Ergodic averages and free \mathbb{Z}^{2} actions

by

Zoltán Buczolich (Budapest)

Abstract

If the ergodic transformations S, T generate a free \mathbb{Z}^{2} action on a finite nonatomic measure space (X, \mathcal{S}, μ) then for any $c_{1}, c_{2} \in \mathbb{R}$ there exists a measurable function f on X for which $(N+1)^{-1} \sum_{j=0}^{N} f\left(S^{j} x\right) \rightarrow c_{1}$ and $(N+1)^{-1} \sum_{j=0}^{N} f\left(T^{j} x\right) \rightarrow c_{2} \mu$-almost everywhere as $N \rightarrow \infty$. In the special case when S, T are rationally independent rotations of the circle this result answers a question of M. Laczkovich.

Introduction. The problem discussed in this paper was originally motivated by non-absolute integration, that is, by generalizations of the Lebesgue integral which integrate functions f for which $|f|$ is not necessarily Lebesgue integrable (for details of such methods we refer to $[\mathrm{P}]$). We were interested in how Birkhoff's Ergodic Theorem is related to generalized integration procedures. It follows from the main result of this paper that one encounters serious problems even in the classical situation of rotations of the unit circle equipped with the Lebesgue measure. In fact, it follows from our result that given any two irrationals α and β for which α / β is also irrational there exists a Lebesgue measurable function f defined on the circle for which

$$
\frac{1}{N+1} \sum_{j=0}^{N} f(x+j \alpha) \rightarrow 1 \quad \text { and } \quad \frac{1}{N+1} \sum_{j=0}^{N} f(x+j \beta) \rightarrow 0 \quad \text { for a.e. } x .
$$

Of course, by the ergodic theorem f is not Lebesgue integrable. This also shows that if a generalized integral of f is defined, then either the α ergodic average or the β average does not converge to the value of this integral.

Answering a less specific question of this author, P. Major $[\mathrm{M}]$ has constructed a function $f: X \rightarrow \mathbb{R}$ and ergodic transformations $S, T: X \rightarrow X$ on a Lebesgue space (X, \mathcal{S}, μ) such that $\lim _{N \rightarrow \infty}(N+1)^{-1} \sum_{j=0}^{N} f\left(S^{j} x\right)=0$ a.e. and $\lim _{N \rightarrow \infty}(N+1)^{-1} \sum_{j=0}^{N} f\left(T^{j} x\right)=1$ a.e. In Major's example T is

[^0]a shift on a suitable Lebesgue space and S is conjugate to T. The definition of S is quite involved.
M. Laczkovich raised the question whether X in the above example can be the unit circle with S and T being irrational rotations. In this paper an affirmative answer to this question is given in a somewhat more general setting. Since the transformations in Major's example were conjugate, and two conjugate, orientation preserving homeomorphisms of the circle have the same rotation number, Major's example differs substantially from the rotation case.

Working on M. Laczkovich's problem, in [Bu] we obtained the following result: Suppose that f is a measurable function defined on the circle and

$$
\Gamma_{f}=\left\{\alpha: \frac{1}{N+1} \sum_{j=0}^{N} f(x+j \alpha) \text { converges a.e. }\right\}
$$

We verified that Γ_{f} is of positive Lebesgue measure if and only if f is Lebesgue integrable, and in that case, by the ergodic theorem, all the limits equal almost everywhere the integral of f. Furthermore, given a sequence $\left\{\alpha_{j}\right\}_{j=1}^{\infty}$ of rationally independent irrationals, there exists a non-Lebesgue integrable f such that each $\alpha_{j} \in \Gamma_{f}$. This result implies that Γ_{f} can be dense for non-integrable functions. In $[S] R$. Svetic improves this result by showing that there exists a non-integrable f for which $\Gamma_{f} \cap I$ is of cardinality continuum for any non-empty open subinterval I of the circle. It is still an open question whether there exists a non-Lebesgue integrable measurable function f such that the Hausdorff dimension of Γ_{f} is positive.

If α and β are independent over the rationals then $T x=x+\alpha$ and $S x=x+\beta$ generate a free \mathbb{Z}^{2} action on the circle. The main result of this paper shows that if S, T are ergodic transformations of a non-atomic Lebesgue measure space (X, \mathcal{S}, μ) and they generate a free \mathbb{Z}^{2} action then for any $c_{1}, c_{2} \in \mathbb{R}$ there exists a measurable function $f: X \rightarrow \mathbb{R}$ such that

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} \frac{1}{N+1} \sum_{j=0}^{N} f\left(S^{j} x\right)=c_{1} \\
& \lim _{N \rightarrow \infty} \frac{1}{N+1} \sum_{j=0}^{N} f\left(T^{j} x\right)=c_{2} \quad \text { for } \mu \text {-a.e. } x
\end{aligned}
$$

Preliminaries. In this paper, whenever we use the symbol $\sum_{\gamma \in \Gamma} a_{\gamma}$ and Γ is empty then by definition $\sum_{\gamma \in \Gamma} a_{\gamma}=0$.

Free \mathbb{Z}^{2} actions on Lebesgue spaces are natural generalizations of independent rotations of the circle. Assume that a \mathbb{Z}^{2} action is generated by S and T on a finite non-atomic Lebesgue measure space (X, \mathcal{S}, μ), and
$T^{j} S^{k}$ for all $(j, k) \in \mathbb{Z}^{2}$ is a measure preserving transformation on X. We say that the group action generated by T and S is free if $T^{j} S^{k} x \neq x$ for $(j, k) \neq(0,0)$ and μ-a.e. x. Given a number N denote by R_{N} the rectangle $\{(j, k): 1 \leq j \leq N, 1 \leq k \leq 2 N\}$. Observe that translated copies of R_{N} form a partition of \mathbb{Z}^{2}, that is, R_{N} is a tiling set in the sense of [OW]. By Theorem 2 of [OW] Rokhlin's lemma is valid for the above free \mathbb{Z}^{2} actions and R_{N}. This means the following:

For any $\varepsilon>0$ there is a set $B \in \mathcal{S}$ such that
(i) $\left\{T^{j} S^{k} B:(j, k) \in R_{N}\right\}$ are disjoint sets, and
(ii) $\mu\left(\bigcup_{(j, k) \in R_{N}} T^{j} S^{k} B\right)>1-\varepsilon$.

Main result

Theorem. Assume that (X, \mathcal{S}, μ) is a finite non-atomic Lebesgue measure space and $S, T: X \rightarrow X$ are two μ-ergodic transformations which generate a free \mathbb{Z}^{2} action on X. Then for any $c_{1}, c_{2} \in \mathbb{R}$ there exists a μ-measurable function $f: X \rightarrow \mathbb{R}$ such that

$$
\begin{aligned}
& M_{N}^{S} f(x)=\frac{1}{N+1} \sum_{j=0}^{N} f\left(S^{j} x\right) \rightarrow c_{1}, \\
& M_{N}^{T} f(x)=\frac{1}{N+1} \sum_{j=0}^{N} f\left(T^{j} x\right) \rightarrow c_{2} \quad \text { for } \mu \text {-almost every } x \text { as } N \rightarrow \infty
\end{aligned}
$$

Proof. If $c_{1}=c_{2}$ then any function with $\int_{X} f d \mu=c_{1}$ is suitable. Without limiting generality we can assume that $\mu(X)=1, c_{1}=0$, and $c_{2}=1$. Given a μ-measurable function $g: X \rightarrow \mathbb{R}$ and an $\varepsilon>0$ we say that it is (S, ε)-good if there exists a measurable set $X_{\varepsilon, S}$ such that $\mu\left(X \backslash X_{\varepsilon, S}\right)<2 \varepsilon$ and $\left|M_{N}^{S} g(x)\right|<\varepsilon$ for all $x \in X_{\varepsilon, S}$ and $N=0,1, \ldots$ Denote by E the support of g.

Claim 1. Given an integer N_{0} assume that $\mu\left(\bigcup_{k=0}^{N_{0}} S^{-k} E\right)<2 \varepsilon$ and

$$
\begin{equation*}
\left|\sum_{k=0}^{N} g\left(S^{k} x\right)\right|<N_{0} \varepsilon \quad \text { for all } x \in X \text { and } N=0,1, \ldots \tag{1}
\end{equation*}
$$

Then g is (S, ε)-good.
Proof. Let $X_{\varepsilon, S}=X \backslash \bigcup_{k=0}^{N_{0}} S^{-k} E$. If $x \in X_{\varepsilon, S}$ then $g\left(S^{k} x\right)=0$ for $k=0, \ldots, N_{0}$; hence $M_{N}^{S} g(x)=0$ for $N=0, \ldots, N_{0}$. Furthermore by using (1) for $N>N_{0}$ we have

$$
\left|M_{N}^{S} g(x)\right|=\left|\frac{1}{N+1} \sum_{k=0}^{N} g\left(S^{k} x\right)\right|<\left|\frac{1}{N_{0}} \sum_{k=0}^{N} g\left(S^{k} x\right)\right|<\varepsilon .
$$

This shows that Claim 1 is true.

Assume that $\varepsilon_{0}>\varepsilon_{1}>\ldots>0, \sum_{j=0}^{\infty} \varepsilon_{j}<\infty$, and $1 / \varepsilon_{j}$ is an integer for all j. We also suppose that the bounded measurable functions $f_{j}: X \rightarrow \mathbb{R}$ have the following properties:
(i) if E^{j} denotes the support of f_{j} then $\mu\left(E^{j}\right)<2 \varepsilon_{j}$,
(ii) $\int_{X} f_{j} d \mu=1$,
(iii) $f_{2 j+1}-f_{2 j}$ is $\left(S, \varepsilon_{2 j}\right)$-good and
(iv) $f_{2 j+2}-f_{2 j+1}$ is $\left(T, \varepsilon_{2 j+1}\right)$-good for $j=0,1, \ldots$

Later we show that such functions exist. Now we verify that the existence of such functions implies the theorem. Set $f=\sum_{j=0}^{\infty}(-1)^{j} f_{j}$. From (i) and $\sum_{j} \varepsilon_{j}<\infty$ it follows that the sum defining f converges μ-almost everywhere.

We first show that $M_{N}^{T} f(x) \rightarrow 1 \mu$-almost everywhere. Given $\varepsilon>0$ choose N_{0} such that $\sum_{j=2 N_{0}+1}^{\infty} \varepsilon_{j}<\varepsilon / 4$. Since $f_{2 j+2}-f_{2 j+1}$ is $\left(T, \varepsilon_{2 j+1}\right)$ good for each j there exists $X_{\varepsilon_{2 j+1}, T}$ such that $\mu\left(X \backslash X_{\varepsilon_{2 j+1}, T}\right)<2 \varepsilon_{2 j+1}$ and $\left|M_{N}^{T}\left(f_{2 j+2}-f_{2 j+1}\right)(x)\right|<\varepsilon_{2 j+1}$ for all $N=0,1, \ldots$ and $x \in X_{\varepsilon_{2 j+1}, T}$. Observe that letting

$$
g_{N_{0}}=\sum_{j=0}^{2 N_{0}}(-1)^{j} f_{j}=f_{0}+\sum_{j=0}^{N_{0}-1} f_{2 j+2}-f_{2 j+1}
$$

we have $\int_{X} g_{N_{0}} d \mu=1$ and by the ergodic theorem we can choose a measurable set $X_{N_{0}}$ and a number $N_{1}>N_{0}$ such that $\mu\left(X \backslash X_{N_{0}}\right)<\varepsilon / 2$ and $\left|M_{N}^{T} g_{N_{0}}(x)-1\right|<\varepsilon / 2$ for $x \in X_{N_{0}}$ and $N \geq N_{1}$.

Set $\widehat{X}=X_{N_{0}} \cap \bigcap_{j=N_{0}}^{\infty} X_{\varepsilon_{2 j+1}, T}$. Then $\mu(X \backslash \widehat{X})<\varepsilon$ and for $x \in \widehat{X}$ and $N \geq N_{1}$ we have

$$
\begin{aligned}
\left|M_{N}^{T} f(x)-1\right| & \leq\left|M_{N}^{T} g_{N_{0}}(x)-1\right|+\sum_{j=N_{0}}^{\infty}\left|M_{N}^{T}\left(f_{2 j+2}-f_{2 j+1}\right)(x)\right| \\
& <\varepsilon / 2+\sum_{j=N_{0}}^{\infty} \varepsilon_{2 j+1}<\varepsilon
\end{aligned}
$$

Since this estimate is valid for all $\varepsilon>0$ this implies $M_{N}^{T} f(x) \rightarrow 1 \mu$-almost everywhere. The argument showing $M_{N}^{S} f(x) \rightarrow 0$ is similar and is based on the fact that if we set $g_{N_{0}}=\sum_{j=0}^{N_{0}-1} f_{2 j+1}-f_{2 j}$ then $\int_{X} g_{N_{0}} d \mu=0$.

To complete the proof of the Theorem we need to show that functions f_{j} with properties (i)-(iv) exist. This is based on the following lemma.

Lemma. Suppose that the transformations S, T satisfy the assumptions of the Theorem. Assume that K and N are arbitrary positive integers and g_{0} is a bounded measurable function with support E^{0}. Set $\varepsilon=1 / K$. Then there exists another bounded measurable function g_{1} such that
(a) $\int_{X} g_{1} d \mu=\int_{X} g_{0} d \mu$,
(b) if E^{1} denotes the support of g_{1} then $\mu\left(\bigcup_{k=-N}^{N} S^{-k} E^{1}\right)<2 \varepsilon$,
(c) $\sup _{x \in X}\left|g_{1}(x)\right| \leq \varepsilon^{-1} \sup _{x \in X}\left|g_{0}(x)\right|$,
(d) $\left|\sum_{k=0}^{M}\left(g_{1}-g_{0}\right)\left(T^{k} x\right)\right| \leq 2 \varepsilon^{-1} \sup _{x \in X}\left|g_{0}(x)\right|$ for $M=0,1, \ldots$ and all $x \in X$, and
(e) if $E_{1,0}$ denotes the support of $g_{1}-g_{0}$ we have $E_{1,0} \subset \bigcup_{k=0}^{K} T^{k} E^{0}$.

We prove the Lemma later. Next we use it repeatedly to find the functions f_{j}. Let $K_{j}=1 / \varepsilon_{j}$. Since the even and odd steps are slightly different, we now state what properties we want to satisfy at these steps.

The even case:
$\left(\mathrm{a}_{2 j}\right) \int_{X} f_{2 j} d \mu=\int_{X} f_{2 j-1} d \mu=1$,
$\left(\mathrm{b}_{2 j}\right) \mu\left(\bigcup_{k=-N_{2 j}}^{N_{2 j}} S^{-k} E^{2 j}\right)<2 \varepsilon_{2 j}$,
$\left(\mathrm{c}_{2 j}\right) \sup _{x \in X}\left|f_{2 j}(x)\right| \leq \varepsilon_{2 j}^{-1} \sup _{x \in X}\left|f_{2 j-1}(x)\right|$,
$\left(\mathrm{d}_{2 j}\right)\left|\sum_{k=0}^{M}\left(f_{2 j}-f_{2 j-1}\right)\left(T^{k} x\right)\right| \leq 2 \varepsilon_{2 j}^{-1} \sup _{x \in X}\left|f_{2 j-1}(x)\right|$ for $M=$ $0,1, \ldots$, and all $x \in X$,
($\mathrm{e}_{2 j}$) if $E_{2 j, 2 j-1}$ denotes the support of $f_{2 j}-f_{2 j-1}$ we have

$$
E_{2 j, 2 j-1} \subset \bigcup_{k=0}^{K_{2 j}} T^{k} E^{2 j-1}
$$

The odd case:
$\left(\mathrm{a}_{2 j+1}\right) \int_{X} f_{2 j+1} d \mu=\int_{X} f_{2 j} d \mu=1$,
$\left(\mathrm{b}_{2 j+1}\right) \mu\left(\bigcup_{k=-N_{2 j+1}}^{N_{2 j+1}} T^{-k} E^{2 j+1}\right)<2 \varepsilon_{2 j+1}$,
$\left(\mathrm{c}_{2 j+1}\right) \sup _{x \in X}\left|f_{2 j+1}(x)\right| \leq \varepsilon_{2 j+1}^{-1} \sup _{x \in X}\left|f_{2 j}(x)\right|$,
$\left(\mathrm{d}_{2 j+1}\right)\left|\sum_{k=0}^{M}\left(f_{2 j+1}-f_{2 j}\right)\left(S^{k} x\right)\right| \leq 2 \varepsilon_{2 j+1}^{-1} \sup _{x \in X}\left|f_{2 j}(x)\right|$ for $M=$ $0,1, \ldots$ and all $x \in X$,
$\left(\mathrm{e}_{2 j+1}\right)$ if $E_{2 j+1,2 j}$ denotes the support of $f_{2 j+1}-f_{2 j}$ we have

$$
E_{2 j+1,2 j} \subset \bigcup_{k=0}^{K_{2 j+1}} S^{k} E^{2 j}
$$

Set $f_{-1}(x)=1$ for all $x \in X$. Let

$$
N_{0}=\frac{2}{\varepsilon_{1}^{2}} \cdot \frac{1}{\varepsilon_{0}}=\frac{2}{\varepsilon_{1}^{2}} \cdot \frac{1}{\varepsilon_{0}} \sup _{x \in X}\left|f_{-1}\right| .
$$

Apply the Lemma with $K=K_{0}=1 / \varepsilon_{0}, N=N_{0}$, and $g_{0}=f_{-1}$ to obtain a bounded measurable function f_{0} such that properties $\left(\mathrm{a}_{0}\right)-\left(\mathrm{d}_{0}\right)$ are satisfied.

The general odd step: Assume that $f_{2 j}$ is defined for a $j=0,1, \ldots$ Set

$$
N_{2 j+1}=\frac{2}{\varepsilon_{2 j+2}^{2}} \cdot \frac{1}{\varepsilon_{2 j+1}} \sup _{x \in X}\left|f_{2 j}\right| .
$$

Apply the Lemma by reversing the role of S and T with $K=K_{2 j+1}=$ $1 / \varepsilon_{2 j+1}, N=N_{2 j+1}$ and $g_{0}=f_{2 j}$. This yields a function $f_{2 j+1}$ with properties $\left(\mathrm{a}_{2 j+1}\right)-\left(\mathrm{e}_{2 j+1}\right)$.

The general even step: Assume that $f_{2 j+1}$ is defined for a $j=0,1, \ldots$ Set

$$
N_{2 j+2}=\frac{2}{\varepsilon_{2 j+3}^{2}} \cdot \frac{1}{\varepsilon_{2 j+2}} \sup _{x \in X}\left|f_{2 j+1}\right| .
$$

Apply the Lemma for S and T with $K=K_{2 j+2}=1 / \varepsilon_{2 j+2}, N=N_{2 j+2}$ and $g_{0}=f_{2 j+1}$. This yields a function $f_{2 j+2}$ satisfying $\left(\mathrm{a}_{2 j+2}\right)-\left(\mathrm{e}_{2 j+2}\right)$.

It is clear that the functions f_{j} defined above have properties (i)-(ii). Next we verify (iii). From $\int_{X} f_{2 j-1} d \mu=1$ it follows that $\sup _{x \in X}\left|f_{2 j-1}(x)\right|$ ≥ 1; hence $1 / \varepsilon_{2 j+1}=K_{2 j+1}<N_{2 j}$. Thus using ($\mathrm{e}_{2 j+1}$) we infer $E_{2 j+1,2 j}$ $\subset \bigcup_{k=0}^{K_{2 j+1}} S^{k} E^{2 j} \subset \bigcup_{k=0}^{N_{2 j}} S^{k} E^{2 j}$. Therefore

$$
\bigcup_{k=0}^{N_{2 j}} S^{-k} E_{2 j+1,2 j} \subset \bigcup_{k=-N_{2 j}}^{N_{2 j}} S^{-k} E^{2 j} .
$$

Now, ($\mathrm{b}_{2 j}$) implies

$$
\mu\left(\bigcup_{k=0}^{N_{2 j}} S^{-k} E_{2 j+1,2 j}\right) \leq \mu\left(\bigcup_{k=-N_{2 j}}^{N_{2 j}} S^{-k} E^{2 j}\right)<2 \varepsilon_{2 j} .
$$

From $\left(\mathrm{d}_{2 j+1}\right)$ and $\left(\mathrm{c}_{2 j}\right)$ we obtain

$$
\begin{aligned}
\left|\sum_{k=0}^{M}\left(f_{2 j+1}-f_{2 j}\right)\left(S^{k} x\right)\right| & \leq \frac{2}{\varepsilon_{2 j+1}} \sup _{x \in X}\left|f_{2 j}(x)\right| \leq \frac{2}{\varepsilon_{2 j+1}} \cdot \frac{1}{\varepsilon_{2 j}} \sup _{x \in X}\left|f_{2 j-1}(x)\right| \\
& =N_{2 j} \varepsilon_{2 j+1}<N_{2 j} \varepsilon_{2 j}
\end{aligned}
$$

for all $M=0,1, \ldots$ and $x \in X$. Claim 1 implies that $g=f_{2 j+1}-f_{2 j}$ is ($S, \varepsilon_{2 j}$)-good. A similar argument shows (iv). This completes the proof of the Theorem.

Proof of the Lemma. Let $N_{0}=(2 / \varepsilon) N$ and $\varepsilon_{0}=\varepsilon /(2(2 N+1))$. Using Rokhlin's Lemma with ε_{0} and $R_{N_{0}}$ choose a measurable set B such that
(i) the sets $\left\{T^{j} S^{k} B:(j, k) \in R_{N_{0}}\right\}$ are disjoint, and
(ii) letting $E_{0}^{1}=\bigcup_{(j, k) \in R_{N_{0}}} T^{j} S^{k} B$ we have $\mu\left(E_{0}^{1}\right)>1-\varepsilon_{0}$.

Observe that from (i)-(ii) it follows that $1-\varepsilon_{0}<2 N_{0}^{2} \mu(B) \leq 1$.
We will call the system $\left\{T^{j} S^{k} B:(j, k) \in R_{N_{0}}\right\}$ a Rokhlin tower corresponding to ε_{0} and $R_{N_{0}}$. The set $C_{j}=\bigcup_{k=1}^{2 N_{0}} T^{j} S^{k} B$ is called the j th column of the tower.

If $j \in\left\{1, \ldots, N_{0} \varepsilon\right\}$ and $x \in C_{j K}$ then set $g_{1}(x)=\sum_{k=0}^{K-1} g_{0}\left(T^{-k} x\right)$; at other points of E_{0}^{1} set $g_{1}(x)=0$. If $x \notin E_{0}^{1}$ set $g_{1}(x)=g_{0}(x)$. From this definition it follows that $\left|g_{1}(x)\right| \leq K \sup _{y \in X}\left|g_{0}(y)\right|$ for all $x \in X$. This
proves property (c). Since T^{-k} is measure preserving it is not difficult to see that $\int_{E_{0}^{1}} g_{1} d \mu=\int_{E_{0}^{1}} g_{0} d \mu$. On the other hand, for $x \notin E_{0}^{1}, g_{1}(x)=g_{0}(x)$. This implies (a).

Set $E_{00}^{1}=\bigcup_{j=1}^{N_{0} \varepsilon} C_{j K}$ and $E_{1}^{1}=X \backslash E_{0}^{1}$. The definition of g_{1} implies that its support, E^{1}, is covered by $E_{00}^{1} \cup E_{1}^{1}$. We also have $\mu\left(E_{1}^{1}\right)<\varepsilon_{0}$, and $\mu\left(E_{00}^{1}\right)=2 \varepsilon N_{0}^{2} \mu(B)$.

If $x \in E_{00}^{1}$ and $g_{1}(x) \neq 0$ then there exists $0 \leq k<K$ such that $g_{0}\left(T^{-k} x\right) \neq 0$; hence $x \in T^{k} E^{0}$ for this k. Since $g_{1}-g_{0}$ is 0 on E_{1}^{1}, its support, $E_{1,0}$, is a subset of $\bigcup_{k=0}^{K} T^{k} E^{0}$. This shows (e).

On the other hand

$$
\bigcup_{k=-N}^{N} S^{k} E_{00}^{1}=\bigcup_{k=-N}^{N} \bigcup_{j=1}^{N_{0} \varepsilon} \bigcup_{l=1}^{2 N_{0}} S^{k} T^{j K} S^{l} B=\bigcup_{j=1}^{N_{0} \varepsilon} \bigcup_{l=-N+1}^{2 N_{0}+N} T^{j K} S^{l} B
$$

hence

$$
\mu\left(\bigcup_{k=-N}^{N} S^{k} E_{00}^{1}\right) \leq N_{0} \varepsilon\left(2 N_{0}+2 N\right) \mu(B)=\varepsilon 2 N_{0}^{2}\left(1+\frac{\varepsilon}{2}\right) \mu(B)<\frac{3}{2} \varepsilon .
$$

Clearly $\mu\left(\bigcup_{k=-N}^{N} S^{k} E_{1}^{1}\right)=(2 N+1) \varepsilon_{0}<\varepsilon / 2$. Since $E^{1} \subset E_{00}^{1} \cup E_{1}^{1}$ the above inequalities imply that (b) also holds.

Assume that $T^{k^{\prime}} x \in C_{j K-(K-1)}$ for a $j \in\left\{1, \ldots, N_{0} \varepsilon\right\}$. Then $T^{k^{\prime}+K-1} x$ $\in C_{j K}$ and hence
(2) $\sum_{k=k^{\prime}}^{k^{\prime}+K-1}\left(g_{1}-g_{0}\right)\left(T^{k} x\right)=g_{1}\left(T^{k^{\prime}+K-1} x\right)-\sum_{k=0}^{K-1} g_{0}\left(T^{-k}\left(T^{k^{\prime}+K-1} x\right)\right)=0$.

Given $x \in X$ choose $k_{0} \geq 0$ such that $x, \ldots, T^{k_{0}-1} x \notin E_{0}^{1}$ but $T^{k_{0}} x \in E_{0}^{1}$. If there is no such k_{0} then $\left(g_{1}-g_{0}\right)\left(T^{k} x\right)=0$ for all k and this implies property (d). If there is such a k_{0} then choose $k_{0} \leq k_{1}<k_{0}+K$ such that $T^{k_{1}} x \in C_{j_{1} K-(K-1)}$ for a $j_{1} \in\left\{1, \ldots, N_{0} \varepsilon\right\}$, or $T^{k_{1}} x \notin E_{0}^{1}$ and $T^{k^{\prime}} x \in E_{0}^{1}$ for $k_{0} \leq k^{\prime}<k_{1}$.

Next we choose a sequence $k_{1}<k_{2}<\ldots$ such that for each n either $T^{k_{n}} x \notin E_{0}^{1}$, or if $T^{k_{n}} x \in E_{0}^{1}$ then there exists $j_{n} \in\left\{1, \ldots, N_{0} \varepsilon\right\}$ such that $T^{k_{n}} x \in C_{j_{n} K-(K-1)}$. If $j_{n}<N_{0} \varepsilon$ then set $k_{n+1}=k_{n}+K$ and $j_{n+1}=j_{n}+1$. In this case $T^{k_{n+1}} x \in C_{j_{n+1} K-(K-1)}$.

If $j_{n}=N_{0} \varepsilon$ then again set $k_{n+1}=k_{n}+K$. Observe that $T^{k_{n+1}-1} x \in$ $C_{K N_{0} \varepsilon}=C_{N_{0}}$, which is the "last column" of the tower. Since $C_{j}=T^{-1} C_{j+1}$ when $j<N_{0}$, if $T^{k_{n+1}} x \in E_{0}^{1}$ then $T^{k_{n+1}} x \in C_{1}=C_{K-(K-1)}$ and we can set $j_{n+1}=1$.

Now assume that for some $n, T^{k_{n}} x \notin E_{0}^{1}$. Then $\left(g_{1}-g_{0}\right)\left(T^{k_{n}} x\right)=0$. Set $k_{n+1}=k_{n}+1$. If $T^{k_{n+1}} x \notin E_{0}^{1}$ then repeat the above process. If $T^{k_{n+1}} x \in E_{0}^{1}$ then it is again easy to see that $T^{-1}\left(T^{k_{n+1}} x\right)=T^{k_{n}} x \notin E_{0}^{1}$ implies that $T^{k_{n+1}} x \in C_{1}=C_{K-(K-1)}$. Set again $j_{n+1}=1$.

If $n \geq 1$ and $T^{k_{n}} x \in E_{0}^{1}$ then (2) used with $k^{\prime}=k_{n}$ implies

$$
\begin{equation*}
\sum_{k=k_{n}}^{k_{n+1}-1}\left(g_{1}-g_{0}\right)\left(T^{k} x\right)=0 \tag{3}
\end{equation*}
$$

If $T^{k_{n}} x \notin E_{0}^{1}$ then $k_{n+1}-1=k_{n}$ and from $\left(g_{1}-g_{0}\right)\left(T^{k_{n}} x\right)=0$ it follows that (3) holds in this case as well. Therefore we have (3) for $n=1,2, \ldots$

It is also clear that $k_{n+1}-k_{n} \leq K$ and if $k_{n}<M<k_{n+1}$ then

$$
\left|\sum_{k=k_{n}}^{M}\left(g_{1}-g_{0}\right)\left(T^{k} x\right)\right|=\left|\sum_{k=k_{n}}^{M} g_{0}\left(T^{k} x\right)\right| \leq K \sup _{x \in X}\left|g_{0}(x)\right|
$$

One can easily see that

$$
\left|\sum_{k=k_{0}}^{k_{1}-1}\left(g_{1}-g_{0}\right)\left(T^{k} x\right)\right|=\left|\sum_{k=k_{1}-K}^{k_{1}-1} g_{0}\left(T^{k} x\right)-\sum_{k=k_{0}}^{k_{1}-1} g_{0}\left(T^{k} x\right)\right| \leq K \sup _{x \in X}\left|g_{0}(x)\right|
$$

Finally for $0 \leq k<k_{0}$ we have $\left(g_{1}-g_{0}\right)\left(T^{k} x\right)=0$. As $K=1 / \varepsilon$ we obtain, for any M,

$$
\left|\sum_{k=0}^{M}\left(g_{1}-g_{0}\right)\left(T^{k} x\right)\right| \leq \frac{2}{\varepsilon} \sup _{x \in X}\left|g_{0}(x)\right| .
$$

This proves (d) and concludes the proof of the Lemma.

References

[Bu] Z. Buczolich, Arithmetic averages of rotations of measurable functions, Ergodic Theory Dynam. Systems 16 (1996), 1185-1196.
[M] P. Major, A counterexample in ergodic theory, Acta Sci. Math. (Szeged) 62 (1996), 247-258.
[OW] D. O. Ornstein and B. Weiss, Ergodic theory of amenable group actions. I: the Rohlin lemma, Bull. Amer. Math. Soc. 2 (1980), 161-164.
[P] W. F. Pfeffer, The Riemann Approach to Integration, Cambridge Univ. Press, Cambridge, 1993.
[S] R. Svetic, A function with locally uncountable rotation set, Acta Math. Hungar., to appear.

Department of Analysis
Eötvös Loránd University
Rákóczi út 5
H-1088 Budapest, Hungary
E-mail: buczo@ludens.elte.hu

[^0]: 1991 Mathematics Subject Classification: Primary 47A35; Secondary 28D05, 11K31.
 Research supported by the Hungarian National Foundation for Scientific Research, Grant No. T 019476 and FKFP 0189/1997.

