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Ergodic averages and free Z2 actions

by

Zoltán B u c z o l i c h (Budapest)

Abstract. If the ergodic transformations S, T generate a free Z2 action on a finite non-
atomic measure space (X,S, µ) then for any c1, c2 ∈ R there exists a measurable function f
on X for which (N + 1)−1∑N

j=0 f(Sjx)→ c1 and (N+1)−1∑N
j=0 f(T jx)→ c2 µ-almost

everywhere as N →∞. In the special case when S, T are rationally independent rotations
of the circle this result answers a question of M. Laczkovich.

Introduction. The problem discussed in this paper was originally moti-
vated by non-absolute integration, that is, by generalizations of the Lebesgue
integral which integrate functions f for which |f | is not necessarily Lebesgue
integrable (for details of such methods we refer to [P]). We were interested
in how Birkhoff’s Ergodic Theorem is related to generalized integration pro-
cedures. It follows from the main result of this paper that one encounters
serious problems even in the classical situation of rotations of the unit circle
equipped with the Lebesgue measure. In fact, it follows from our result that
given any two irrationals α and β for which α/β is also irrational there exists
a Lebesgue measurable function f defined on the circle for which

1
N + 1

N∑

j=0

f(x+ jα)→ 1 and
1

N + 1

N∑

j=0

f(x+ jβ)→ 0 for a.e. x.

Of course, by the ergodic theorem f is not Lebesgue integrable. This also
shows that if a generalized integral of f is defined, then either the α ergodic
average or the β average does not converge to the value of this integral.

Answering a less specific question of this author, P. Major [M] has con-
structed a function f : X → R and ergodic transformations S, T : X → X
on a Lebesgue space (X,S, µ) such that limN→∞(N+1)−1∑N

j=0 f(Sjx) = 0

a.e. and limN→∞(N + 1)−1∑N
j=0 f(T jx) = 1 a.e. In Major’s example T is
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a shift on a suitable Lebesgue space and S is conjugate to T . The definition
of S is quite involved.

M. Laczkovich raised the question whether X in the above example can
be the unit circle with S and T being irrational rotations. In this paper
an affirmative answer to this question is given in a somewhat more general
setting. Since the transformations in Major’s example were conjugate, and
two conjugate, orientation preserving homeomorphisms of the circle have
the same rotation number, Major’s example differs substantially from the
rotation case.

Working on M. Laczkovich’s problem, in [Bu] we obtained the following
result: Suppose that f is a measurable function defined on the circle and

Γf =
{
α :

1
N + 1

N∑

j=0

f(x+ jα) converges a.e.
}
.

We verified that Γf is of positive Lebesgue measure if and only if f is
Lebesgue integrable, and in that case, by the ergodic theorem, all the limits
equal almost everywhere the integral of f . Furthermore, given a sequence
{αj}∞j=1 of rationally independent irrationals, there exists a non-Lebesgue
integrable f such that each αj ∈ Γf . This result implies that Γf can be
dense for non-integrable functions. In [S] R. Svetic improves this result by
showing that there exists a non-integrable f for which Γf ∩I is of cardinality
continuum for any non-empty open subinterval I of the circle. It is still an
open question whether there exists a non-Lebesgue integrable measurable
function f such that the Hausdorff dimension of Γf is positive.

If α and β are independent over the rationals then Tx = x + α and
Sx = x + β generate a free Z2 action on the circle. The main result of
this paper shows that if S, T are ergodic transformations of a non-atomic
Lebesgue measure space (X,S, µ) and they generate a free Z2 action then
for any c1, c2 ∈ R there exists a measurable function f : X → R such that

lim
N→∞

1
N + 1

N∑

j=0

f(Sjx) = c1,

lim
N→∞

1
N + 1

N∑

j=0

f(T jx) = c2 for µ-a.e. x.

Preliminaries. In this paper, whenever we use the symbol
∑
γ∈Γ aγ

and Γ is empty then by definition
∑
γ∈Γ aγ = 0.

Free Z2 actions on Lebesgue spaces are natural generalizations of in-
dependent rotations of the circle. Assume that a Z2 action is generated
by S and T on a finite non-atomic Lebesgue measure space (X,S, µ), and
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T jSk for all (j, k) ∈ Z2 is a measure preserving transformation on X. We
say that the group action generated by T and S is free if T jSkx 6= x for
(j, k) 6= (0, 0) and µ-a.e. x. Given a number N denote by RN the rectangle
{(j, k) : 1 ≤ j ≤ N, 1 ≤ k ≤ 2N}. Observe that translated copies of RN
form a partition of Z2, that is, RN is a tiling set in the sense of [OW]. By
Theorem 2 of [OW] Rokhlin’s lemma is valid for the above free Z2 actions
and RN . This means the following:

For any ε > 0 there is a set B ∈ S such that

(i) {T jSkB : (j, k) ∈ RN} are disjoint sets, and
(ii) µ(

⋃
(j,k)∈RN T

jSkB) > 1− ε.

Main result

Theorem. Assume that (X,S, µ) is a finite non-atomic Lebesgue mea-
sure space and S, T : X → X are two µ-ergodic transformations which
generate a free Z2 action on X. Then for any c1, c2 ∈ R there exists a
µ-measurable function f : X → R such that

MS
Nf(x) =

1
N + 1

N∑

j=0

f(Sjx)→ c1,

MT
Nf(x) =

1
N + 1

N∑

j=0

f(T jx)→ c2 for µ-almost every x as N →∞.

P r o o f. If c1 = c2 then any function with
T
X
f dµ = c1 is suitable.

Without limiting generality we can assume that µ(X) = 1, c1 = 0, and
c2 = 1. Given a µ-measurable function g : X → R and an ε > 0 we
say that it is (S, ε)-good if there exists a measurable set Xε,S such that
µ(X \ Xε,S) < 2ε and |MS

Ng(x)| < ε for all x ∈ Xε,S and N = 0, 1, . . .
Denote by E the support of g.

Claim 1. Given an integer N0 assume that µ(
⋃N0
k=0 S

−kE) < 2ε and

(1)
∣∣∣
N∑

k=0

g(Skx)
∣∣∣ < N0ε for all x ∈ X and N = 0, 1, . . .

Then g is (S, ε)-good.

P r o o f. Let Xε,S = X \ ⋃N0
k=0 S

−kE. If x ∈ Xε,S then g(Skx) = 0 for
k = 0, . . . , N0; hence MS

Ng(x) = 0 for N = 0, . . . , N0. Furthermore by using
(1) for N > N0 we have

|MS
Ng(x)| =

∣∣∣∣
1

N + 1

N∑

k=0

g(Skx)
∣∣∣∣ <

∣∣∣∣
1
N0

N∑

k=0

g(Skx)
∣∣∣∣ < ε.

This shows that Claim 1 is true.
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Assume that ε0 > ε1 > . . . > 0,
∑∞
j=0 εj <∞, and 1/εj is an integer for

all j. We also suppose that the bounded measurable functions fj : X → R
have the following properties:

(i) if Ej denotes the support of fj then µ(Ej) < 2εj ,
(ii)

T
X
fj dµ = 1,

(iii) f2j+1 − f2j is (S, ε2j)-good and
(iv) f2j+2 − f2j+1 is (T, ε2j+1)-good for j = 0, 1, . . .

Later we show that such functions exist. Now we verify that the exis-
tence of such functions implies the theorem. Set f =

∑∞
j=0(−1)jfj . From

(i) and
∑
j εj < ∞ it follows that the sum defining f converges µ-almost

everywhere.
We first show that MT

Nf(x) → 1 µ-almost everywhere. Given ε > 0
choose N0 such that

∑∞
j=2N0+1 εj < ε/4. Since f2j+2 − f2j+1 is (T, ε2j+1)-

good for each j there exists Xε2j+1,T such that µ(X \ Xε2j+1,T ) < 2ε2j+1

and |MT
N (f2j+2 − f2j+1)(x)| < ε2j+1 for all N = 0, 1, . . . and x ∈ Xε2j+1,T .

Observe that letting

gN0 =
2N0∑

j=0

(−1)jfj = f0 +
N0−1∑

j=0

f2j+2 − f2j+1

we have
T
X
gN0 dµ = 1 and by the ergodic theorem we can choose a mea-

surable set XN0 and a number N1 > N0 such that µ(X \XN0) < ε/2 and
|MT

NgN0(x)− 1| < ε/2 for x ∈ XN0 and N ≥ N1.

Set X̂ = XN0 ∩
⋂∞
j=N0

Xε2j+1,T . Then µ(X \ X̂) < ε and for x ∈ X̂ and
N ≥ N1 we have

|MT
Nf(x)− 1| ≤ |MT

NgN0(x)− 1|+
∞∑

j=N0

|MT
N (f2j+2 − f2j+1)(x)|

< ε/2 +
∞∑

j=N0

ε2j+1 < ε.

Since this estimate is valid for all ε > 0 this implies MT
Nf(x)→ 1 µ-almost

everywhere. The argument showing MS
Nf(x)→ 0 is similar and is based on

the fact that if we set gN0 =
∑N0−1
j=0 f2j+1 − f2j then

T
X
gN0 dµ = 0.

To complete the proof of the Theorem we need to show that functions
fj with properties (i)–(iv) exist. This is based on the following lemma.

Lemma. Suppose that the transformations S, T satisfy the assumptions
of the Theorem. Assume that K and N are arbitrary positive integers and
g0 is a bounded measurable function with support E0. Set ε = 1/K. Then
there exists another bounded measurable function g1 such that

(a)
T
X
g1 dµ =

T
X
g0 dµ,
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(b) if E1 denotes the support of g1 then µ(
⋃N
k=−N S

−kE1) < 2ε,
(c) supx∈X |g1(x)| ≤ ε−1 supx∈X |g0(x)|,
(d) |∑M

k=0(g1 − g0)(T kx)| ≤ 2ε−1 supx∈X |g0(x)| for M = 0, 1, . . . and
all x ∈ X, and

(e) if E1,0 denotes the support of g1 − g0 we have E1,0 ⊂
⋃K
k=0 T

kE0.

We prove the Lemma later. Next we use it repeatedly to find the func-
tions fj . Let Kj = 1/εj . Since the even and odd steps are slightly different,
we now state what properties we want to satisfy at these steps.

The even case:

(a2j)
T
X
f2j dµ =

T
X
f2j−1 dµ = 1,

(b2j) µ(
⋃N2j
k=−N2j

S−kE2j) < 2ε2j ,

(c2j) supx∈X |f2j(x)| ≤ ε−1
2j supx∈X |f2j−1(x)|,

(d2j) |
∑M
k=0(f2j − f2j−1)(T kx)| ≤ 2ε−1

2j supx∈X |f2j−1(x)| for M =
0, 1, . . . , and all x ∈ X,

(e2j) if E2j,2j−1 denotes the support of f2j − f2j−1 we have

E2j,2j−1 ⊂
K2j⋃

k=0

T kE2j−1.

The odd case:

(a2j+1)
T
X
f2j+1 dµ =

T
X
f2j dµ = 1,

(b2j+1) µ(
⋃N2j+1

k=−N2j+1
T−kE2j+1) < 2ε2j+1,

(c2j+1) supx∈X |f2j+1(x)| ≤ ε−1
2j+1 supx∈X |f2j(x)|,

(d2j+1) |∑M
k=0(f2j+1 − f2j)(Skx)| ≤ 2ε−1

2j+1 supx∈X |f2j(x)| for M =
0, 1, . . . and all x ∈ X,

(e2j+1) if E2j+1,2j denotes the support of f2j+1 − f2j we have

E2j+1,2j ⊂
K2j+1⋃

k=0

SkE2j .

Set f−1(x) = 1 for all x ∈ X. Let

N0 =
2
ε2

1
· 1
ε0

=
2
ε2

1
· 1
ε0

sup
x∈X
|f−1|.

Apply the Lemma with K = K0 = 1/ε0, N = N0, and g0 = f−1 to obtain a
bounded measurable function f0 such that properties (a0)–(d0) are satisfied.

The general odd step: Assume that f2j is defined for a j = 0, 1, . . . Set

N2j+1 =
2

ε2
2j+2

· 1
ε2j+1

sup
x∈X
|f2j |.
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Apply the Lemma by reversing the role of S and T with K = K2j+1 =
1/ε2j+1, N = N2j+1 and g0 = f2j . This yields a function f2j+1 with prop-
erties (a2j+1)–(e2j+1).

The general even step: Assume that f2j+1 is defined for a j = 0, 1, . . .
Set

N2j+2 =
2

ε2
2j+3

· 1
ε2j+2

sup
x∈X
|f2j+1|.

Apply the Lemma for S and T with K = K2j+2 = 1/ε2j+2, N = N2j+2 and
g0 = f2j+1. This yields a function f2j+2 satisfying (a2j+2)–(e2j+2).

It is clear that the functions fj defined above have properties (i)–(ii).
Next we verify (iii). From

T
X
f2j−1 dµ = 1 it follows that supx∈X |f2j−1(x)|

≥ 1; hence 1/ε2j+1 = K2j+1 < N2j . Thus using (e2j+1) we infer E2j+1,2j

⊂ ⋃K2j+1

k=0 SkE2j ⊂ ⋃N2j

k=0 S
kE2j . Therefore

N2j⋃

k=0

S−kE2j+1,2j ⊂
N2j⋃

k=−N2j

S−kE2j .

Now, (b2j) implies

µ
( N2j⋃

k=0

S−kE2j+1,2j

)
≤ µ

( N2j⋃

k=−N2j

S−kE2j
)
< 2ε2j .

From (d2j+1) and (c2j) we obtain

∣∣∣
M∑

k=0

(f2j+1 − f2j)(Skx)
∣∣∣ ≤ 2

ε2j+1
sup
x∈X
|f2j(x)| ≤ 2

ε2j+1
· 1
ε2j

sup
x∈X
|f2j−1(x)|

= N2jε2j+1 < N2jε2j

for all M = 0, 1, . . . and x ∈ X. Claim 1 implies that g = f2j+1 − f2j is
(S, ε2j)-good. A similar argument shows (iv). This completes the proof of
the Theorem.

Proof of the Lemma. Let N0 = (2/ε)N and ε0 = ε/(2(2N + 1)). Using
Rokhlin’s Lemma with ε0 and RN0 choose a measurable set B such that

(i) the sets {T jSkB : (j, k) ∈ RN0} are disjoint, and
(ii) letting E1

0 =
⋃

(j,k)∈RN0
T jSkB we have µ(E1

0) > 1− ε0.

Observe that from (i)–(ii) it follows that 1− ε0 < 2N2
0µ(B) ≤ 1.

We will call the system {T jSkB : (j, k) ∈ RN0} a Rokhlin tower corre-
sponding to ε0 and RN0 . The set Cj =

⋃2N0
k=1 T

jSkB is called the jth column
of the tower.

If j ∈ {1, . . . , N0ε} and x ∈ CjK then set g1(x) =
∑K−1
k=0 g0(T−kx); at

other points of E1
0 set g1(x) = 0. If x 6∈ E1

0 set g1(x) = g0(x). From this
definition it follows that |g1(x)| ≤ K supy∈X |g0(y)| for all x ∈ X. This
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proves property (c). Since T−k is measure preserving it is not difficult to see
that

T
E1

0
g1 dµ =

T
E1

0
g0 dµ. On the other hand, for x 6∈ E1

0 , g1(x) = g0(x).
This implies (a).

Set E1
00 =

⋃N0ε
j=1 CjK and E1

1 = X \ E1
0 . The definition of g1 implies

that its support, E1, is covered by E1
00 ∪E1

1 . We also have µ(E1
1) < ε0, and

µ(E1
00) = 2εN2

0µ(B).
If x ∈ E1

00 and g1(x) 6= 0 then there exists 0 ≤ k < K such that
g0(T−kx) 6= 0; hence x ∈ T kE0 for this k. Since g1 − g0 is 0 on E1

1 , its
support, E1,0, is a subset of

⋃K
k=0 T

kE0. This shows (e).
On the other hand

N⋃

k=−N
SkE1

00 =
N⋃

k=−N

N0ε⋃

j=1

2N0⋃

l=1

SkT jKSlB =
N0ε⋃

j=1

2N0+N⋃

l=−N+1

T jKSlB;

hence

µ
( N⋃

k=−N
SkE1

00

)
≤ N0ε(2N0 + 2N)µ(B) = ε2N2

0

(
1 +

ε

2

)
µ(B) <

3
2
ε.

Clearly µ(
⋃N
k=−N S

kE1
1) = (2N + 1)ε0 < ε/2. Since E1 ⊂ E1

00 ∪ E1
1 the

above inequalities imply that (b) also holds.
Assume that T k

′
x ∈ CjK−(K−1) for a j ∈ {1, . . . , N0ε}. Then T k

′+K−1x
∈ CjK and hence

(2)
k′+K−1∑

k=k′
(g1−g0)(T kx) = g1(T k

′+K−1x)−
K−1∑

k=0

g0(T−k(T k
′+K−1x)) = 0.

Given x ∈ X choose k0 ≥ 0 such that x, . . . , T k0−1x 6∈ E1
0 but T k0x ∈ E1

0 .
If there is no such k0 then (g1 − g0)(T kx) = 0 for all k and this implies
property (d). If there is such a k0 then choose k0 ≤ k1 < k0 +K such that
T k1x ∈ Cj1K−(K−1) for a j1 ∈ {1, . . . , N0ε}, or T k1x 6∈ E1

0 and T k
′
x ∈ E1

0
for k0 ≤ k′ < k1.

Next we choose a sequence k1 < k2 < . . . such that for each n either
T knx 6∈ E1

0 , or if T knx ∈ E1
0 then there exists jn ∈ {1, . . . , N0ε} such that

T knx ∈ CjnK−(K−1). If jn < N0ε then set kn+1 = kn+K and jn+1 = jn+1.
In this case T kn+1x ∈ Cjn+1K−(K−1).

If jn = N0ε then again set kn+1 = kn + K. Observe that T kn+1−1x ∈
CKN0ε = CN0 , which is the “last column” of the tower. Since Cj = T−1Cj+1

when j < N0, if T kn+1x ∈ E1
0 then T kn+1x ∈ C1 = CK−(K−1) and we can

set jn+1 = 1.
Now assume that for some n, T knx 6∈ E1

0 . Then (g1− g0)(T knx) = 0. Set
kn+1 = kn+1. If T kn+1x 6∈ E1

0 then repeat the above process. If T kn+1x ∈ E1
0

then it is again easy to see that T−1(T kn+1x) = T knx 6∈ E1
0 implies that

T kn+1x ∈ C1 = CK−(K−1). Set again jn+1 = 1.
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If n ≥ 1 and T knx ∈ E1
0 then (2) used with k′ = kn implies

(3)
kn+1−1∑

k=kn

(g1 − g0)(T kx) = 0.

If T knx 6∈ E1
0 then kn+1 − 1 = kn and from (g1 − g0)(T knx) = 0 it follows

that (3) holds in this case as well. Therefore we have (3) for n = 1, 2, . . .
It is also clear that kn+1 − kn ≤ K and if kn < M < kn+1 then

∣∣∣
M∑

k=kn

(g1 − g0)(T kx)
∣∣∣ =

∣∣∣
M∑

k=kn

g0(T kx)
∣∣∣ ≤ K sup

x∈X
|g0(x)|.

One can easily see that
∣∣∣
k1−1∑

k=k0

(g1 − g0)(T kx)
∣∣∣ =

∣∣∣
k1−1∑

k=k1−K
g0(T kx)−

k1−1∑

k=k0

g0(T kx)
∣∣∣ ≤ K sup

x∈X
|g0(x)|.

Finally for 0 ≤ k < k0 we have (g1 − g0)(T kx) = 0. As K = 1/ε we obtain,
for any M ,

∣∣∣
M∑

k=0

(g1 − g0)(T kx)
∣∣∣ ≤ 2

ε
sup
x∈X
|g0(x)|.

This proves (d) and concludes the proof of the Lemma.
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