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Spaces of upper semicontinuous
multi-valued functions on complete metric spaces

by

Katsuro S a k a i and Shigenori U e h a r a (Tsukuba)

Abstract. Let X = (X, d) be a metric space and let the product space X ×R be en-
dowed with the metric %((x, t), (x′, t′)) = max{d(x, x′), |t− t′|}. We denote by USCCB(X)
the space of bounded upper semicontinuous multi-valued functions ϕ : X → R such that
each ϕ(x) is a closed interval. We identify ϕ ∈ USCCB(X) with its graph which is a closed
subset of X × R. The space USCCB(X) admits the Hausdorff metric induced by %. It is
proved that if X = (X, d) is uniformly locally connected, non-compact and complete, then
USCCB(X) is homeomorphic to a non-separable Hilbert space. In case X is separable, it
is homeomorphic to `2(2N).

1. Introduction. Let X = (X, d) be a metric space and let the product
space X × R be endowed with the metric

%((x, t), (x′, t′)) = max{d(x, x′), |t− t′|}.
A multi-valued function ϕ : X → R is said to be bounded if the image
ϕ(X) =

⋃
x∈X ϕ(x) is bounded. For any multi-valued function ϕ : X → R

such that each ϕ(x) is compact, ϕ is upper semicontinuous (u.s.c.) if and
only if the graph of ϕ is closed in X×R. Such a ϕ can be regarded as a closed
set in X × R. We denote by USCCB(X) the space of bounded u.s.c. multi-
valued functions ϕ : X → R such that each ϕ(x) is non-empty, compact and
connected, that is, a closed interval. The topology for USCCB(X) is induced
by the Hausdorff metric

%H(ϕ,ψ) = max{sup
z∈ϕ

%(z, ψ), sup
z∈ψ

%(z, ϕ)},

where %(z, ψ) = infz′∈ψ %(z, z′). Since ϕ and ψ are bounded, %H(ϕ,ψ) <∞
can be defined. In case X is compact, every u.s.c. multi-valued function

1991 Mathematics Subject Classification: 54C60, 57N20, 58C06, 58D17.
Key words and phrases: space of upper semicontinuous multi-valued functions, hy-

perspace of non-empty closed sets, Hausdorff metric, Hilbert space, uniformly locally
connected.

[199]



200 K. Sakai and S. Uehara

ϕ : X → R is bounded, so we write USCCB(X) = USCC(X). Let

USCC(X, I) = {ϕ ∈ USCCB(X) | ϕ(X) ⊂ I},
where I = [0, 1]. In case X is non-compact, as will be seen, the topology for
USCCB(X) (or USCC(X, I)) depends on the metric d.

Fedorchuk [Fe1,2] proved that if X is infinite, locally connected and
compact then USCC(X, I) is homeomorphic to (≈) the Hilbert cube Q =
[−1, 1]ω and USCC(X) ≈ Q\{0} (≈ Q× [0, 1)) (cf. [SU, Appendix]). In this
paper, we consider the case where X is non-compact but complete. We say
that X is uniformly (or d-uniformly) locally connected if, for each ε > 0,
there is δ > 0 such that each pair of points x, x′ ∈ X with d(x, x′) < δ are
contained in some connected set in X with diameter < ε. Let m (or `∞)
be the Banach space of bounded sequences in R with the sup-norm. Note
that m is non-separable. Indeed, m ≈ `2(2N) [BP, Ch. VII, Theorem 6.1].
By applying Toruńczyk’s characterization of Hilbert spaces [To3] (cf. [To4]),
we prove the following:

Main Theorem. If X = (X, d) is a uniformly locally connected , non-
compact and complete metric space, then USCC(X, I) and USCCB(X) are
homeomorphic to a non-separable Hilbert space. In case X is separable,

USCC(X, I) ≈ USCCB(X) ≈ m ≈ `2(2N).

In the above, the word “uniformly” cannot be removed, that is, the Main
Theorem is not valid for a locally connected complete metric space X with
no isolated points.

Example. The following closed subspace X of Euclidean plane R2 is
locally path-connected and has no isolated points, but USCC(X, I) and
USCCB(X) are not locally connected , hence they are not ANR’s:

X = R× {0} ∪
⋃

n∈N
{n, n+ 2−n} × I ⊂ R2.

P r o o f. We define a map f : X → I by

f(s, t) =

{
2t if s ∈ N and 0 ≤ t ≤ 1/2,
1 if s ∈ N and 1/2 ≤ t ≤ 1,
0 otherwise.

For each ε > 0, choose n0 ∈ N so that 2−n0 < ε, and define g : X → I by

g(s, t) =





0 if s = n0,
2t if s = n0 + 2−n0 and 0 ≤ t ≤ 1/2,
1 if s = n0 + 2−n0 and 1/2 ≤ t ≤ 1,
f(s, t) otherwise.

Then %H(f, g) = 2−n0 < ε but g cannot be connected with f by any path in
USCCB(X) with diameter < 1/2.
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In the above, X ≈ Y = R × {0} ∪ N × I ⊂ R2, but USCC(X, I) 6≈
USCC(Y, I) because USCC(Y, I) ≈ `2(2N) by the Main Theorem.

Throughout the paper, the open ε-ball in X = (X, d) centered at x ∈ X
is denoted by B(x, ε) (or Bd(X, ε)) and the closure of B(x, ε) in X by
B(x, ε). On the other hand, to avoid confusion, the ε-neighborhood of a
subset F ⊂ X in X is denoted by N(F, ε) (or Nd(F, ε)), that is,

N(F, ε) =
⋃

x∈F
B(x, ε) = {y ∈ X | d(y, F ) < ε} ⊂ X.

For F ⊂ X ×R and A ⊂ X, we define F |A = F ∩ pr−1
X (A) = F ∩A×R and

F (A) = prR(F |A), where prX : X × R → X and prR : X × R → R are the
projections. In case A = {x}, we write F |{x} = F |x and F ({x}) = F (x).

1. Relations among CB(X), USCCB(X) and 2X×R. For a metric space
X = (X, d), let (2X)m denote the hyperspace of non-empty bounded closed
subsets of X with the Hausdorff metric dH defined by d (cf. [Ku, p. 214]).
If X is complete, then so is (2X)m [Ku, p. 407]. In case X is compact,
(2X)m is the hyperspace exp(X) of non-empty compact subsets of X. Let
2X be the totality of non-empty closed subsets of X. When X is unbounded,
2X 6= (2X)m and dH is not a metric on the whole 2X (e.g., X 6∈ (2X)m and
dH({x}, X) = ∞ for any x ∈ X), but dH induces the topology on 2X . In
fact, A ∈ 2X has a neighborhood base consisting of

{B ∈ 2X | dH(A,B) < ε} (= {B ∈ 2X | A ⊂ Nd(B, ε), B ⊂ Nd(A, ε)}).
The spaces USCC(X, I) ⊂ USCCB(X) are regarded as subspaces of the

hyperspace 2X×R. Note that USCC(X, I) 6⊂ (2X×R)m if X is unbounded,
and that %H is not a metric on 2X×R but it is a metric on USCCB(X).

One should remark that a different metric d′ on X defines not only a
different space (2X)m but also a different topology on 2X even if d′ induces
the same topology of X as d. However, if d′ is uniformly equivalent to d, then
d′H induces the same topology on 2X as dH. Let d∗ be the bounded metric
on X defined by d∗(x, y) = min{1, d(x, y)}. Note that every closed subset
on X is bounded with respect to d∗. Since d∗H is a metric on the whole 2X ,
the space 2X is metrizable. Moreover, if d is complete, then so is d∗, hence
d∗H is also complete (cf. [Ku, p. 407]).

The following is elementary, but we give a proof for completeness.

1.1. Lemma. Let ϕ ∈ USCCB(X) and A ⊂ X. If A is connected , then
so is the image ϕ(A).

P r o o f. Assume that ϕ(A) is disconnected. Then there is t ∈ R \ ϕ(A)
such that (−∞, t)∩ϕ(A) 6= ∅ and (t,∞)∩ϕ(A) 6= ∅, whence ϕ(x) ⊂ (−∞, t)
or ϕ(x) ⊂ (t,∞) for each x ∈ A because of the connectedness of ϕ(x). Let
U = {x ∈ X | ϕ(x) ⊂ (−∞, t)} and V = {x ∈ X | ϕ(x) ⊂ (t,∞)}. Then
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U ∩ V = ∅, A ⊂ U ∩ V , A∩U 6= ∅ and A∩ V 6= ∅. Since ϕ is u.s.c., these U
and V are open sets in X. This contradicts the connectedness of A. Hence
ϕ(A) is connected.

Without any completeness condition, the following can be proved (cf.
[FK, Theorem 3.3(a)]).

1.2. Proposition. If X is locally connected , then USCCB(X) is closed
in 2X×R, hence USCC(X, I) is closed in 2X×I.

P r o o f. Let ϕ ∈ cl2X×R USCCB(X). Then, as is easily observed, ϕ ⊂
X × [−a, a] for some a > 0. If ϕ(x) = ∅ (i.e., ϕ ∩ {x} × R = ∅), then
B(x, ε)×R∩ϕ = ∅ for some ε > 0. For any ψ ∈ USCCB(X), since ψ(x) 6= ∅,
we have %H(ψ,ϕ) ≥ ε, which is a contradiction. Therefore, ϕ(x) 6= ∅ for every
x ∈ X. Since ϕ is closed in X × R, it follows that ϕ : X → R is u.s.c. We
show that each ϕ(x) is connected, which implies that ϕ ∈ USCCB(X).

Assume that some ϕ(x0) is not connected. Then we can find some t1 <
t0 < t2 such that t1, t2 ∈ ϕ(x0) and t0 6∈ ϕ(x0). Choose ε > 0 so that

B(x0, 2ε)× (t0 − ε, t0 + ε) ∩ ϕ = ∅,
whence %((x, t0), ϕ) ≥ ε for each x ∈ B(x0, ε). Since X is locally connected,
x0 has a connected neighborhood U ⊂ B(x0, ε). Then U contains some
B(x0, δ) ⊂ U , whence δ ≤ ε. For each ψ ∈ USCCB(X) with %H(ψ,ϕ) < δ,
we have some (xi, si) ∈ ψ, i = 1, 2, such that d(xi, x0) < δ and |ti − si| <
δ, whence x1, x2 ∈ U , s1 < t0 and s2 > t0. Since ψ(U) is connected by
Lemma 1.1, it follows that t0 ∈ [s1, s2] ⊂ ψ(U), that is, t0 = ψ(x) for
some x ∈ U ⊂ B(x0, ε). Then %H(ψ,ϕ) ≥ %((x, t0), ϕ) ≥ ε, which is a
contradiction. Therefore, every ϕ(x) is connected. Thus ϕ ∈ USCCB(X).

By the remark at the beginning of this section, the statement below
easily follows from Proposition 1.2.

1.3. Corollary. If X is complete and locally connected , then USCCB(X)
is complete, hence so is USCC(X, I).

Let CB(X) be the Banach space of bounded continuous real-valued func-
tions on X with the sup-norm (1). Let C(X, I) = {f ∈ CB(X) | f(X) ⊂ I}.
In caseX is compact, every continuous real-valued function onX is bounded,
and therefore we write CB(X) = C(X). For a compact space X, Fedorchuk
[Fe1,2] proved that if X is locally connected and has no isolated points then
C(X) and C(X, I) are dense in USCC(X) and USCC(X, I), respectively.
This was generalized in [FK] to non-compact spaces with some complete-
ness condition. Here we give a proof without local connectedness or any
completeness condition.

(1) As in [FK, Remark 3.6], although CB(X) ⊂ USCCB(X), the Banach space CB(X)
is not a subspace of USCCB(X) in case X is non-compact.
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1.4. Lemma. For each ϕ ∈ USCC(X, I) and ε > 0, there exists a lower
semicontinuous (l.s.c.) multi-valued function ϕε : X → I such that each
ϕε(x) is a closed interval , ϕ ⊂ ϕε and %H(ϕ, clX×I ϕε) ≤ ε.

P r o o f. For each x ∈ X, let

Vx = (minϕ(x)− ε,maxϕ(x) + ε) ∩ I.

Since ϕ is u.s.c., we can choose δx > 0 so that δx ≤ ε and ϕ(x′) ⊂ Vx
if x′ ∈ B(x, δx) (i.e., d(x, x′) < δx). Let ψ : X → I be the multi-valued
function defined by

ψ(x) =
⋃
{Vy | d(x, y) < δy} for each x ∈ X.

We define the multi-valued function ϕε : X → I by ϕε(x) = clI ψ(x). Then
ϕ ⊂ ψ ⊂ ϕε. As is easily observed, %H(ϕ, clX×I ψ) ≤ ε. Since clX×I ϕε =
clX×I ψ, we have %H(ϕ, clX×I ϕε) ≤ ε. If d(x, y) < δy then ϕ(x) ⊂ Vy. Since
ϕ(x) and Vy are connected, each ψ(x) is connected, hence so is ϕε(x).

To see that ϕε is l.s.c., let V be an open set in I and x ∈ X such that
ϕε(x) ∩ V 6= ∅. Then we have t ∈ ψ(x) ∩ V . By the definition of ψ, we can
find y ∈ X such that d(x, y) < δy and t ∈ Vy. If d(x, x′) < δy − d(x, y) then
d(x′, y) < δy, hence Vy ⊂ ψ(x′) ⊂ ϕε(x′) by the definition. Thus we have
t ∈ ϕε(x′) ∩ V . Therefore, ϕε : X → I is l.s.c.

Remark. In the above, ϕε 6= clX×I ψ. For example, let ϕ = I × {0} ∪
[1/2, 1] × I ∈ USCC(I, I) and ε = 1/2. Then Vx = [0, 1/2) for x < 1/2 and
Vx = I for x ≥ 1/2. Define ψ as above by using

δx =
{

1/2− x if x < 1/2,
1/2 if x ≥ 1/2.

Observe that d(0, y) < δy implies y < 1/2, and that d(x, 1/2) < δ1/2 = 1/2
for x 6= 0, 1. Therefore, ψ = {0} × [0, 1/2) ∪ (0, 1] × I = I2 \ {0} × [1/2, 1],
hence clX×I ψ = I2. On the other hand, ϕ1/2 = {0} × [0, 1/2] ∪ (0, 1] × I
because ϕ1/2(x) = clI ψ(x) for each x ∈ I.

1.5. Theorem. The following conditions are equivalent for any metric
space X = (X, d):

(a) C(X, I) is dense in USCC(X, I);
(b) CB(X) is dense in USCCB(X);
(c) X has no isolated points.

P r o o f. (a)⇒(b). This follows from the fact that each ϕ ∈ USCCB(X)
is contained in some USCCB(X, [−a, a]).

(b)⇒(c). When X has an isolated point x0, let ϕ = X×{0}∪{x0}× I ∈
USCCB(X). Then, as is easily observed,
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%H(ϕ, f) ≥ min{1/2, d(x0, X \ {x0})} > 0 for any f ∈ CB(X),

which implies that CB(X) is not dense in USCCB(X).
(c)⇒(a). For each ϕ ∈ USCC(X, I) and ε > 0, let ϕε : X → I be

the l.s.c. multi-valued function obtained by Lemma 1.4. Choose a discrete
closed subset D of ϕ so that %((x, t), D) < ε/2 for any (x, t) ∈ ϕ, whence
%H(ϕ,D) < ε/2. Note that prX |D is finite-to-one and prX(D) is discrete in
X. Since ϕε is l.s.c. and X has no isolated points, for each (x, t) ∈ ϕε there
are infinitely many y ∈ X such that

d(x, y) < ε/2 and ϕε(y) ∩ (t− ε/2, t+ ε/2) 6= ∅.
Then we can construct a discrete closed subset f of ϕε such that prX |f
is injective and %H(D, f) < ε/2, hence %H(ϕ, f) < ε. Then A = prX(f) is
discrete in X and f : A→ I is a map (2) which is a selection for ϕε|A (i.e.,
f(x) ∈ ϕε(x) for each x ∈ A). By Michael’s Selection Theorem [Mi], we
can extend f to f̃ ∈ C(X, I) which is a selection for ϕε. For any (x, t) ∈ ϕ,
we have %((x, t), f̃) ≤ %((x, t), f) ≤ %H(ϕ, f) < ε. Since f̃ ⊂ clX×I ϕε and
%H(ϕ, clX×I ϕε) ≤ ε, it follows that %((x, t), ϕ) ≤ ε for any (x, t) ∈ f̃ . Thus
%H(f̃ , ϕ) ≤ ε. Consequently, ϕ ∈ cl2X×I C(X, I).

Combining Theorem 1.5 with Proposition 1.2, we have the following
corollary:

1.6. Corollary. For any locally connected metric space X with no iso-
lated points, USCCB(X) (resp. USCC(X, I)) is the closure of CB(X) (resp.
C(X, I)) in 2X×R (resp. 2X×I).

One should notice that no completeness is assumed above (cf. [FK, The-
orem 3.3(a)]).

2. The AR-property of USCCB(X) and USCC(X, I). In this section,
using Borges’ characterization of AR’s in [Bo], we prove that USCCB(X)
and USCC(X, I) are AR’s if X = (X, d) is uniformly locally connected.

Now, we define a new metric dc on X as follows:

dc(x, x′) =
{

inf{diamd C | C ∈ C(x, x′)} if C(x, x′) 6= ∅,
1 otherwise,

where

C(x, x′) = {C ⊂ X | C is connected, x, x′ ∈ C and diamC < 1}.
As is easily observed, ifX is uniformly locally connected, then dc is uniformly
equivalent to d, hence dc induces the same topology on 2X×R as d. Then,
by replacing d with dc, we can assume that

(2) Recall that a map is identified with its graph.
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(∗) each pair of points x, x′ ∈ X with d(x, x′) < ε < 1 are contained in a
connected set C in X with diamC < ε.

2.1. Lemma. Condition (∗) implies the following condition:

(]) N%(ϕ, ε)(x) is connected for each ϕ ∈ USCCB(X), 0 < ε < 1 and
x ∈ X.

P r o o f. Let t1, t2 ∈ N%(ϕ, ε)(x) and t1 < t < t2. Then there are x1, x2 ∈
X and si ∈ ϕ(xi) (i = 1, 2) such that d(xi, x) < ε and |si − ti| < ε. Let

s =
t2 − t
t2 − t1 s1 +

t− t1
t2 − t1 s2.

By (∗), X has connected subsets C1 and C2 such that xi, x ∈ Ci and diamCi
< ε. Since C = C1 ∪ C2 is connected, s ∈ ϕ(x0) for some x0 ∈ C by
Lemma 1.1. Then d(x0, x) < ε. Observe that

t =
t2 − t
t2 − t1 t1 +

t− t1
t2 − t1 t2.

It then follows that

|s− t| ≤ t2 − t
t2 − t1 |s1 − t1|+ t− t1

t2 − t1 |s2 − t2| < ε.

So (x, t) ∈ N%(ϕ, ε), i.e., t ∈ N%(ϕ, ε)(x). Thus, N%(ϕ, ε)(x) is connected.

We denote by ∆n−1 the standard (n− 1)-simplex in Rn, that is,

∆n−1 =
{

(t1, . . . , tn) ∈ Rn
∣∣∣ ti ≥ 0,

n∑

i=1

ti = 1
}
.

A space Y is called hyper-connected if there are functions hn : Y n×∆n−1 →
Y (n ∈ N) which satisfy the following conditions:

(i) if ti = 0 then

hn(y1, . . . , yn; t1, . . . , tn)

= hn−1(y1, . . . , yi−1, yi+1, . . . , yn; t1, . . . , ti−1, ti+1, . . . , tn);

(ii) ∆n−1 3 (t1, . . . , tn) 7→ hn(y1, . . . , yn; t1, . . . , tn) ∈ Y is continuous
for each (y1, . . . , yn) ∈ Y n;

(iii) each neighborhood U of y ∈ Y contains a neighborhood V of y such
that hn(V n ×∆n−1) ⊂ U for every n ∈ N.

Notice that hn need not be continuous. It was proved by C. R. Borges [Bo]
that a metrizable space X is an AR if and only if X is hyper-connected (3).
We apply this characterization to prove the following:

(3) R. Cauty [Ca] introduced a local hyper-connectedness different from the one of
[Bo] and showed that a metrizable space X is an ANR if and only if X is locally hyper-
connected. The results of [Bo] and [Ca] hold for stratifiable spaces.
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2.2. Theorem. For any uniformly locally connected metric space X =
(X, d), USCCB(X) and USCC(X, I) are AR’s.

P r o o f. Since USCC(X, I) is a retract of USCCB(X), it suffices to show
that USCCB(X) is an AR.

By replacing the metric d with dc, we can assume condition (∗). Each
point of ∆n−1 \ {bn−1} can be uniquely represented as follows:

(1− t)bn−1 + z, z ∈ ∂∆n−1, 0 < t ≤ 1,

where bn−1 is the barycenter of ∆n−1 and ∂∆n−1 is the boundary of ∆n−1.
We inductively define

hn : USCCB(X)n ×∆n−1 → USCCB(X) (n ∈ N).

First, let h1(ϕ, 1) = ϕ for every ϕ ∈ USCCB(X). Assume that h1, . . . , hn−1

have been defined, and define hn as follows:

hn(ϕ1, . . . , ϕn; bn−1)(x) =
[

min
n⋃

i=1

ϕi(x),max
n⋃

i=1

ϕi(x)
]

and, for z ∈ ∂∆n−1 and 0 < t ≤ 1,

hn(ϕ1, . . . , ϕn; (1− t)bn−1 + tz)(x)

= (1− t)hn(ϕ1, . . . , ϕn; bn−1)(x) + thn(ϕ1, . . . , ϕn; z)(x),

where hn(ϕ1, . . . , ϕn; z) is defined by condition (i). Then conditions (i) and
(ii) are clearly satisfied. We show that

hn(B%H(ϕ, ε)n ×∆n−1) ⊂ B%H(ϕ, ε)

for each ϕ ∈ USCCB(X) and 0 < ε < 1. For ϕ1, . . . , ϕn ∈ B%H(ϕ, ε) and
z ∈ ∆n−1, since ϕ1, . . . , ϕn ⊂ N%(ϕ, ε), it follows from Lemma 2.1 and the
definition of hn that

hn(ϕ1, . . . , ϕn; z) ⊂ hn(ϕ1, . . . , ϕn; bn−1) ⊂ N%(ϕ, ε).
On the other hand, since hn(ϕ1, . . . , ϕn; z) contains some ϕi and since ϕ ⊂
N%(ϕi, ε), we have ϕ ⊂ N%(hn(ϕ1, . . . , ϕn; z), ε). Therefore,

%H(hn(ϕ1, . . . , ϕn; z), ϕ) < ε (i.e., hn(ϕ1, . . . , ϕn; z) ∈ B%H(ϕ, ε)).

Thus (iii) also holds. Consequently, USCCB(X) is hyper-connected, hence
it is an AR.

3. Proof of Main Theorem. We use the following variant of Toruń-
czyk’s characterization of Hilbert space [To3] (cf. [To4]):

3.1. Lemma. Let A be a discrete space and H = (H, d) a complete AR
with weight w(H) = cardA. Then H ≈ `2(A) if and only if the following
condition is satisfied :
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(∗∗) for any open cover U of H, there exists a map f : H ×A→ H such
that {fa(H) | a ∈ A} is discrete in H and each fa is U-close to id,

where fa : H → H is defined by fa(x) = f(x, a).

P r o o f. Obviously, (∗∗) implies conditions (∗1) and (∗2) in [To3, Theo-
rem 3.1] (cf. [To4]), hence we have the “if” part. The “only if” part easily
follows from the fact that the projection pr1 : H × H → H onto the first
factor is a near homeomorphism (cf. [Sc]).

3.2. Lemma. Assume condition (∗) of §2 is satisfied , X has no isolated
points, and there exist D ⊂ X and δ, ε ∈ (0, 1) such that d(a, a′) ≥ ε
for a 6= a′ ∈ D and each a ∈ D has a connected neighborhood with di-
ameter > δ. Then, for any open cover U of USCCB(X), there exists a
map h : USCCB(X) × 2D → USCCB(X) such that {hF (USCCB(X)) |
F ∈ 2D} is discrete in USCCB(X) and each hF is U-close to id, where
hF : USCCB(X)→ USCCB(X) is defined by hF (ϕ) = h(ϕ,F ).

P r o o f. Let V be an open star-refinement of U . Since USCCB(X) is an
AR (Theorem 2.2), we have a simplicial complex K with maps

p : USCCB(X)→ |K| and q : |K| → USCCB(X)

such that qp is V-close to id. Let α : USCCB(X) → (0, 1) be a map such
that α(ϕ) < min{δ, ε} for each ϕ ∈ USCCB(X) and

{B%H(ϕ, 2α(ϕ)) | ϕ ∈ USCCB(X)} ≺ V.
By subdividing K, we can assume the following two conditions:

(1) diam%H q(σ) < 1
8αq(y) if y ∈ σ ∈ K;

(2) αq(y) < 2αq(y′) if y, y′ ∈ σ ∈ K.

In fact, for each ϕ ∈ USCCB(X), let

Wϕ = B%H

(
ϕ, 1

24α(ϕ)
) ∩ {ψ ∈ USCCB(X)

∣∣ 2
3α(ϕ) < α(ψ) < 4

3α(ϕ)
}
,

and subdivide K so that each simplex is contained in some q−1(Wϕ).
For each v ∈ K(0), we define f(v) ∈ USCCB(X) as follows:

f(v) = q(v) ∪
⋃

a∈D
B
(
a, 1

8αq(v)
)× [b(v, a), t(v, a)],

where

b(v, a) = inf q(v)
(
B
(
a, 1

8αq(v)
))
, t(v, a) = sup q(v)

(
B
(
a, 1

8αq(v)
))
.

Obviously %H(f(v), q(v)) ≤ 1
8αq(v). If u and v are vertices of the same

simplex of K, then

%H(f(u), f(v)) ≤ %H(f(u), q(u)) + %H(q(u), q(v)) + %H(f(v), q(v))

< 1
8αq(u) + 1

8αq(v) + 1
8αq(v) < 1

4αq(v) + 1
4αq(v) = 1

2αq(v).
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For the barycenter σ̂ of each σ ∈ K, we define f(σ̂) ∈ USCCB(X) by

f(σ̂)(x) =
[

min
⋃

v∈σ(0)

f(v)(x),max
⋃

v∈σ(0)

f(v)(x)
]
.

Then, by Lemma 2.1, f(σ̂) ⊂ N%
(
f(v), 1

2αq(v)
)

for each v ∈ σ(0). Observe
that if 0 < r ≤ minv∈σ(0)

1
8αq(v), then

f(σ̂)|B(a, r) = B(a, r)× [b(σ̂, a), t(σ̂, a)] for each a ∈ D,
where b(σ̂, a) = minv∈σ(0) b(v, a) and t(σ̂, a) = maxv∈σ(0) t(v, a).

We define a map f : |K| → USCCB(X) as follows:

f(y)(x) =
k∑

i=1

sif(σ̂i)(x) =
[ k∑

i=1

si min f(σ̂i)(x),
k∑

i=1

si max f(σ̂i)(x)
]
,

where y =
∑k
i=1 siσ̂i, σ1 < . . . < σk ∈ K, si ≥ 0 and

∑k
i=1 si = 1. In the

above, note that 1
2αq(y) < αq(v) for each v ∈ σ(0)

k . Then, for each a ∈ D,

f(y)|B(a, 1
16αq(y)

)
= B

(
a, 1

16αq(y)
)× [min f(y)(a),max f(y)(a)].

For each y ∈ |K|, choose v ∈ σ(0) so that y ∈ |St(v,SdK)|. Since f(v) ⊂
f(y) ⊂ f(σ̂) ⊂ N%

(
f(v), 1

2αq(v)
)
, we have %H(f(y), f(v)) < 1

2αq(v), hence

%H(f(y), q(y)) ≤ %H(f(y), f(v)) + %H(f(v), q(v)) + %H(q(v), q(y))

< 1
2αq(v) + 1

8αq(v) + 1
8αq(v) < 3

4αq(v) < 3
2αq(y).

Now, for any F ∈ 2D, we define hF : USCCB(X)→ USCCB(X) by

hF (ϕ) = fp(ϕ) ∪
⋃

a∈F
{a} × [max fp(ϕ)(a),max fp(ϕ)(a) + 1

2αqp(ϕ)
]
.

Then hF is U-close to id. In fact, hF is V-close to qp because

%H(hF (ϕ), qp(ϕ)) ≤ %H(hF (ϕ), fp(ϕ)) + %H(fp(ϕ), qp(ϕ))

< 1
2αqp(ϕ) + 3

2αqp(ϕ) = 2αqp(ϕ).

To show the continuity of hF , let ϕn → ϕ in USCCB(X) as n→∞. Let
0 < r < 1

16αqp(ϕ). Since αqp is continuous, r < 1
16αqp(ϕn) for sufficiently

large n, whence for each a ∈ F ,

fp(ϕn)|B(a, r) = B(a, r)× [min fp(ϕn)(a),max fp(ϕn)(a)] and

fp(ϕ)|B(a, r) = B(a, r)× [min fp(ϕ)(a),max fp(ϕ)(a)].

On the other hand, fp(ϕn) → fp(ϕ) because fp is continuous. Then, as is
easily observed, max fp(ϕn)(a) → max fp(ϕ)(a) for each a ∈ F . From the
definition, it follows that hF (ϕn)→ hF (ϕ).

We show that {hF (USCCB(X)) | F ∈ 2D} is discrete in USCCB(X).
Suppose that, on the contrary, there exist ϕ,ϕi ∈ USCCB(X) and Fi ∈ 2D

(i ∈ N) such that hFi(ϕi) → ϕ as i → ∞ and Fi 6= Fj if i 6= j. Then
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infi∈N αqp(ϕi) > 0. Otherwise, limn→∞ αqp(ϕin)→ 0 for some i1 < i2 < . . .
As seen above, %H(hFin (ϕin), qp(ϕin)) < 2αqp(ϕin). Then it follows that
qp(ϕin) → ϕ, hence αqp(ϕ) = limn→∞ αqp(ϕin) = 0, which is a contradic-
tion.

Let ε0 = infi∈N 1
16αqp(ϕi) > 0. For any i 6= j ∈ N, there exists a ∈ D

such that a ∈ Fi\Fj or a ∈ Fj\Fi. Without loss of generality, we may assume
that a ∈ Fj \ Fi. For simplicity, we write bi = b(p(ϕi), a), ti = t(p(ϕi), a),
bj = b(p(ϕj), a) and tj = t(p(ϕj), a). Then

hFi(ϕi)|B(a, ε0) = B(a, ε0)× [bi, ti] and

hFj (ϕj)|B(a, ε0) = B(a, ε0)× [bj , tj ] ∪ {a} × [tj , tj + αqp(ϕj)].

In case ti ≤ tj + 1
2αqp(ϕj), we have

%H(hFi , hFj ) ≥ %((a, tj + αqp(ϕj)), hFi) ≥ min
{
ε0,

1
2αqp(ϕj)

}
= ε0.

Recall that a has a connected neighborhood with diameter > δ. Since ε0 <
1
16δ, there is c ∈ X so that d(a, c) = ε0/2. In case ti ≥ tj + 1

2αqp(ϕj), it
follows that

%H(hFi , hFj ) ≥ %((c, ti), hFj ) ≥ min
{
ε0/2, 1

2αqp(ϕj)
}

= ε0/2.

Consequently, %H(hFi(ϕi), hFj (ϕj)) ≥ ε0/2 if i 6= j, whence hFi(ϕi) is not
convergent. This is a contradiction.

3.3. Lemma. Assume that X is not totally bounded. For each n ∈ N,
let Dn be a maximal subset of X such that d(x, y) ≥ 2−n for any distinct
points x, y ∈ Dn (4). Then w(USCCB(X)) = supn∈N 2cardDn . In case X is
separable, w(USCCB(X)) = 2ℵ0 (5).

P r o o f. For each n ∈ N, let Qn = {2−nm | m ∈ N} ⊂ R. Then Dn ×Qn
is discrete in X × R. Since X is not totally bounded, each Dn is infinite,
hence card(Dn × Qn) = cardDn. By the maximality, d(x,Dn) < 2−n for
every x ∈ X, hence %(z,Dn × Qn) < 2−n for every z ∈ X × R. For each
E ∈ 2X×R and n ∈ N, let

F = {z ∈ Dn ×Qn | %(z, E) < 2−n} ∈ 2Dn×Qn ⊂ 2X×R.

Then %H(E,F ) ≤ 2−n. Hence,
⋃
n∈N 2Dn×Qn is dense in 2X×R. Since the

weight w(2X×R) is equal to the density of 2X×R, it follows that

w(2X×R) ≤ card
⋃

n∈N
2Dn×Qn

≤ sup
n∈N

card 2Dn×Qn = sup
n∈N

2card(Dn×Qn) = sup
n∈N

2cardDn ,

which implies w(USCCB(X)) ≤ supn∈N 2cardDn .

(4) The existence of such Dn ⊂ X is guaranteed by Zorn’s Lemma.
(5) In general, supn∈N 2cardDn 6= 2supn∈N cardDn = 2w(X).
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On the other hand, for each n ∈ N and F ∈ 2Dn , let

ϕF = F × I ∪X × {0} ∈ USCCB(X).

Since %H(ϕF , ϕF ′) ≥ 2−n for each F 6= F ′ ∈ 2Dn , {B%H(ϕF , 2−n−1) | F ∈
2Dn} is pairwise disjoint. Therefore, w(USCCB(X)) ≥ card 2Dn = 2cardDn ,
hence w(USCCB(X)) ≥ supn∈N 2cardDn .

Proof of Main Theorem. We apply Lemma 3.1 to show that USCCB(X) ≈
`2(A), where cardA = w(USCCB(X)). We have proved that USCCB(X) is
a completely metrizable AR (Corollary 1.3 and Theorem 2.2). It remains to
construct a map f : USCCB(X)× A → USCCB(X) such as in Lemma 3.1.
Let C be the collection of all components of X and take Dn (n ∈ N) as in
Lemma 3.3. Then observe that

card C ≤ w(X) = card
⋃

n∈N
Dn = sup

n∈N
cardDn.

Case (1): card C=w(X). SinceX is uniformly locally connected, cardDn

≥ card C = w(X) for sufficiently large n ∈ N. On the other hand, cardDn ≤
w(X) for all n ∈ N by definition. Then supn∈N 2cardDn = 2w(X), hence
Lemma 3.3 yields cardA = w(USCCB(X)) = 2w(X).

We can write C =
⋃
i∈N Ci, where Ci ∩ Cj = ∅ if i 6= j and card Ci =

w(X) for each i ∈ N. For each i ∈ N, let ri : USCCB(X) → m(Ci) be the
map defined by ri(ϕ)(C) = supϕ(C) (≤ supϕ(X)) for each C ∈ Ci. Since
m(Ci) ≈ `2(2Ci) ([BP, Ch. VII, Theorem 6.1]) and w(USCCB(X) × A) =
2w(X) = card 2Ci , there is a closed embedding gi : USCCB(X)×A→ m(Ci)
such that ‖gi(ϕ, a) − ri(ϕ)‖ < 2−i for each (ϕ, a) ∈ USCCB(X) × A. Note
that {(gi)a(USCCB(X)) | a ∈ A} is discrete in USCCB(X).

For any open cover U of USCCB(X), let α : USCCB(X) → (0, 1) be a
map such that {B%H(ϕ, α(ϕ)) | ϕ ∈ USCCB(X)} ≺ U . Now, we define a
map f : USCCB(X)×A→ USCCB(X) as follows:

f(ϕ, a)(x) =





ϕ(x) + gi(ϕ, a)(C)− ri(ϕ)(C)

for x ∈ C ∈ Ci and 2−i+1 < α(ϕ),

ϕ(x) + 2i(α(ϕ)− 2−i)(gi(ϕ, a)(C)− ri(ϕ)(C))

for x ∈ C ∈ Ci and 2−i ≤ α(ϕ) ≤ 2−i+1,

ϕ(x) otherwise.

Then fa is U-close to id. In fact, for every C ∈ Ci,

|gi(ϕ, a)(C)− ri(ϕ)(C)| ≤ ‖gi(ϕ, a)− ri(ϕ)‖ < 2−i,

hence %H(fa(ϕ), ϕ) < α(ϕ).
We prove that {fa(USCCB(X)) | a ∈ A} is discrete in USCCB(X).

Suppose that, on the contrary, there is a sequence (ϕk, ak) ∈ USCCB(X)×A
(k ∈ N) such that ak 6= ak′ if k 6= k′, and fak(ϕk) converges to some
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ϕ0 ∈ USCCB(X). Then there is some i0 ∈ N such that 2−i0+1 < α(ϕk)
for all k ∈ N. Otherwise, limj→∞ α(ϕk(j)) = 0 for some k(1) < k(2) < . . . ,
whence limj→∞ %H(fak(j)(ϕk(j)), ϕk(j)) = 0. It follows that ϕk(j) converges
to ϕ0, so α(ϕ0) = limj→∞ α(ϕk(j)) = 0, which is a contradiction. For each
C ∈ Ci0 ,

ri0(fak(ϕk))(C) = sup f(ϕk, ak)(C)

= supϕk(C) + gi0(ϕk, ak)(C)− ri0(ϕk)(C)

= gi0(ϕk, ak)(C) = (gi0)ak(ϕk).

Since ri0 is continuous, (gi0)ak(ϕk) = ri0(fak(ϕk)) converges to ri0(ϕ0),
which contradicts the fact that {(gi0)a(USCCB(X)) | a ∈ A} is discrete in
USCCB(X). Therefore, {fa(USCCB(X)) | a ∈ A} is discrete in USCCB(X).

Case (2): card C < w(X). Since X is uniformly locally connected, we
may assume the condition (∗) of §2. Let X0 be the set of isolated points of
X. Then d(x,X \ {x}) ≥ 1 for every x ∈ X0 by (∗). As is easily seen,

USCCB(X) ≈ USCCB(X0)×USCC(X \X0).

For each n ∈ N, let D′n = Dn \ X0. Since cardX0 ≤ card C < w(X) =
supn∈N cardDn, we have cardX0 < cardDn for sufficiently large n ∈ N,
whence cardD′n = cardDn. By Lemma 3.3,

w(USCCB(X \X0)) = sup
n∈N

2cardD′n = sup
n∈N

2cardDn

= w(USCCB(X)).

In case (1) above, we have shown that USCCB(X0) is homeomorphic to a
Hilbert space, hence it is a completely metrizable AR with

w(USCCB(X0)) ≤ w(USCCB(X)).

By [To2, Theorem 3.1], it suffices to show that USCCB(X \X0) is homeo-
morphic to a Hilbert space with the same weight. Thus we can assume that
X has no isolated points.

For each δ > 0, let C(δ) = {C ∈ C | diamC < δ}. Let

D1
n = Dn \

⋃
C(2−n) for each n ∈ N.

Note that each point of D1
n has a connected neighborhood in X with diam ≥

2−n because it is contained in a component of X with diam ≥ 2−n. Each
member of C(2−n) contains at most one point of Dn. Recall that card C <
w(X) = supn∈N cardDn. Then, for sufficiently large n ∈ N,

card
(
Dn ∩

⋃
C(2−n)

)
≤ card C(2−n) ≤ card C < cardDn,
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whence cardDn = cardD1
n. Therefore, it follows from Lemma 3.3 that

card
( ⋃

n∈N
{n} × 2D

1
n

)
= sup
n∈N

card 2D
1
n = sup

n∈N
2cardD1

n

= sup
n∈N

2cardDn = w(USCCB(X)).

Thus we may assume that

A =
⋃

n∈N
{n} × 2D

1
n .

For any open cover U of USCCB(X), let V be an open star-refinement
of U . Since X is not totally bounded, we can apply Lemma 3.2 to obtain a
map g : USCCB(X)×N→ USCCB(X) such that {gn(USCCB(X)) | n ∈ N}
is discrete in USCCB(X) and each gn is V-close to id. Choose an open
refinement W of V so that the star st(W,W) of each W ∈ W meets at most
one of gn(USCCB(X)). Applying Lemma 3.2 again, we obtain maps hn :
USCCB(X) × 2D

1
n → USCCB(X) (n ∈ N) such that {(hn)F (USCCB(X)) |

F ∈ 2D
1
n} is discrete in USCCB(X) and each (hn)F is W-close to id. Then

we define a map f : USCCB(X)×A→ USCCB(X) by

f(ϕ, (n, F )) = hn(g(ϕ, n), F ) (i.e., f(n,F )(ϕ) = (hn)F ◦gn(ϕ)).

Each f(n,F ) is U-close to id because it is W-close to gn.
We show that the collection {f(n,F )(USCCB(X)) | (n, F ) ∈ A} is discrete

in USCCB(X). Each ϕ ∈ USCCB(X) is contained in some W ∈ W. Then
this W meets at most one member of {f(USCCB(X)×{n}×2D

1
n) | n ∈ N}.

In fact, if f(n,F )(ψ), f(n′,F ′)(ψ′) ∈ W for some ψ,ψ′ ∈ USCCB(X), n 6=
n′ ∈ N, F ∈ 2D

1
n and F ′ ∈ 2D

1
n′ , then gn(ψ), gn′(ψ′) ∈ st(W,W), which is a

contradiction. In case

W ∩ f(USCCB(X)× {n} × 2D
1
n) 6= ∅,

we can choose a neighborhood W ′ of ϕ so that W ′ ⊂ W and W ′ meets at
most one of (hn)F (USCCB(X)). Since

f(n,F )(USCCB(X)) = (hn)F ◦gn(USCCB(X)) ⊂ (hn)F (USCCB(X)),

W ′ meets at most one of f(n,F )(USCCB(X)). Thus {f(n,F )(USCCB(X)) |
(n, F ) ∈ A} is discrete in USCCB(X).

Finally, we show that USCC(X, [−1, 1]) ≈ `2(A) (i.e., USCC(X, I) ≈
`2(A)). Let

B = {ϕ ∈ USCC(X, [−1, 1]) | inf ϕ(X) = −1 or supϕ(X) = 1}.
Then B is clearly closed in USCC(X, [−1, 1]) and

USCC(X, [−1, 1]) \B ≈ USCCB(X) ≈ `2(A).
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We show that B is a strong Z-set in USCC(X, [−1, 1]), whence we obtain
USCC(X, [−1, 1]) ≈ `2(A) by [To4, Theorem B1] (cf. [To2]). For any map
α : USCC(X, [−1, 1])→ (0, 1), we define a map

h : USCC(X, [−1, 1])→ USCC(X, [−1, 1])

by h(ϕ)(x) =
(
1 − 1

2α(ϕ)
) · ϕ(x). Then %H(h(ϕ), ϕ) < α(ϕ) for each ϕ ∈

USCC(X, [−1, 1]). For every ϕ0 ∈ clh(USCC(X, [−1, 1])), there is a se-
quence ϕk ∈ USCC(X, I) (k ∈ N) such that h(ϕk) → ϕ0. Then b =
infk∈N α(ϕk) > 0. Otherwise, limj→∞ α(ϕkj ) = 0 for some k1 < k2 < . . . ,
hence ϕkj converges to ϕ0, so α(ϕ0) = limj→∞ α(ϕkj ) = 0, which is a con-
tradiction. For each k ∈ N,

sup
⋃

x∈X
h(ϕk)(x) =

(
1− 1

2
α(ϕk)

)
· sup

⋃

x∈X
ϕk(x) ≤ 1− 1

2
b,

hence sup
⋃
x∈X ϕ0(x) ≤ 1 − 1

2b < 1. Similarly, we have inf
⋃
x∈X ϕ0(x) ≥

−1 + 1
2b > −1. Therefore, ϕ0 6∈ B. This means that

B ∩ clh(USCC(X, [−1, 1])) = ∅.
Thus B is a strong Z-set in USCC(X, [−1, 1]).

Remark. Let P be the convex set in the Banach space CB(X)2 =
CB(X)× CB(X) defined as follows:

P = {(f, g) ∈ CB(X)2 | g(x) ≥ 0 for all x ∈ X}.
Then it is easy to see that if X = (X, d) is a discrete metric space (i.e.,
inf{d(x, y) | x 6= y} > 0), then USCCB(X) ≈ P . In fact, for each ϕ ∈
USCCB(X), we define mϕ, rϕ ∈ CB(X) by

mϕ(x) = 1
2 (minϕ(x) + maxϕ(x)),

rϕ(x) = 1
2 (maxϕ(x)−minϕ(x)).

Then the desired homeomorphism ξ : USCCB(X) → P can be defined by
ξ(ϕ) = (mϕ, rϕ).

4. Remarks on topologies for CB(X) and C(X, I). Although the
spaces CB(X) and C(X, I) with the sup-metric are AR’s for an arbitrary
metric space X, the example in the Introduction also shows that the spaces
CB(X) and C(X, I) with the Hausdorff metric %H are not ANR’s even if X is
locally connected. One should also remark that CB(X) is not a topological
linear space in this topology. In fact, it can easily be derived from [FK,
Remark 3.6] that the addition CB(R)2 → CB(R) ((f, g) 7→ f + g) is not
continuous with respect to the Hausdorff metric. However, we can prove the
following:
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4.1. Theorem. For any uniformly locally connected metric space X =
(X, d), the spaces CB(X) and C(X, I) with the Hausdorff metric are AR’s.

A subset Z of a space Y is said to be homotopy dense in Y if there exists
a homotopy h : Y × I → Y such that h0 = id and ht(Y ) ⊂ Z for t > 0.
As is easily observed, a homotopy dense subset of an AR (resp. ANR) is
also an AR (resp. ANR). By Theorem 2.2, in case X has no isolated points,
Theorem 4.1 is deduced from the following:

4.2. Theorem. For any uniformly locally connected metric space X =
(X, d) with no isolated points, CB(X) (resp. C(X, I)) is homotopy dense in
USCCB(X) (resp. USCC(X, I)).

As a corollary of Theorem 4.2, we also have the following:

4.3. Corollary. Let X = (X, d) be an infinite σ-compact complete
metric space, which is assumed to be uniformly locally connected in case X
is non-compact. Then CB(X) and C(X, I) with the Hausdorff metric are
homeomorphic to a Hilbert space.

To prove Theorem 4.2, we need the following non-compact version of
[SU, Lemma 2]:

4.4. Lemma. Assume that condition (∗) of §2 holds and X has no isolated
points. Let f0 : K(0) → CB(X) be a map of the 0-skeleton of a locally finite
simplicial complex K such that diam%H f0(σ(0)) < 1 for every σ ∈ K, where
σ(0) = σ ∩K(0). Then f0 extends to a map f : |K| → CB(X) such that

diam%H f(σ) ≤ 4 diam%H f0(σ(0)) for every σ ∈ K,
where CB(X) has the topology induced by %H.

S k e t c h o f p r o o f. By Lemma 2.1, we have property (]). Then the
proof is the same as that of [SU, Lemma 2], with C(X, (−1, 1)) replaced
by CB(X). Now, since X is not compact, we cannot take Av ⊂ X as a
finite set in the proof, but since K is locally finite and X has no isolated
points, we can take Av ⊂ X as a discrete set with the same property, that
is, f(v) ⊂ N%(f(v)|Av, εv) (in other words, f(v)|Av = f(v) ∩ p−1(Av) is
εv-dense in f(v)), and each Av has an open neighborhood Uv in X with
Uv ∩ Uv′ = ∅ if v 6= v′ ∈ σ(0) and σ ∈ K. No other change is necessary.

Remark. In the above, if card St(v0,K) > cardX at some vertex v0 ∈
K(0), it is impossible to obtain discrete sets Av ⊂ X, v ∈ K(0), such that
Av ∩ Av0 = ∅ for every v ∈ St(v0,K)(0). Then the local finiteness of K is
assumed.

We can apply Lemma 4.4 to prove the following result the same way as
[SU, Lemma 3].
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4.5. Lemma. Let X = (X, d) be a uniformly locally connected metric
space with no isolated points and f : Y → USCCB(X) a map of a separable
metrizable space Y . Then there exists a homotopy h : Y × I → USCCB(X)
such that h0 = f and ht(Y ) ⊂ CB(X) for t > 0.

P r o o f. By replacing the metric d by dc, we can assume condition (∗) of
§2. For each n ∈ N, let Un be an open cover of USCCB(X) with mesh%H Un <
(n+1)−1. Since Y is separable metrizable, the open cover f−1(Un) of Y has
a countable star-finite open refinement Vn, whence the nerve of Vn is locally
finite. We define

W1 = {U × (2−1, 1] | U ∈ U1},
Wn = {U × ((n+ 1)−1, (n− 1)−1) | U ∈ Un} for n > 1.

Thus we have a star-finite open cover W =
⋃
n∈NWn of Y × (0, 1]. Let K

be the nerve of W and g : Y × (0, 1] → |K| a canonical map, that is, each
g(y, t) is contained in the simplex spanned by all vertices W ∈ W containing
(y, t). Then K is locally finite. For each n ∈ N, let Kn be the nerve of
Wn ∪Wn+1. Then each Kn is a subcomplex of K and K =

⋃
n∈NKn. Note

that K(0) =
⋃
n∈NWn. For each W ∈ Wn, since prY (W ) ∈ Vn ≺ f−1(Un),

we can choose π(W ) ∈ Un so that f prY (W ) ⊂ π(W ).
Since CB(X) is dense in USCCB(X) by Theorem 1.5, we can also choose

k0(W ) ∈ π(W )∩CB(X), whence %H(k0(W ), f(y)) ≤ mesh%H Un < (n+1)−1

for any y ∈ prY (W ). Thus we have a map k0 : K(0) → CB(X) such that
%H(k0(W ), f(y)) < (n + 1)−1 for any W ∈ K

(0)
n = Wn and y ∈ prY (W ),

hence diam%H k0(σ(0)) < 2(n+ 1)−1 for each σ ∈ Kn. By using Lemma 4.4,
we can extend k0 to a map k : |K| → CB(X) such that diam%H k(σ) <
4 diam%H k0(σ(0)). Thus we obtain the map

kg : Y × (0, 1]→ CB(X) ⊂ USCCB(X).

For each (y, t) ∈ Y ×(0, 1], choose n ∈ N and W ∈ Wn so that (n+1)−1 <
t ≤ n−1 and (y, t) ∈W . Then there is σ ∈ Kn such that g(y, t) ∈ σ and W ∈
σ(0). Since k(W ), kg(y, t) ∈ k(σ) and diam%H k(σ) < 4 diam%H k(σ(0)) <
8(n+ 1)−1, it follows that

%H(kg(y, t), f(y)) ≤ %H(kg(y, t), k(W )) + %H(k(W ), f(y))

< 8(n+ 1)−1 + (n+ 1)−1 = 9(n+ 1)−1 < 9t.

Then kg can be extended to the desired homotopy h by h0 = f .

Remark. In the above lemma, the separability of Y is necessary because
the local finiteness of K is assumed in Lemma 4.4. Note that USCCB(X) is
non-separable.

A subset Z ⊂ Y is called locally homotopy negligible in Y if every neigh-
borhood U of each point x ∈ X contains a neighborhood V of x such that
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each map f : (In, ∂In) → (V, V \ Z), n ∈ N, is homotopic in (U,U \ Z) to
a map g with g(In) ⊂ U \ Z (cf. [To1]). By using Lemma 4.5, it is easy to
prove the following:

4.6. Corollary. For any uniformly locally connected metric space X =
(X, d) with no isolated points, USCCB(X) \CB(X) is locally homotopy neg-
ligible in USCCB(X).

Proof of Theorem 4.2. Since USCCB(X) is an AR by Theorem 2.2, ac-
cording to [To1, Theorem 2.4], Corollary 4.6 implies that CB(X) is homotopy
dense in USCCB(X).

By small adjustments, we can see that Lemmas 4.4 and 4.5 are valid for
USCC(X, I). It follows that C(X, I) is homotopy dense in USCC(X, I) for
any uniformly locally connected metric space X = (X, d) with no isolated
points.

Proof of Theorem 4.1. Let X0 be the set of all isolated points of X. Since
X is uniformly locally connected, there is δ > 0 such that d(a,X \ {a}) > δ
for every a ∈ X0. It is easy to see that

CB(X) ≈ CB(X0)× CB(X \X0),

where the topology of each space is induced by the Hausdorff metric %H. By
Theorems 2.2 and 4.2, CB(X \X0) with the Hausdorff metric is an AR. On
the other hand, CB(X0) with the Hausdorff metric is also an AR because the
Hausdorff metric on CB(X0) induces the same topology as the sup-norm.
Therefore, CB(X) with the Hausdorff metric is an AR. Moreover, C(X, I)
with the Hausdorff metric is also an AR because it is a retract of CB(X)
with the Hausdorff metric.

Proof of Corollary 4.3. In case X is compact and infinite, the Haus-
dorff metric induces the same topology as the sup-metric. The separable
Banach space C(X) = CB(X) is homeomorphic to the separable Hilbert
space `2 [BP, Ch. VI, Theorem 5.1]. The space C(X, I) is homeomorphic to
the closed unit ball C(X, [−1, 1]) of C(X), hence C(X, I) ≈ `2 [BP, Ch. VI,
Theorem 5.1].

If X is non-compact, then as in Theorem 4.1, the corollary reduces
to the case where X has no isolated points. It then suffices to show that
USCCB(X)\CB(X) is an Fσ-set in USCCB(X). In fact, USCCB(X)\CB(X)
would be a Zσ-set in USCCB(X) by Theorem 4.2, hence USCCB(X) ≈
CB(X) by [Cu, Corollary 1]. Moreover, since USCC(X, I)\C(X, I) would also
be an Fσ-set in USCC(X, I), it would similarly follow that USCC(X, I) ≈
C(X, I).

Since X is σ-compact, X has compact subsets X1 ⊂ X2 ⊂ . . . with
X =

⋃
n∈NXn. For each n ∈ N, let
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Fn = {ϕ ∈ USCCB(X) | there is x ∈ Xn such that diamϕ(x) ≥ 1/n}.
Then USCCB(X) \ CB(X) =

⋃
n∈N Fn. To see that each Fn is closed in

USCCB(X), let ϕi ∈ Fn, i ∈ N, and assume ϕi → ϕ ∈ USCCB(X) as
i → ∞. Then all ϕi and ϕ are contained in some X × [−r, r]. For each
i ∈ N, there is xi ∈ Xn such that diamϕ(xi) ≥ 1/n, whence there are
si, ti ∈ ϕ(xi) with ti − si ≥ 1/n. Since Xn and [−r, r] are compact, we may
assume that xi → x in Xn, si → s and ti → t in [−r, r]. Then t − s ≥ 1/n
and s, t ∈ ϕ(x). Thus we have diamϕ(x) ≥ 1/n, hence ϕ ∈ Fn. Therefore,
USCCB(X) \ CB(X) is an Fσ-set in USCCB(X).

Let CU
B (X) be the subspace of the Banach space CB(X) consisting of

the uniformly continuous functions, and CU(X, I) = C(X, I) ∩ CU
B (X). In

case X is compact, CU
B (X) = C(X) and CU(X, I) = C(X, I). As just seen,

the Banach space CB(X) is not a subspace of USCCB(X), but CU
B (X) can

be regarded as a subspace of USCCB(X), that is, we have

4.7. Proposition. The topology of CU
B (X) induced by the sup-norm ‖ · ‖

coincides with the one induced by the Hausdorff metric %H.

P r o o f. Let f ∈ CU
B (X). By the uniform continuity of f , for each ε > 0,

there exists δ > 0 such that d(x, y) < δ implies |f(x) − f(y)| < ε/2. Let
g ∈ CB(X) be such that %H(f, g) < min{ε/2, δ}. For each x ∈ X, since
%((x, g(x)), f) < min{ε/2, δ}, we can choose y ∈ X so that

%((x, g(x)), (y, f(y))) = max{d(x, y), |g(x)− f(y)|} < min{ε/2, δ}.
Since d(x, y) < δ, we have |f(x)− f(y)| < ε/2. Hence,

|f(x)− g(x)| ≤ |f(x)− f(y)|+ |f(y)− g(x)| < 1
2ε+ 1

2ε = ε.

Therefore, ‖f − g‖ < ε. Conversely, if ‖f − g‖ < ε then

%H(f, g) = max{sup
x∈X

%((x, f(x)), g), sup
x∈X

%((x, g(x)), f)}

≤ sup
x∈X
|f(x)− g(x)| = ‖f − g‖ < ε.

Comparing with the result of the previous paper [SU], one may want to
replace C(X, I) and CB(X) in Theorem 1.5 (or Corollary 1.6) by CU(X, I)
and CU

B (X), respectively, since the latter are subspaces of USCC(X, I) and
USCCB(X), respectively. However, CU(X, I) is not dense in USCC(X, I)
even if X is locally connected and has no isolated point. In fact, let X =⋃
n∈N[n−n−1, n] ⊂ R and define f ∈ C(X, I) ⊂ USCC(X, I) by f(n−t) = nt

if 0 ≤ t ≤ n−1. Then no g ∈ C(X, I) with %H(f, g) < 1/4 is uniformly
continuous because 1/4, 3/4 ∈ g([n − n−1, n]) for all n ∈ N. As another
example, let X = R\{0} and define f ∈ C(X, I) ⊂ USCC(X, I) by f(x) = 0
for x < 0 and f(x) = 1 for x > 0. Then no g ∈ C(X, I) with %H(f, g) < 1/4
is uniformly continuous because g(x) < 1/4 if x < 0 and g(x) > 3/4 if x > 0.
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