∪S1∪S2∪ . . . has just been defined. We will show
that it meets the requirements. For a contradiction, suppose that a, b, c ∈
` ∩ Si are distinct and ` ∈ Li. Let σi = 〈r, s〉. Thus, π(a) = π(b) = π(c) = r,
so that ` ∈ λ(a) ∩ Li, a contradiction.

It would have sufficed in proving Theorem 0.4 from Theorem 2.1 if Theo-
rem 2.1 had the weaker conclusion that ` ∈ λ(a)∪λ(b)∪λ(c). This comment
is relevant in proving Corollary 2.5.

Proof of Theorem 2.1. The theorem will be proved first for finite-dimen-
sional V , and then for infinite-dimensional V .

Suppose V is a finite-dimensional vector space over R. We will assume
that V = Rn. For each a ∈ Rn we will determine π(a) and λ(a).

Let supp(a) = {t0, t1, . . . , tk−1}<, and let {r0, r1, . . . , rk}< be a rational
separator for supp(a). Let ϕj : U → Rn be the defining function for a.
Then let λ(a) be the set of tangent lines at a, and let π(a) = i, where
σi = 〈r0, r1, . . . , rk, j〉.

The functions π and λ have been defined. We now show that they have
the required property. So, suppose that ` is a line, a, b, c ∈ ` are distinct and
i = π(a) = π(b) = π(c). Let σi = 〈r0, r1, . . . , rk, j〉. Since a, b are distinct
there are p < k, u ∈ supp(a) and v ∈ supp(b) such that rp < u, v < rp+1

and u 6= v. Let w ∈ supp(c) be such that rp < w < rp+1. Without loss of
generality, we can assume that u 6∈ {v, w}. Thus, u 6∈ supp(b) ∪ supp(c).

We now show that ` ∈ λ(a); in fact, letting `p be the pth tangent line at
a, we will show that ` = `p. Let θ(x) be the pth coordinate function for a.
For any integer N > 0 there are x such that 0 < |x − u| < 1 and θ(x) ∈ `,
as otherwise u would be ((supp(a) ∪ supp(b) ∪ supp(c)) \ {u})-definable,
which is impossible. Clearly, then, ` = `p. Thus, ` ∈ λ(a). Notice that ` is
(supp(a) \ {u})-definable.

Having proved that ` ∈ λ(a), we can show that ` ∈ λ(b)∩ λ(c). Without
loss of generality, consider b, and suppose ` 6∈ λ(b). Let `′ be the pth tangent
line for ϕj at b. Then, in particular, ` 6= `′, so b is the unique point x (in
some definable open neighborhood of b) for which θ(x) ∈ `. Then u would be
((supp(a) ∪ supp(b)) \ {u})-definable, which is a contradiction. So ` ∈ λ(b).

Thus, ` ∈ supp(a) ∩ supp(b) ∩ supp(c), which finishes the proof of the
theorem in the case where V is finite-dimensional. (As has already been men-
tioned, only the finite-dimensional case was needed to prove Theorem 0.4.)

Next we prove the theorem for infinite-dimensional V . Without loss of
generality, assume that dim(V ) = 2ℵ0 , and let {vx : x ∈ R} be a basis for
V , where x 6= y ⇒ vx 6= vy. For each a ∈ V , let naps(a) be the unique
smallest finite subset X ⊆ R such that a is in the span of {vx : x ∈ X}. For
each X ∈ [R]<ω, let V (X) be the finite-dimensional subspace of V spanned
by {vx : x ∈ X}. By the first part of this proof, for each X ∈ [R]<ω, let
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πX : V (X) → ω and λX : V (X) → [L(V (X))]<ω satisfy the conclusion of
the lemma.

We now define π and λ. Consider a ∈ V and let X = naps(a). Then set
λ(a) = λX(a). Let X = {x0, x1, . . . , xk−1}<, let {r0, r1, . . . , rk}< be a ratio-
nal separator for X, and then let π(a) = i, where σi = 〈r0, r1, . . . , rk, πX(a)〉.

The functions π and λ have been defined. We now show that they have
the required property. So, suppose that ` ∈ L(V ) is a line, a, b, c ∈ ` are
distinct and i = π(a) = π(b) = π(c). Let σi = 〈r0, r1, . . . , rk, j〉. Since a, b, c
are collinear, it is clear that naps(a) = naps(b) = naps(c), as otherwise
it would be that, say, naps(a) \ (naps(b) ∪ naps(c)) 6= ∅, contradicting the
collinearity. But then, letting X = naps(a), we have j = πX(a) = πX(b) =
πX(c), so that a, b, c ∈ `′ for some `′ ∈ λX(a) ∩ λX(b) ∩ λX(c). Clearly,
`′ = ` ∩ V (X), so that a, b, c ∈ ` ∈ λ(a) ∩ λ(b) ∩ λ(c).

The setup for Theorem 2.1 was more general than for Theorem 0.4. The
same proof that deduced Theorem 0.4 from Theorem 2.1 can be used to get
the correspondingly stronger result of the following corollary.

Corollary 2.2. Let V be a vector space over R such that dim(V ) ≤ 2ℵ0 .
Let L(V ) = L0 ∪ L1 ∪ L2 ∪ . . . be a countable partition of the set of lines
of V . Then there is a countable partition V = S0 ∪ S1 ∪ S2 ∪ . . . such that
whenever ` ∈ Li, then |` ∩ Si| ≤ 2.

The next corollary is related to Theorem 0.4 (and more generally to
Corollary 2.2). It is an improvement of Theorem 1.2 of [5] in four ways. The
first is that we make no additional set-theoretic assumptions whereas MA
was assumed in [5]. The second is that in [5] it was required that each line
meet S in a finite set, not a countable set. Third, the conclusion in [5] is
that each line meets each Si in at most 3 points. And finally, Corollary 2.3
applies to some infinite-dimensional vector spaces.

Corollary 2.3. Let V be a vector space over R such that dim(V ) ≤ 2ℵ0 .
Let S ⊆ V be such that each line of V meets S in a countable set. Then
there is a countable partition S = S0 ∪ S1 ∪ S2 ∪ . . . such that whenever ` is
a line and i < ω, then |` ∩ Si| ≤ 2.

P r o o f. For each line ` which meets S, let {Pj(`) : j < ω} be the set of
points in ` ∩ Si. For each a ∈ V we will determine how to color a; that is,
we will determine some i < ω and then declare that a ∈ Si. We will use π
and λ from Theorem 2.1. Let e : L(V )→ R be an injection. Then let λ(a) =
{`0, `1, . . . , `k−1}, where e(`0) < e(`1) < . . . < e(`k). Let {r0, r1, . . . , rk}<
be a rational separator for e(λ(a)), and let j0, j1, . . . , jk−1 < ω be such that
a = Pj0(`0) = Pj1(`1) = . . . = Pjk−1(`k−1). Then let

σi = 〈r0, r1, . . . , rk, j0, j1, . . . , jk−1, π(a)〉.
We now declare that a ∈ Si.
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The partition S = S0 ∪S1 ∪S2 ∪ . . . has just been defined. We will show
that it meets the requirements.

Suppose that it does not; that is, there are i < ω, a line `, and distinct
a, b, c ∈ Si ∩ `. Let σi = 〈r0, r1, . . . , rk−1, rk, j0, j1, . . . , jk−1, s〉. Then s =
π(a) = π(b) = π(c). Then, by Theorem 2.1, ` ∈ λ(a) ∩ λ(b) ∩ λ(c). Thus,
there is some p < k such that rp < e(`) < rp+1. But then a = Pjp(`) = b,
which is a contradiction.

It is possible to get results for vector spaces whose dimensions exceed
2ℵ0 . For an infinite cardinal κ and n < ω, define κ+n inductively: κ+0 = κ
and κ+(n+1) = (κ+n)+. The proof of the following theorem uses an inductive
argument which has Theorem 2.1 as its starting point.

Theorem 2.4. Let m < ω. Let V be a vector space over R such that
dim(V ) ≤ (2ℵ0)+m. Then there are functions π : V → ω and λ : V →
[L(V )]<ω such that for any line ` ∈ L(V ) and any X ⊆ `, if |X| ≥ m + 3
and π is constant on X, then there are at least 3 points x ∈ X such that
` ∈ λ(x).

P r o o f. The proof is by induction on m. The case m = 0 follows from
Theorem 2.1. We will now prove the statement for m+ 1 assuming its truth
for m. Let µ = dim(V ) = |V | = (2ℵ0)+(m+1). There is a sequence 〈Vα :
α < µ〉, called a filtration of V , such that the following hold:

(1) if α < µ, then Vα is a subspace of V and dim(Vα) < µ;
(2) if α < β < µ, then Vα ⊆ Vβ ;
(3) if γ < µ is a limit ordinal, then Vγ =

⋃{Vα : α < γ};
(4) V =

⋃{Vα : α < µ}.
For each α < µ, by the inductive hypothesis, let πα : Vα → ω and

λα : Vα → [L(Vα)]<ω be such that whenever Y ⊆ ` ∈ L(Vα), |Y | ≥ m + 2
and πα is constant on Y , then there are at least 3 elements y ∈ Y such that
y ∈ ` ∈ λα(y).

Having obtained these sequences, define π and λ as follows. Consider
some a ∈ V and let α be the least such that a ∈ Vα. Then let π(a) = πα(a)
and λ(a) = λα(a).

Having defined π and λ, we must show that they work. So suppose not.
Then there are a line ` and X ⊆ ` contradicting the conclusion of the lemma.
Let α be the least ordinal for which X ⊆ Vα. Clearly, α 6= 0 and α is not
a limit ordinal. Therefore, α = β + 1 for some β. Let Y = X \ Vβ . Clearly
|Y | ≥ m+2, as otherwise we would have |X∩Vβ | ≥ 2, so that ` ∈ L(Vβ) and
thus X ⊆ Vβ , contradicting the minimality of α. But then Y contradicts the
conditions on πα and λα.

We do not know whether Lemma 2.4 can be strengthened so that the
conclusion holds for all x ∈ X or even for at least 4 points in X.
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Corollary 2.5. Let m < ω. Let V be a vector space over R such that
dim(V ) ≤ (2ℵ0)+m. Let L(V ) = L0 ∪ L1 ∪ L2 ∪ . . . be a countable partition.
Then there is a countable partition V = S0∪S1∪S2∪ . . . such that whenever
` ∈ Li, then |` ∩ Si| ≤ m+ 2.

P r o o f. See remark following the proof of Theorem 0.4.

There is a similar extension of Corollary 2.3.

Theorem 2.6. Let m < ω. Let V be a vector space over R such that
dim(V ) ≤ (2ℵ0)+m. Let S ⊆ V be such that each line of V meets S in a
countable set. Then there is a countable partition S = S0∪S1∪S2∪ . . . such
that whenever ` is a line and i < ω, then |` ∩ Si| ≤ m+ 2.

P r o o f. The proof is by induction on m. The case m = 0 is just Corollary
2.3. We will prove the theorem for m + 1 assuming its truth for m. Let
µ = dim(V ) = |V | = (2ℵ0)+(m+1). As in the proof of Theorem 2.4, there is
a filtration 〈Vα : α < µ〉 of V so that (1)–(4) in that proof hold, and also
the following holds:

(5) if α < µ and ` is a line of V such that |` ∩ Vα ∩ S| ≥ 2, then
` ∩ S ⊆ Vα+1.

For each a ∈ V we will determine i < ω such that a ∈ Si.
For each α < µ, by the inductive hypothesis on m, there is a partition

S ∩ Vα = Sα0 ∪ Sα1 ∪ Sα2 ∪ . . . such that whenever ` is a line of V and i < ω,
then |` ∩ Sαi | ≤ m+ 2. Let

Si = S0
i ∪

⋃
{Sα+1

i \ Sαi : α < µ}.
It is easily checked that this partition is as required.

We do not know if the bound of m+ 2 in Theorem 2.6 is optimal.

3. Points and hyperplanes. A hyperplane of a vector space is a trans-
late of a subspace. Lines are just 1-dimensional hyperplanes. For any d < ω
and vector space V , let Ld(V ) be the set of all d-dimensional hyperplanes
of V , and let L<ω(V ) be the set of all finite-dimensional subspaces of V .
The aim of this section is to obtain generalizations of the results of §1 which
apply to Ld(V ) or L<ω(V ) instead of just L(V ).

The following theorem generalizes Theorem 2.1.

Theorem 3.1. Let V be a vector space over R such that dim(V ) ≤ 2ℵ0 .
Then there are functions π : V → ω and λ : V → [L(V )]<ω such that
whenever 1 ≤ d < ω, H ∈ Ld(V ) and X ⊆ H are such that π is constant on
X and |X| > 2d, then there are at least 3 points x ∈ X for which there is
` ∈ λ(x) such that x ∈ ` ⊆ H.
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P r o o f. The functions π and λ which will do the trick here are exactly the
same as the ones that occur in the proof of Theorem 1.2. We will prove that
they work, first for finite-dimensional V and then for infinite-dimensional V .

Consider finite-dimensional V , so let V = Rn. We will prove by induction
on d, where 1 ≤ d < n, that π and λ have the required property.

If d = 1, then this follows from Theorem 2.1. So assume that 2 ≤ d < n
and that for all smaller values of d the functions π and λ have the required
property. Let X and H satisfy the hypotheses, and let Z = {x ∈ X : x ∈
` ∈ λ(x) for some ` ⊆ H}. We will show that |Z| ≥ 3.

Suppose, to the contrary, that |Z| < 3. Let a, b ∈ X \ Z be distinct.
Let i = π(a) and let σi = 〈r0, r1, . . . , rk, j〉. Since a, b are distinct, there are
p < k, u ∈ supp(a) and v ∈ supp(b) such that rp < u, v < rp+1 and u 6= v.
Without loss of generality, we can conclude from the pigeon-hole principle
that Y = {x ∈ X : u 6∈ supp(x)} has more than 2d−1 elements.

If Span(Y ) 6= H, then 1 ≤ dim(Span(Y )) < d, so by the inductive
hypothesis on d, |Z ∩ Y | ≥ 3. Therefore, Span(Y ) = H. Then, since a 6∈ Z,
the pth tangent line at a meets H at just the point a. Let θ(x) be the pth
coordinate function for a. Then a is the unique point x (in some definable
open neighborhood of a) such that θ(x) ∈ H, so that u is (

⋃{supp(x) : x ∈
X} \ {u})-definable, which is a contradiction. This completes the proof of
the claim and also of the theorem for finite-dimensional V .

The extension to infinite-dimensional V is much like the proof of Theo-
rem 2.1. Assume dim(V ) = 2ℵ0 , and let {vx : x ∈ R} be a basis for V , where
x 6= y ⇒ vx 6= vy. Define naps(a) and V (X) as in the proof of Theorem 2.1.
For Y ∈ [R]<ω, let πY : V (Y )→ ω and λY : V (Y )→ [L(V (Y ))]<ω be such
that whenever H ∈ L<ω(V (Y )) and Y ⊆ H are such that πY is constant on
Y and |Y | > 2d, then there are at least 3 points x ∈ Y for which there is
` ∈ λ(x) such that x ∈ ` ⊆ H.

We now define π and λ. Consider a ∈ V and let Y = naps(a). Then set
λ(a) = λY (a). Let {r0, r1, . . . , rk}< be a rational separator for Y , and then
let π(a) = i, where σi = 〈r0, r1, . . . , rk, πY (a)〉.

We next show, by induction on d, that π and λ have the required prop-
erty. For d = 1, this was done in the proof of Theorem 2.1. So suppose that
d > 1 and that π and λ have the required property for all smaller values
of d. Suppose that X ⊆ H ∈ Ld(V ), |X| > 2d and π is the constant i on
X. Let σi = 〈r0, r1, . . . , rk, j〉. For a contradiction, suppose that X does not
have 3 points as the theorem implies.

If for some Y , naps(a) = Y for each a ∈ X, then the 3 points can be
found in V (Y ). So we can assume that for some a, b ∈ X, naps(a) 6= naps(b).
Therefore, without loss of generality, we can assume that there are p < k and
x ∈ naps(a) such that rp < x < rp+1 and Z = {c ∈ X : x ∈ naps(a)} has
more than 2d−1 points. If dim(Span(Z)) < d, then the inductive hypothesis
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implies that there are the 3 points in Z. However, if dim(Span(Z)) ≥ d,
then in fact Span(Z) = H, and this yields a contradiction since a ∈ H but
x ∈ naps(a) \⋃{naps(c) : c ∈ Z}.

The optimality of Theorem 3.1 is open. We do not know if, in general,
the number 3 occurring in that theorem can be replaced with some larger
number (depending on d), nor do we know if, in general, the number 2d can
be replaced with some smaller number.

The next objective is to generalize Theorem 0.4 or even Corollary 2.2.
One problem immediately surfaces. Suppose that L2(R3) = L0∪L1∪L2∪. . .
and there is a line ` such that for each i < ω there is H ∈ Li for which ` ⊆ H.
Then, for any partition R3 = S0∪S1∪S2∪. . . , there are i < ω and an H ∈ Li
such that H∩Si is uncountable. This example led Erdős, Jackson & Mauldin
to make the following definition in [5]. A function P : Ld(V )→ [ω]<ω is said
to be acceptable if for each line `, the set

⋃{P (H) : ` ⊆ H ∈ Ld(Rn)} is
finite. The function P : L<ω(V )→ [ω]<ω is acceptable if the restrictions to
each Ld(V ) are acceptable.

The following corollary is a generalization of Corollary 2.2.

Corollary 3.2. Let V be a vector space over R such that dim(V ) ≤
2ℵ0 , and let P : L<ω(V ) → [ω]<ω be acceptable. Then there is a function
Q : V → ω such that whenever 1 ≤ d < ω, H ∈ Ld(V ), and i ∈ H, then
|{x ∈ H : Q(x) = i}| ≤ 2d.

P r o o f. For finite-dimensional V , this follows from Theorem 3.1 just the
way Theorem 0.4 followed from Theorem 2.1. Let π and λ be as in Theorem
2.1. For given a ∈ V , let Q(a) = i, where, for some s < ω, σi = 〈π(a), s〉
and i 6∈ P (H) whenever ` ⊆ H ∈ L<ω(V ) and ` ∈ λ(a).

The infinite-dimensional case follows from the finite-dimensional one in
much the same way as was done in Theorems 2.1 and 3.1.

The result in Corollary 3.2 can be pushed up to vector spaces over R
having dimension (2ℵ0)+m by using Lemma 3.3. Theorem 3.1 has a similar
extension using Lemma 3.4 below. Define the function g∗(κ, d), where κ is
an infinite cardinal and d < ω, as follows: g∗(κ, d) is the least m < ω (if
there is one) such that whenever V is a vector space over R, dim(V ) ≤ κ
and P : Ld(V ) → [ω]<ω is acceptable, then there is a function Q : V →
ω such that whenever H ∈ Ld(V ) and i ∈ P (H), then |{x ∈ H : Q(x)
= i}| ≤ m. Also define h∗(κ, d) to be the least m < ω (if there is one) such
that whenever V is a vector space over R and dim(V ) ≤ κ, then there are
functions π : V → ω and λ : V → [L(V )]<ω such that whenever H ∈ Ld(V )
and X ⊆ H are such that π is constant on X and |X| > h∗(κ, d), then there
are x ∈ X and ` ∈ λ(x) such that x ∈ ` ⊆ H.

Lemma 3.3. g∗(κ+, d+ 1) ≤ g∗(κ+, d) + g∗(κ, d+ 1).
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Lemma 3.4. h∗(κ+, d+ 1) ≤ h∗(κ+, d) + h∗(κ, d+ 1).

Proofs of Lemmas 3.3 and 3.4. Let V be a vector space over R having
dimension µ = κ+. Let 〈Vα : α < µ〉 be a filtration as in the proof of
Lemma 2.4, so that conditions (1)–(4) are satisfied.

For the proof of Lemma 3.4, we let πα and λα be demonstrators of the
bounds h∗(κ, d + 1). Then define π and λ on V as follows. Consider a ∈ V
and let α be the least ordinal such that a ∈ Vα. Then let π(a) = πα(a)
and λ(a) = λα(a). By induction on d, we will see that these functions work.
The argument for d = 1 is in Lemma 2.4, and for d > 1 it is very similar.
Suppose H ∈ Ld(V ) and X ⊆ H, where |X| = h∗(κ+, d)+h∗(κ, d+1)+1, is a
counterexample. Thus, π is constant on X and for no x ∈ X and line ` ∈ λ(a)
is ` ⊆ H. Let α be the least ordinal such that X ⊆ Vα. Clearly, α 6= 0 and α
is not a limit ordinal, so that α = β + 1 for some β. Let Y = X ∩ Vβ . Then
either |Y | > h∗(κ+, d) or |X \Y | > h∗(κ, d+1). Suppose the first alternative
|Y | > h∗(κ+, d). Then by the inductive hypothesis, dim(Span(Y )) > d so
that Span(Y ) = H. But then X ⊆ Vβ , contradicting the minimality of α.
Next, suppose the second alternative |X \ Y | > h∗(κ, d+ 1). But then there
are three points x ∈ X \ Y for which there is ` ∈ λα(x) = λ(x) such that
x ∈ ` ⊆ H. This is also a contradiction, completing the proof of Lemma 3.4.

For the proof of Lemma 3.3, we are given an acceptable P : V → [ω]<ω.
Then each Pα = P |Vα is acceptable. Let Qα : Vα → ω demonstrate the
bounds of g∗(κ, d+ 1). Consider a ∈ V . Then let α be the least ordinal such
that a ∈ Vα and Q(a) = Qα(a). The proof is now completed in the same
way as the proof of the previous paragraph.

Now use the previous two lemmas to push up the dimensions in Theo-
rem 3.1 and Corollary 3.2.

Let the function k(m, d), where m, d < ω, be defined by

k(m, d) =
d∑

i=0

(
m+ d

i

)
.

Alternatively, we can define k inductively by letting k(m, 0) = 1 and k(0, d)
= 2d, and then letting

k(m+ 1, d+ 1) = k(m, d+ 1) + k(m, d+ 1).

This definition fits in with Lemmas 3.3 and 3.4. The following two corollaries
then result.

Corollary 3.5. Let m < ω and V be a vector space over R such that
dim(V ) ≤ (2ℵ0)+m. Then there are functions π : V → ω and λ : V →
[L(V )]<ω such that whenever 1 ≤ d < ω, H ∈ Ld(V ) and X ⊆ H are such
that π is constant on X and |X| > k(m, d), then there is x ∈ X for which
there is ` ∈ λ(x) such that x ∈ ` ⊆ H.
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Corollary 3.6. Let m < ω and V be a vector space over R such that
dim(V ) ≤ (2ℵ0)+m, and let P : L<ω(V ) → [ω]<ω be acceptable. Then there
is a function Q : V → ω such that whenever 1 ≤ d < ω, H ∈ Ld(V ), and
i ∈ H, then |{x ∈ H : Q(x) = i}| ≤ k(m, d).

We do not know how large the dimension of the vector spaces in either
of those corollaries can be and still get some finite bounds.

Corollary 3.2 shows the existence of a function g : ω → ω defined as
follows: If d < ω, then g(d) is the least m < ω such that whenever n < ω and
P : Ld(Rn)→ [ω]<ω is acceptable, then there is a function Q : Rn → ω such
that whenever H ∈ Ld(Rn) and i ∈ P (H), then |{x ∈ H : Q(x) = i}| ≤ m.
Indeed, Corollary 3.2 asserts that g(d) ≤ 2d.

There is another bound for g(d) involving binomial coefficients proved
by Erdős, Jackson & Mauldin [5]:

(∗) 2ℵ0 ≤ ℵm ⇒ g(d) ≤
(
m+ d

d

)
.

This result is incomparable with Corollary 3.2. For example, Corollary 3.2
asserts that g(2) ≤ 4 and g(3) ≤ 8, and, on the other hand, the result
in [5] asserts that 2ℵ0 = ℵ2 ⇒ g(2) ≤ 6 and 2ℵ0 = ℵ1 ⇒ g(3) ≤ 4. By
combining Corollary 3.2 with the inductive proof of the result in [5], we can
get simultaneous improvements to both results.

The next lemma captures the inductive step of the result in [5]. We refine
the function g to be a function of two variables: an infinite cardinal κ ≤ 2ℵ0

and d < ω. Let g(κ, d) be the least m < ω such that whenever n < ω, F is
a subfield of R such that |F | ≤ κ, and P : Ld(Fn) → [ω]<ω is acceptable,
then there is a function Q : Fn → ω such that whenever H ∈ Ld(Fn) and
i ∈ P (H), then |{x ∈ H : Q(x) = i}| ≤ m. Of course, g(ℵ0, d) = 1 and
g(d) = g(2ℵ0 , d), so this lemma yields the bound in (∗).

Lemma 3.7 ([5]). g(κ+, d+ 1) ≤ g(κ+, d) + g(κ, d+ 1).

Thus, whereas Corollary 3.2 asserts that g(4) ≤ 16 and the result in [5]
implies that 2ℵ0 = ℵ2 ⇒ g(4) ≤ 15, the proofs of the two combine to yield
that 2ℵ0 = ℵ2 ⇒ g(4) ≤ 13. However, we can do even better; a corollary of
the next theorem improves the result in [5] and shows, in particular, that
2ℵ0 = ℵ2 ⇒ g(4) ≤ 9.

Define the function h : ω × ω → ω as follows. Given d,m < ω, let q < ω
and r < m be such that d = qm+ r. Then set

h(m, d) = (q + 2)r(q + 1)m−r.

It follows that

(∗∗) h(m, d+ 1)
h(m, d+ 1)− h(m, d)

=
[
d

m

]
+ 2
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when m > 0. Alternatively, we can define h inductively by letting h(m, 0) =
h(0, d) = 1, and then letting

h(m, d+ 1) =
[d/m] + 2
[d/m] + 1

h(m, d)

when m > 0. It is easily checked that

h(m, d) ≤ 2d and h(m, d) ≤
(
m+ d

d

)
.

Theorem 3.8. (Assume 2ℵ0 ≤ ℵm.) There are functions π : Rn → ω
and λ : Rn → [L(Rn)]<ω such that whenever 1 ≤ d < n, H ∈ Ld(Rn) and
X ⊆ H are such that π is constant on X and |X| > h(m, d), then there are
at least 3 points x ∈ X for which there is ` ∈ λ(x) such that x ∈ ` ⊆ H.

We first present a couple of known lemmas.

Lemma 3.8.1. Let m < ω. There are functions F : [ωm]m+1 → ω and
f : [ωm]m+1 → ωm such that :

(1) if A ∈ [ωm]m+1, then f(A) ∈ A;
(2) if A,B ∈ [ωm]m+1, F (A) = F (B) and i ≤ m, then f(A) is the ith

element of A iff f(B) is the ith element of B;
(3) if A,B ∈ [ωm]m+1, F (A) = F (B) and A 6= B, then A \ {f(A)} 6=

B \ {f(B)}.
P r o o f. The proof is by induction on m. If m = 0, then the result is

trivial: let F ({n}) = f({n}) = n. Assume that we have F ′ : [ωm]m+1 → ω
and f ′ : [ωm]m+1 → ωm which work for ωm. We define F and f for ωm+1.
For each α < ωm+1, let gα : α → ωm be an injection. Now consider some
A ∈ [ωm+1]m+2. Let α = max(A) and let B = {gα(β) : β ∈ α ∩ A}. Let
F (A) = F ′(B) and let f(A) = g−1

α f ′(B). It is easily checked that F and f
are as required.

Lemma 3.8.2. (Assume 2ℵ0 = ℵm.) There are functions F : [R]m+1 → ω
and f : [R]m+1 → R such that :

(1) if A ∈ [R]m+1, then f(A) ∈ A;
(2) if A,B ∈ [R]m+1, F (A) = F (B) and i ≤ m, then f(A) is the ith

element of A iff f(B) is the ith element of B;
(3) if A,B ∈ [R]m+1, F (A) = F (B) and A 6= B, then A \ {f(A)} 6=

B \ {f(B)};
(4) if A = {a0, a1, . . . , am}< ∈ [R]m+1, then there is a rational separator

R = {r0, r1, . . . , rm+1} of A such that whenever B ∈ [R]m+1 and F (A) =
F (B), then R is a rational separator for B.

P r o o f. Let F ′ and f ′ be functions as in Lemma 3.8.1 for ωm. Let g : R→
ωm be a bijection. We now define F and f . Consider A ∈ [R]m+1. Let f(A) =
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g−1f ′g(A). To define F (A), let A = {a0, a1, . . . , am}< and let s0, s1, . . . , sm
be such that g(as0) < g(as1) < . . . < g(asm). Let {r0, r1, . . . , rm+1}< be a
rational separator for A. Finally, let F (A) = i where

σi = 〈F ′(g(A)), r0, r1, . . . , rm+1, s0, s1, . . . , sm〉.
It is easily checked that F and f work.

Proof of Theorem 3.8. It suffices to prove that if 1 ≤ d < n then there are
functions πd : Rn → ω and λd : Rn → [L(Rn)]<ω such that whenever H ∈
Ld(Rn) and X ⊆ H are such that πd is constant on X and |X| > h(m, d),
then there are at least 3 elements x ∈ X for which there is ` ∈ λd(x) such
that x ∈ ` ⊆ H. We will prove the existence of πd and λd by induction on
d. Let π1 and λ1 be the functions from Theorem 2.1 or Theorem 3.1. Now
suppose that 1 < d < n and that we have πk and λk for 1 ≤ k < d. We will
obtain πd and λd.

Let λd = λd−1. To get πd, let F and f be as in Lemma 3.8.2. Let πd be
such that the following holds.

Suppose a, b ∈ Rn are such that a = b. Then πd−1(a) = πd−1(b) and
π1(a) = π1(b). Also |supp(a)| = |supp(b)|, so there is a unique order-
preserving bijection e : supp(a) → supp(b). Then, if A ∈ [supp(a)]m+1,
then F (A) = F (e(A)).

We show that πd and λd work. Let X and H satisfy the hypotheses, and
let Z = {x ∈ X : x ∈ ` ∈ λd(x) for some ` ⊆ H}. We will show that |Z| ≥ 3
by assuming the contrary. For some (or all) a ∈ X, let i = π1(a) and let
σi = 〈r0, r1, . . . , rk, j〉.

Claim 1. If a ∈ X and u ∈ supp(a), then |{x ∈ X : u 6∈ supp(x)}| ≤
h(m, d− 1).

To prove the claim, suppose to the contrary that there are a and u ∈
supp(a) such that |{x ∈ X : u 6∈ supp(x)}| > h(m, d− 1). Let Y = {x ∈ X :
u 6∈ supp(x)}. Then |Y | > h(m, d− 1). By the inductive hypothesis on d, if
dim(Span(Y )) < d, then the claimed three points can be found in Y , so we
can assume that Span(Y ) = H. Let p < k be such that rk < u < rk+1 and
let ` be the pth tangent line for ϕj at a. Thus, ` ∈ λd(a) and, hence, ` 6⊆ H.
Therefore, a is the unique point of intersection of ` and H. But then u is
(
⋃{supp(x) : x ∈ X} \ {u})-definable, which is a contradiction. The claim

is proved.

For each p < k and x ∈ X, let 〈x〉p be the pth element in supp(x). Then
let Ep be the equivalence relation on X such that xEpy iff 〈x〉p = 〈y〉p.
Clearly, the intersection of all these equivalence relations is the equality
relation. Let I ⊆ k be a minimal set such that

⋂{Ep : p ∈ I} is the equality
relation.

Claim 2. |I| > m.
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By Claim 1, each equivalence class of each Ep has at least |X| − h(m,
d − 1) elements. Since |X| > h(m, d), each equivalence class has at least
1+h(m, d)−h(m, d−1) elements, so there must be at most [(1+h(m, d))/(1+
h(m, d)−h(m, d− 1))] = [(d− 1)/m] + 1 equivalence classes. It then follows
from equation (∗∗) that there are at most [(d−1)m] + 1 equivalence classes.
Since the intersection of all the equivalence relations Ep, where p ∈ I, is the
equality relation, it follows that ([(d− 1)/m] + 1)|I| ≥ h(m, d). But, clearly,
([(d− 1)/m] + 1)m < h(m, d), so that |I| > m, proving the claim.

Now let A ⊆ I be such that |A| = m + 1. Because of the minimality of
I, there are a, b ∈ A such that 〈a〉p = 〈b〉p whenever f(A) 6= p ∈ A, and also
that 〈a〉f(A) 6= 〈b〉f(A). But this contradicts Lemma 3.8.2, so the theorem is
proved.

Corollary 3.9. If 2ℵ0 ≤ ℵm, then g(d) ≤ h(m, d).

4. Questions. There are several unanswered questions which naturally
arise from the results of this paper and have to do with the optimality of
these results. In some cases, the questions can be interpreted absolutely, and
in others in terms of relative consistency. We mention specifically the bounds
that occur in Theorem 2.4, Corollary 2.5 and Theorem 2.6, in Theorem
3.1 and Corollary 3.2, in Corollaries 3.5 and 3.6, and in Theorem 3.8 and
Corollary 3.9.
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