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Bimorphisms in pro-homotopy and proper homotopy

by

Jerzy D y d a k (Knoxville, TN) and
Francisco Romero R u i z d e l P o r t a l (Madrid)

Abstract. A morphism of a category which is simultaneously an epimorphism and a
monomorphism is called a bimorphism. The category is balanced if every bimorphism is
an isomorphism. In the paper properties of bimorphisms of several categories are discussed
(pro-homotopy, shape, proper homotopy) and the question of those categories being bal-
anced is raised. Our most interesting result is that a bimorphism f : X → Y of tow(H0)
is an isomorphism if Y is movable. Recall that tow(H0) is the full subcategory of pro-H0
consisting of inverse sequences in H0, the homotopy category of pointed connected CW
complexes.

0. Introduction. First, let us recall the notions of epimorphism and
monomorphism in abstract categories:

0.1. Definition. A morphism f : X → Y of a category C is called
an epimorphism if the induced function f∗ : Mor(Y, Z) → Mor(X,Z) is
one-to-one for each object Z of C.

A morphism f : X → Y of a category C is called a monomorphism if the
induced function f∗ : Mor(Z,X)→ Mor(Z, Y ) is one-to-one for each object
Z of C.

Equivalent, and typically used, is the definition of f being an epimor-
phism (respectively, monomorphism) of C as a morphism such that g ◦ f =
h ◦ f (respectively, f ◦ g = f ◦ h) implies g = h for any two morphisms
g, h : Y → Z (respectively, g, h : Z → X).
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0.2. Definition. A morphism f : X → Y of a category C is called a
bimorphism if it is both an epimorphism and a monomorphism of C.

A category C is called balanced if every bimorphism of C is an isomor-
phism.

The following fact is well known and useful:

0.3. Proposition. A monomorphism (respectively , epimorphism) which
has a left (respectively , right) inverse is an isomorphism.

There is considerable literature devoted to the properties of epimor-
phisms in the homotopy category H0 of pointed connected CW complexes.
We recommend [G] for a nearly complete list and a thorough review of results
(see also [C-G]). The question of whether H0 is balanced has been open for a
while with Dyer and Roitberg [Dy-R] resolving it in affirmative and Dydak
[D2] giving a simple proof of it. Essentially, both proofs consist in showing
that a bimorphism of H0 satisfies the hypothesis of the Whitehead Theorem
(in the case of [Dy-R] the authors prove a version of the Whitehead Theo-
rem involving cohomology with local coefficients). Subsequently, Mukherjee
[Mu] generalized [Dy-R] to the equivariant case and Morón–Ruiz del Portal
[Mo-P] showed that the shape category of pointed, movable, metric continua
is not balanced but every weak isomorphism is a bimorphism.

We believe that the following general question is of interest:

0.4. Problem. Suppose a category C is balanced. Is the pro-category
pro-C balanced?

[M-S] (see Theorem 1 on p. 107 and Theorem 3 on p. 109) contains an
affirmative answer in the case of the category of groups. The purpose of the
present paper is to investigate the case of C = H0. We are also interested
in the problem of other categories being balanced, the categories associated
with pro-H0. Examples are: the shape category of pointed metric continua
and the proper homotopy category of rayed, strongly locally finite, connected
CW complexes connected at infinity (see [Ed-H] for an explanation on how
this category is related to pro-H0). Here are the specific problems we would
like to solve:

0.5. Problem. Suppose f : X → Y is a bimorphism of tow(H0) (respec-
tively , pro-H0). Is f is an isomorphism?

0.6. Problem. Suppose f : X → Y is a bimorphism of the (strong)
shape category of pointed metric continua. Is f a weak isomorphism? Is f
an isomorphism?

0.7. Problem. Suppose f : X → Y is a bimorphism of the shape category
of pointed metric movable continua. Is f is a weak isomorphism?
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0.8. Problem. Suppose f : X → Y is a bimorphism of the proper ho-
motopy category of rayed , strongly locally finite, connected CW complexes
K connected at infinity , equipped with a ray rK : [0,∞) → K. Is f an
isomorphism?

In the case of 0.5 and 0.8 we are able to show that every bimorphism is a
weak isomorphism (i.e., induces an isomorphism of homotopy pro-groups).
However, it is known that one has difficulty finding an analog of the White-
head Theorem in those categories and only partial cases are known. Thus we
are not able to solve the problem of those categories being balanced com-
pletely but we provide additional assumptions to show that bimorphisms
are isomorphisms. Problem 0.8 is related to the problem of the strong shape
category of metric compacta being balanced as one can see from [Ed-H] and
[D-S2].

The main results of this paper are the following:

2.13. Corollary. If f : X → Y is a bimorphism of tow(H0), then it
is a weak isomorphism.

2.14. Theorem. Suppose f : X → Y is a bimorphism of tow(H0). Then
f is an isomorphism if one of the following conditions is satisfied :

(i) def-dim(Y ) is finite,
(ii) Y is movable.

3.1. Theorem. Suppose f : X → Y is a bimorphism of the shape category
of pointed metric continua. If X is movable and pro-πk(Y ) is stable for each
k ≥ 1, then f is a weak isomorphism.

4.11. Corollary. If f : (K, rK)→ (L, rL) is a bimorphism of Pr, then
f induces isomorphisms of proper homotopy groups.

4.12. Corollary. If f : (K, rK) → (L, rL) is a bimorphism of Pr so
that dim(L) is finite, then f is an isomorphism.

The authors would like to express their gratitude to Carles Casacuberta
for helpful discussions of the subject, and to Rafael Ayala and Antonio
Quintero for sharing their knowledge of proper homotopy theory.

1. Epimorphisms and monomorphisms in pro-categories. For a
definition and basic properties of the pro-category pro-C of any category C
we refer to the book by Mardešić and Segal [M-S].

1.1. Definition. For any category C, the full subcategory of pro-C whose
objects are inverse sequences indexed by natural numbers, is denoted by
tow(C).
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Given an object Y of tow(C), the nth term of Y is denoted by Yn, the
bonding homomorphism from Ym to Yn is denoted by p(Y )mn , and p(Y )n :
Y → Yn is the projection morphism.

For readers who are not familiar with pro-categories the following fact
should be helpful (the authors had trouble locating a reference for it in the
existing literature):

1.2. Proposition. If D is a category possessing inverse limits of ar-
bitrary inverse systems (respectively , inverse sequences), then any functor
F : C → D extends over pro-C (respectively , tow(C)).

P r o o f. We only cover the case of tow(C); the general case is similar. We
define a functor F : tow(C)→ D as follows:

(i) F (X) = inv limF (X) if X is an object of tow(C),
(ii) if f : X → Y is a morphism of tow(C) and p : inv limF (X)→ F (X) is

the projection (and a morphism of pro-D), then the sequence of morphisms
{F (p(Y )n) ◦ F (f) ◦ p : inv limF (X) → F (Yn)}n≥1 induces a morphism
inv limF (X)→ inv limF (Y ) of D which we denote by F (f).

One can easily check that F is a functor.

If one views categories with limits as objects of a “category” CAT LIM
with “morphisms” being functors preserving limits (we cannot call them
morphisms in the classical sense as they do not form a set, in general),
then one has the inclusion i : CAT LIM→ CAT into the “category” CAT
whose objects are arbitrary categories and whose “morphisms” are functors.
The meaning of Proposition 1.2 is that pro : CAT → CAT LIM is a right
adjoint to i, i.e. MorCAT (C, i(D)) ≈ MorCAT LIM(pro-C,D).

Traditionally, the concept of being Mittag-Leffler is defined for towers of
groups. We generalize it to arbitrary categories:

1.3. Definition. An object of pro-C is called Mittag-Leffler if it is iso-
morphic to an object Y of tow(C) such that p(Y )n+1

n is an epimorphism for
each n. An object of pro-C is called stable if it is isomorphic to an object Y
of tow(C) such that p(Y )n+1

n is an isomorphism for each n.

If X is stable, then it is isomorphic to an object Y of tow(C) such that
Yn = Ym for all n,m and p(Y )n+1

n is the identity morphism for each n.

1.4. Proposition. A morphism f : X → Y of tow(C) is an epimorphism
of tow(C) iff the induced function f∗ : Mor(Y,Z) → Mor(X,Z) is one-to-
one for each stable object Z of tow(C).

P r o o f. Suppose the induced function f∗ : Mor(Y, Z) → Mor(X,Z) is
one-to-one for each stable object Z of tow(C). Let g, h : Y → T satisfy
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h◦f = g ◦f . Let p(T )n : T → Tn be the projection morphism. Since p(T )n ◦
h ◦ f = p(T )n ◦ g ◦ f , we infer p(T )n ◦ h = p(T )n ◦ g for each n, i.e. h = g.

In practice, one often uses a special kind of morphisms in pro-categories:

1.5. Definition. A morphism f : X → Y of tow(C) is called a level
morphism if there exist morphisms fn : Xn → Yn such that p(Y )n+1

n ◦fn+1 =
fn ◦ p(X)n+1

n and p(Y )n ◦ f = fn ◦ p(X)n for each n.
The morphisms fn are not uniquely determined by f . We will say that

f is induced by fn, n ≥ 1.

[M-S] (see Theorem 1 on p. 107 and Theorem 3 on p. 109) contains
the following characterization of epimorphisms and monomorphisms in the
category pro-Gr of pro-groups:

1.6. Proposition. Suppose f : X → Y is a level morphism of tow(Gr)
induced by fn : Xn → Yn.

(a) f is an epimorphism of tow(Gr) iff for each n there is m > n such
that im(p(Y )mn ) ⊂ im(fn).

(b) f is a monomorphism of tow(Gr) iff for each n there is m > n such
that ker(fm) ⊂ ker(p(X)mn ).

1.7. Lemma. Suppose f : X → Y is a morphism of tow(Gr) such that
f∗ : Mor(Z, X)→ Mor(Z, Y ) is one-to-one, where Z is the group of integers.
If X is Mittag-Leffler and Y is stable, then f is a monomorphism.

P r o o f. Assume Y is a group. It suffices to consider the case of f be-
ing a level morphism induced by fn : Xn → Y (see [M-S], Theorem 3 on
p. 12). Since X is Mittag-Leffler, we may assume that p(X)mn is an epimor-
phism for all m > n. Let Kn be the kernel of fn, n ≥ 1. We now show that
(p(X)n+1

n )−1(Kn) = Kn+1 for each n. Clearly, p(X)n+1
n (Kn+1) ⊂ Kn. Sup-

pose p(X)n+1
n (x) ∈ Kn. Thus, fn(p(X)n+1

n (x)) = 1. Since fn ◦ p(X)n+1
n =

fn+1, one gets x ∈ Kn+1.
To prove that f is a monomorphism it suffices to show that Kn = {1}

for each n. Suppose xm ∈ Km − {1} for some m. Define xr for r < m
by xr = p(X)mr (xm) and define, by induction on r > m, xr ∈ Kr so that
p(X)sr(xs) = xr if s > r. The sequence of homomorphisms an : Z → Xn

defined by an(0) = xn induces a level homomorphism a : Z → X so that
f ◦ a is trivial but a is not trivial, a contradiction.

As one can see in Section 3 later on, it is not easy to generalize results
from the case of arbitrary CW complexes to the case of finite complexes.
The following problem is the algebraic version of that difficulty:



274 J. Dydak and F. R. Ruiz del Portal

1.8. Problem. Let fgGr be the category of finitely generated groups.
Suppose f : X → Y is a bimorphism of tow(fgGr). Is f an isomorphism of
tow(fgGr)?

2. Epimorphisms and monomorphisms in the pro-homotopy
category

2.1. Definition. By CW0 we denote the topological category of pointed
connected CW complexes. By H0 we denote the homotopy category of
pointed connected CW complexes. The homotopy functor CW0 → H0 can
be extended to a functor [ ] : tow(CW0)→ tow(H0) so that [X]n = Xn and
p([X])n+1

n = [p(X)n+1
n ] for each n.

Given a functor F : C → D one can extend it, by Proposition 1.2, to a
functor from pro-C to pro-D. Typically this extension is denoted by pro-F .
However, it is easier to use the same symbol F for the extension whenever
it is not ambiguous. For example, in the case of the shape category we
will continue to use the notation pro-πk(X) and pro-Hk(X) for homotopy
and homology pro-groups as those pro-groups are different from the groups
πk(X) and Hk(X) if X is a pointed topological space.

2.2. Proposition. If f : X → Y is an epimorphism of tow(H0), then
π1(f) : π1(X)→ π1(Y ) is an epimorphism of tow(Gr).

P r o o f. Suppose α, β : π1(Y ) → G are two morphisms of tow(Gr) such
that α ◦ (π1(f)) = β ◦ (π1(f)) and G is a group. One can find a, b : Y →
K(G, 1) so that π1(a) = α and π1(b) = β. Now, a ◦ f = b ◦ f , which
implies a = b as f is an epimorphism. By 1.4 we deduce that π1(f) is an
epimorphism.

2.3. Definition. A morphism i : X → Y of tow(CW0) is called an
inclusion if, for each n, Xn is a subcomplex of Yn and the following condi-
tions are satisfied (in : Xn → Yn is the inclusion):

(i) in ◦ p(X)n+1
n = p(Y )n+1

n ◦ in+1 for each n,
(ii) i coincides with the level morphism induced by {in}n≥1.

A morphism f : X → Y of tow(H0) is called inclusion induced if there
is an inclusion i : X → Y of tow(CW0) such that X = [X], Y = [Y ], and f
coincides with the level morphism induced by [in], n ≥ 1.

2.4. Lemma. For any morphism f : X → Y of tow(H0) there exist
isomorphisms a : X → X and b : Y → Y so that i = b ◦ f ◦ a : X → Y is
inclusion induced. Moreover , if π1(f) is a monomorphism of tow(Gr), then
we can ensure that π1(in) is a monomorphism for each n, where in : Xn →
Yn is the inclusion map.
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P r o o f. Without loss of generality we may assume the following (see 1.6
and [M-S], Theorem 3 on p. 12):

(i) f is a level morphism induced by maps fn : Xn → Yn,
(ii) if π1(f) is a monomorphism of pro-Gr, then for each n,

ker(π1(fn+1)) ⊂ ker(π1(p(X)n+1
n )).

If π1(f) is a monomorphism of pro-Gr, then create Zn fromXn by attach-
ing 2-cells so that ker(π1(fn)) is killed. Obviously, one can extend fn over
Zn and an extension will be denoted by gn. Notice that p(X)n+1

n extends
over Zn+1 (see (ii) above) and denote an extension by rn : Zn+1 → Xn.
Let p(Z)n+1

n = jn ◦ rn, jn : Xn → Zn being the inclusion. Notice that the
inclusion j : X → Z is an isomorphism of tow(CW0) (its inverse is induced
by rn, n ≥ 1). Now, replace g : Z → Y by an inclusion as follows: let Yn
be the reduced mapping cylinder of gn : Zn → Yn. Use Lemma 3 on p. 145
in [M-S] to produce p(Y )n+1

n for each n.

As seen in [D2] double mapping cylinders are vital in understanding the
epimorphisms of H0. The purpose of the next definition is to extend the
concept of double mapping cylinder to inclusions of tow(CW0):

2.5. Definition. Suppose (K, k0) is a subcomplex of a pointed CW
complex (L, k0) and i : (K, k0) → (L, k0) is the inclusion map. By DM(i)
(the double mapping cylinder of i) we denote the pointed CW complex
(L × {0, 1} ∪K × I)/{k0} × I. For simplicity, when discussing DM(i), the
space K × I/{k0} × I will be denoted by K × I. The two maps i0, i1 :
(L, k0)→ DM(i) are induced by the maps x 7→ (x, 0) and x 7→ (x, 1) (x ∈ L),
respectively.

If i : X → Y is an inclusion of tow(CW0), then one can easily define
DM(i) and i0, i1 : Y → DM(i).

Below, we write (X)∼ instead of X̃ if X is a long expression.

2.6. Lemma. (a) Suppose that (B,A) is a pair of pointed connected CW
complexes such that π1(i) : π1(A) → π1(B) is a monomorphism of groups.
Then DM(̃i) ⊂ (DM(i))∼.

(b) Suppose that , for j = 1, 2, (Bj , Aj) is a pair of pointed connected
CW complexes such that π1(ij) : π1(Aj) → π1(Bj) is a monomorphism
of groups, where ij : Aj → Bj is the inclusion. If β : B2 → B1 is a
map such that im(π1(β)) ⊂ im(π1(i1)) and β(A2) ⊂ A1, then the image of
γ̃ : (DM(i2))∼ → (DM(i1))∼, γ : DM(i2) → DM(i1) being induced by β, is
contained in DM(̃i1).

P r o o f. (a) Let p : (DM(i))∼ → DM(i) be the covering projection.
Since π1(i) is one-to-one, Ã ⊂ B̃, DM(̃i) exists and is simply connected.
Let r : DM(̃i)→ (DM(i))∼ be the lift of the natural map DM(̃i)→ DM(i).
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Notice that r is one-to-one. Indeed, the component of p−1(B×0) containing
the base point is simply B̃× 0, the component of p−1(B× 1) containing the
base point is B̃ × 1, and the component of p−1(A × I) containing the base
point is Ã× I.

(b) As is well known, an element of (DM(i2))∼ is the homotopy class
rel. 0 of a path ω : (I, 0)→ DM(i2).

Case 1: ω(1) ∈ A2 × I. Choose λ in A2 × I joining ω(1) and the base
point of DM(i2). Now, ω∗λ is a loop and can be expressed, up to homotopy,
as the product of loops in DM(i2) which are completely contained in one of
the following sets: A2 × I, B2 × 0, B2 × 1. When applying γ to ω ∗ λ, the
loops in B2 × 0 and B2 × 1 can be homotoped into A1 × I. Thus, γ(ω) has
the homotopy class rel. 0 of γ(ω ∗ λ) ∗ γ(λ−1), which belongs to Ã1 × I.

Case 2: ω(1) ∈ B2 × 0. Choose λ in B2 × 0 joining ω(1) and the base
point of DM(i2). Now, ω∗λ is a loop and can be expressed, up to homotopy,
as the product of loops in DM(i2) which are completely contained in one of
the following sets: A2 × I, B2 × 0, B2 × 1. When applying γ to ω ∗ λ, the
loops in B2 × 1 can be homotoped into A1 × I and then into B2 × 0. Thus,
γ(ω) has the homotopy class rel. 0 of γ(ω ∗ λ) ∗ γ(λ−1), which belongs to
B̃1 × 0.

Case 3: ω(1) ∈ B2 × 1. This case is completely analogous to Case 2.

The following lemma characterizes inclusion-induced epimorphisms of
tow(H0) in terms of the double mapping cylinder:

2.7. Lemma. Suppose i : X → Y is an inclusion of tow(CW0). Then
[i] : [X] → [Y ] is an epimorphism of tow(H0) iff [i0] = [i1], where i0, i1 :
Y → DM(i).

P r o o f. Since [i0 ◦ i] = [i1 ◦ i], [i0] = [i1] if [i] is an epimorphism. Suppose
[i0] = [i1] and suppose f, g : Y → Z are two morphisms of tow(H0) such
that f ◦ [i] = g ◦ [i] and Z is a pointed connected CW complex. Choose maps
a, b : Yn → Z for some n so that f = [a] ◦ [p(Y )n] and g = [b] ◦ [p(Y )n].
Since f ◦ [i] = g ◦ [i], there is m > n such that a◦ in ◦p(X)mn is homotopic to
b◦in◦p(X)mn . Using the homotopy one can construct a mapH : DM(im)→ Z
such that H ◦ i0m = a◦p(Y )mn and H ◦ i1m = b◦p(Y )mn . Since [i0] = [i1], there
is p > m such that i0m ◦ p(Y )pm ≈ i1m ◦ p(Y )pm. Thus a ◦ p(Y )pn ≈ b ◦ p(Y )pn
and f = g. Proposition 1.4 says that [i] is an epimorphism of tow(H0).

2.8. Proposition. Suppose f : X → Y is an epimorphism of tow(H0).
If π1(f) is an isomorphism, then f̃ : X̃ → Ỹ is an epimorphism of tow(H0).

P r o o f. Without loss of generality (explanation follows) assume that f
is induced by an inclusion i of tow(CW0) so that the following conditions
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are satisfied:

(i) π1(in) is a monomorphism for each n,
(ii) im(π1(p(Y )n+1

n )) ⊂ im(π1(in)) for each n,
(iii) i0n◦p(Y )n+1

n , i1n◦p(Y )n+1
n : Yn+1 → DM(in) are homotopic for each n.

Indeed, (i) can be ensured by 2.4. (ii) can be ensured with the help of
1.6 by choosing a cofinal subset of integers. Let us provide more details for
(iii) so as to see how choosing a cofinal subset works. By 2.7, [i0] = [i1],
where i0, i1 : Y → DM(i). Thus, given n ≥ 1, there is m > n such that
i0n ◦ p(Y )mn , i

1
n ◦ p(Y )mn : Ym → DM(in) are homotopic. By induction we can

choose an increasing sequence m1 < m2 < . . . and rename Xmn , Ymn as
Xn, Yn so that (iii) is satisfied.

Let H : Yn+2 → DM(in+1) be a homotopy joining i0n+1 ◦ p(Y )n+2
n+1 and

i1n+1 ◦p(Y )n+2
n+1. Let g : DM(in+1)→ DM(in) be the natural map induced by

p(Y )n+1
n . By 2.6, the image of g̃ is contained in DM(̃in). Thus, g̃◦H̃ : Ỹn+2 →

DM(̃in) is a homotopy joining i0n ◦ p(Ỹ )n+2
n , i1n ◦ p(Ỹ )n+2

n : Ỹn+2 → DM(̃in).
By 2.7, f̃ is an epimorphism of tow(H0).

2.9. Definition. A morphism f : X → Y of tow(H0) is called a weak
isomorphism if πk(f) is an isomorphism of tow(Gr) for each k ≥ 1.

2.10. Theorem. Suppose f : X → Y is an epimorphism of tow(H0).
If πk(f) is a monomorphism of tow(Gr) for each k ≥ 1, then f is a weak
isomorphism of tow(H0).

P r o o f. By 2.2, π1(f) is an epimorphism of tow(Gr). Thus, π1(f) is
an isomorphism of tow(Gr). Without loss of generality (see 2.4), we may
assume that f is induced by an inclusion i of tow(CW0) so that π1(in) is a
monomorphism for each n.

Special Case: π1(Yn) = 0 for each n. In this case, π1(Xn) = 0 for
each n. Let Y/X be defined by (Y/X)n = Yn/Xn and p(Y/X)mn be the
natural map induced by p(Y )mn . Since the composition of X → Y → Y/X
is trivial in tow(H0), so is Y → Y/X as X → Y is an epimorphism. Notice
that Hk(Y/X) is naturally isomorphic to Hk(Y,X) for each k ≥ 1 (we use
the integral homology here). From the homology exact sequence we deduce
the exactness of 0 → Hk+1(Y,X) → Hk(X) → Hk(Y ) → 0 for each k ≥ 1.
Suppose Hk(Y,X) = 0 for all k < n. By the Hurewicz Theorem in pro-H0

(see [M-S], Theorem 7 on p. 140), the Hurewicz morphism φk : πk(Y,X)→
Hk(Y,X) is an isomorphism for k = n and an epimorphism for k = n + 1.
Since πn(Y,X) → πn−1(X) is trivial (as πn−1(f) is a monomorphism) and
Hn(Y,X)→ Hn−1(X) is a monomorphism, we get Hn(Y,X) = 0. Thus, all
homology pro-groups of (Y,X) are trivial, which implies that all homotopy
pro-groups of (Y,X) are trivial and f is a weak isomorphism.
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General Case. By 2.8 we see that f̃ is an epimorphism of tow(H0). By
the Special Case, f̃ is a weak isomorphism. Since πk(f) = πk(f̃) for k > 1,
f is a weak isomorphism.

The following characterization of monomorphisms in tow(H0) is useful:

2.11. Proposition. Suppose f : X → Y is a level morphism of tow(H0)
induced by fn : Xn → Yn. Then f is a monomorphism of tow(H0) iff for
each n there is m > n such that given two morphisms α, β : P → Xm of
H0, fm ◦ α = fm ◦ β implies p(X)mn ◦ α = p(X)mn ◦ β.

P r o o f. Fix n ≥ 1 and suppose that for each m > n there is a CW
complex Pm and two homotopy classes am, bm : Pm → Xm so that fm◦am =
fm◦bm but p(X)mn ◦am 6= p(X)mn ◦bm. For each m > n let Zm be the wedge of
all Pk, k ≥ m. If p > m, then p(Z)pm : Zp → Zm is the inclusion. By defining
αm, βm : Zm → Xm via αm|Pr = p(X)rm ◦ ar and βm|Pr = p(X)rm ◦ br one
gets α, β : Z → X so that f ◦ α = f ◦ β and α 6= β, a contradiction.

2.12. Corollary. If f : X → Y is a monomorphism of tow(H0), then
πk(f) is a monomorphism of tow(Gr) for each k ≥ 1.

P r o o f. Assume f is a level morphism. Apply 2.11 in the case of P being
a pointed sphere. Thus, for each n there is m > n such that ker(πk(fm)) ⊂
ker(πk(p(X)mn ) for all k ≥ 1. By 1.6, πk(f) is a monomorphism for each
k ≥ 1.

2.13. Corollary. If f : X → Y is a bimorphism of tow(H0), then it
is a weak isomorphism.

P r o o f. By 2.12, πk(f) is a monomorphism for each k > 0. By 2.10, f is
a weak isomorphism.

2.14. Theorem. Suppose f : X → Y is a bimorphism of tow(H0). Then
f is an isomorphism if one of the following conditions is satisfied :

(i) def-dim(Y ) is finite,
(ii) Y is movable.

P r o o f. By 2.13, f is a weak isomorphism.
(i) If def-dim(Y ) is finite, then Corollary 5.7 of [D1] says that f has a

left inverse. By 0.3, f is an isomorphism.
(ii) We may assume that f is a level morphism induced by fn, n ≥ 1. Fix

n ≥ 1. By 2.11 there is m > n so that given two morphisms α, β : P → Xm

of H0, fm ◦α = fm ◦ β implies p(X)mn ◦α = p(X)mn ◦ β. Since Y is movable,
Theorem 5.9 of [D1] says that f is a weak domination. This means that for
each k there is s > k and a morphism r : Ys → Xk such that fk ◦ r = p(Y )sk.
Choose s > m and r : Ys → Xm so that fm ◦ r = p(Y )sm. Let a = r ◦ fs :
Xs → Xm. Notice that fm ◦ a = fm ◦ r ◦ fs = p(Y )sm ◦ fs = fm ◦ p(X)sm.
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Thus, p(X)mn ◦ a = p(X)mn ◦ p(X)sm = p(X)sn. Let b = p(X)mn ◦ r : Ys → Xn.
Notice that fn ◦ b = p(Y )sn and b ◦ fs = p(X)sn. This proves that f is an
isomorphism of tow(H0).

Our next result improves Theorem 2.14(ii):

2.15. Theorem. Suppose f : X → Y is a bimorphism of tow(H0). If
Z is movable, then the induced function f∗ : Mor(Z,X) → Mor(Z, Y ) is a
bijection.

P r o o f. It suffices to show that f∗ : Mor(Z,X)→ Mor(Z, Y ) is surjective
(it is injective as f is a monomorphism). Suppose g : Z → Y . First, consider
the special case of Z so that each p(Z)n+1

n is a domination. This implies the
existence of a morphism rn : Zn → Z, for each n, so that p(Z)n ◦ rn = idZn .

We may assume that f is a level morphism induced by fn, n ≥ 1. By
2.11, for each n there is m > n so that given two morphisms α, β : P → Xm

of H0, fm ◦ α = fm ◦ β implies p(X)mn ◦ α = p(X)mn ◦ β. Without loss
of generality we may assume m = n + 1 for each n. We may also assume
that g is a level morphism induced by gn, n ≥ 1. By 2.13, f is a weak
isomorphism and [D1] says that for each n there is a morphism sn : Zn → X
so that f ◦ sn = g ◦ rn. Let hn = p(X)n ◦ sn : Zn → Xn. Notice that
fn ◦p(X)n+1 ◦hn+1 = p(Y )n+1

n ◦fn+1 ◦hn+1 = fn ◦hn ◦p(Z)n+1
n . Therefore,

p(X)n+1
n−1◦hn+1 = p(X)nn−1◦hn◦p(Z)n+1

n and the morphisms p(X)n+1
n ◦hn+1,

n ≥ 2, induce a morphism h : Z → X so that g = f ◦ h.
The same argument as that of Spież [Sp] shows that any movable ob-

ject Z of tow(H0) is dominated by an object T so that each p(T )n+1
n is a

domination. Thus, the general case follows from the special one.

3. Bimorphisms in the shape category. This section is devoted to
partial answers to Problems 0.6 and 0.7.

3.1. Theorem. Suppose f : X → Y is a bimorphism of the shape category
of pointed metric continua. If X is movable and pro-πk(Y ) is stable for each
k ≥ 1, then f is a weak isomorphism.

P r o o f. Assume X ⊂ Y and f is induced by the inclusion j : X → Y .
Notice that DM(j) is compact and the two maps j0, j1 : Y → DM(j) are
homotopic when restricted to X. Since j induces an epimorphism in the
shape category, we have Sh(j0) = Sh(j1), where Sh is the shape functor
from the topological category to the shape category. Express (Y,X) as the
inverse limit of an inverse sequence (B,A) of pairs of pointed, connected,
and finite CW complexes. Since Sh(j0) = Sh(j1), we can switch to the inclu-
sion r : A → B and deduce that [r0] = [r1] (here r0, r1 : B → DM(r)). By
2.7, r is an epimorphism of tow(H0). Notice that r∗ : Mor(Z, pro-πk(A))→
Mor(Z, pro-πk(B)) corresponds to Mor(Sk, X) → Mor(Sk, Y ) in the shape
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category. The latter function is one-to-one as f is a monomorphism. By 1.7,
pro-πk(r) is a monomorphism for each k and by 2.10, r is a weak isomor-
phism.

3.2. Corollary. Suppose f : X → Y is a bimorphism of the shape
category of pointed metric continua. If X is movable and Y is an FANR,
then f is an isomorphism.

P r o o f. Since pro-πk(Y ) is stable for each k ≥ 1, 3.1 says that f is a
weak isomorphism. By Theorem 6.5 of [D1], f is an isomorphism.

3.3. Theorem. Suppose (Y,X, x0) is a movable triple of metric continua.
If the inclusion i : (X,x0) → (Y, x0) is a bimorphism in the shape category
of pointed metric movable continua, then i is a shape isomorphism.

P r o o f. By Theorem 7.5 of [D-S2] (see also [Mo-P]) it suffices to show
that i is a weak isomorphism. Notice that DM(i) is movable and the reason-
ing of 2.7 applies to prove that i is an epimorphism of tow(H0). It remains to
show that pro-πk(i) is a monomorphism for each k ≥ 1. Without loss of gen-
erality we may assume that there are shape morphisms rn+1 : Xn+1 → X
and sn+1 : Yn+1 → Y so that p(X)n ◦ rn+1 = p(X)n+1

n , p(Y )n ◦ sn+1 =
p(Y )n+1

n , i ◦ rn+1 = sn+1 ◦ in+1 for each n. If a ∈ ker(πk(in+1)), then a = 0
in Xn.

4. Bimorphisms in the proper homotopy category. Since there
is a strong connection between the proper homotopy category and tow(H0)
(see [Ed-H]), the purpose of this section is to apply the results from tow(H0)
to the proper homotopy case. The connection is realized as follows: given a
locally compact CW complex K one constructs its end end(K) as {K −C :
C is compact in K}, where the bonding morphisms are induced by inclu-
sions. In the case of K being connected one can express K as an increasing
union of its compact subcomplexes Kn with Kn ⊂ Int(Kn+1). Thus, end(K)
is equivalent in pro-H to an object of tow(H), namely {K − Int(Kn)}.

A CW complex K is locally compact iff it is locally finite. It turns out
(see [F-T-W]) that there exists a proper map f : K → L of locally finite
CW complexes which is not properly homotopic to a cellular map (one
mapping the nth skeleton of K to the nth skeleton of L). To remedy this
one introduces a special class of locally finite CW complexes:

4.1. Definition [F-T-W]. A CW complex K is called strongly locally
finite if it can be covered by a locally finite family of its finite subcomplexes.

The next definition is a rewording of end(K) being equivalent to a tower
of connected CW complexes:

4.2. Definition. A locally finite CW complex K is called connected at
infinity if for each compact subset C of K there is a compact subset D of K
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which contains C in its interior so that K−D is contained in one component
of K − C.

In the following definition we treat [0,∞) as a CW complex with integers
as vertices and [n, n+ 1] as 1-cells.

4.3. Definition. Suppose K is a locally finite CW complex. By a ray
in K we mean an embedding r : [0,∞) → K of [0,∞) onto a subcomplex
of K.

Essentially, a ray is an analog of a base point.
Notice that the end(K) is not an object of pro-H0. Namely, the base

points are not defined yet. The purpose of the next definition is to create an
object of tow(CW0) which is equivalent to end(K) in pro-H once the base
points are forgotten.

4.4. Definition. Suppose (K, rK) is a rayed, connected, locally finite
CW complex. By a preferred end of (K, rK) we mean the object end(K, rK)
of tow(CW0) for which the bonding maps are inclusions and end(K, rK)n =
(Kn ∪ rK [0,∞), rK(0)) for each n so that the following conditions are sat-
isfied:

(i) K1 = K, each Kn is connected, and each K − Int(Kn) is compact,
(ii) Kn+1 ⊂ Int(Kn) for each n,

(iii) given a compact subset C of K there is n such that C ⊂ K −Kn,
(iv) for each n there is an integer vn such that rK [0, vn]∩Kn is a vertex

of Kn and rK [vn,∞) ⊂ Kn.

Notice that any two preferred ends of (K, rK) are equivalent in tow(H0).
Therefore, one may define the pro-homotopy groups pro-πn(K, rK) of
(K, rK) as πn(end(K, rK)) (strictly speaking, one should talk about the
equivalence class of pro-groups).

4.5. Lemma. Suppose (K, rK) is a rayed , locally finite CW complex.

(a) If a preferred end of (K, rK) exists, then K is connected , connected
at infinity , and strongly locally finite.

(b) If K is connected , connected at infinity , and strongly locally finite,
then a preferred end end(K, rK) exists. Moreover , if f : (K, rK) → (L, rL)
is a proper map and end(L, rL) is a preferred end of (L, rL), then one can
find a preferred end end(K, rK) of (K, rK) so that f(Kn) ⊂ Ln for each n.

P r o o f. (a) Suppose a preferred end end(K, rK) exists so that
end(K, rK)n = (Kn ∪ rK [0,∞), rK(0)) for each n and the properties in
Definition 4.4 are satisfied. Since K = K1, it is connected. Suppose C
is a compact subset of K and choose n so that C ⊂ K − Int(Kn). Put
D = K − Int(Kn+1) and notice that K −D ⊂ Kn is contained in one com-
ponent of K − C. Put An = Kn − Int(Kn+1) for n ≥ 1. Notice that An,
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n ≥ 1, cover K. Given x ∈ K there is a compact neighborhood C of x ∈ K.
Let m satisfy C ⊂ K − Int(Km). Notice that C ∩An = ∅ for n ≥ m+ 1.

(b) Let {Ai}i≥1 be a locally finite cover of K consisting of finite subcom-
plexes. Put K1 = K and suppose Kn is given for some n. For each m > n let
Bm be the union of those Ai which do not intersect (K−Int(Kn))∪⋃mk=1Ak.
Notice that K − Int(Bm) is compact for each m.

For each m choose the smallest integer wm so that rK(wm) ∈ Bm and
let Cm = Bm ∪ rK [wm,∞). Let Dm be the component of rK(wm) in Cm.
Notice that K − Int(Dm) is compact. Our candidate for Kn+1 is any Dm

contained in Int(Kn). Let us show that such a Dm exists. First of all, there
is an integer p such that rK [p,∞) ⊂ Int(Kn). There exists an integer q such
that Am does not intersect rK [0, p] ∪ (K − Int(Kn)) ∪ f−1(L− Int(Ln)) for
m ≥ q. Notice that Dq can be chosen as Kn+1.

4.6. Definition. Pr is the proper homotopy category of rayed, strongly
locally finite, connected CW complexes K connected at infinity, equipped
with a ray rK : [0,∞)→ K. Morphisms of Pr are proper homotopy classes
of ray-preserving proper maps f : (K, rK)→ (L, rL) (i.e., f ◦ rK = rL).

4.7. Definition. If f : (K, rK)→ (L, rL) is a ray-preserving, proper, cel-
lular map between two rayed locally finite CW complexes, then its mapping
cylinder (M, rM ) is defined as the quotient of the regular mapping cylinder
so that (rK(t), s) is identified with rL(t) for all t ≥ 0, 1 ≥ s ≥ 0.

If f is an inclusion, then its double mapping cylinder (DM(f), rM ) is
defined as the quotient of the regular double mapping cylinder so that
(rK(t), s) is identified with (rL(t), 0) for all t ≥ 0, 1 ≥ s ≥ 0.

4.8. Proposition. If f : (K, rK)→ (L, rL) is a ray-preserving , proper ,
cellular map between two objects of Pr, then its mapping cylinder is an
object of Pr. If f is an inclusion, then its double mapping cylinder is an
object of Pr.

P r o o f. Since f is cellular, M is a connected CW complex. Since f is
proper, M is locally finite. Let p : M(f) → M be the projection from the
regular mapping cylinder M(f) of f . Choose preferred ends end(K, rK),
end(L, rL) so that the following conditions are satisfied (see Lemma 4.5):

(i) end(K, rK)n = (Kn ∪ rK [0,∞), rK(0)) for each n,
(ii) for each n there is an integer vn such that rK [0, vn]∩Kn is a vertex

of Kn and rK [vn,∞) ⊂ Kn,
(iii) end(L, rL)n = (Ln ∪ rL[0,∞), rL(0)) for each n,
(iv) for each n there is an integer wn such that rL[0, wn]∩Ln is a vertex

of Ln and rL[vn,∞) ⊂ Ln,
(v) f(Kn) ⊂ Ln for each n.
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Since f(K − Int(Kn)) is contained in L−Ls for some s, we may assume
that

(vi) f−1(Ln+1) ⊂ Int(Kn) for each n.

Indeed, f(K − Int(Kn)) ⊂ L − Ls implies f−1(Ls) ⊂ Int(Kn) and one
may redefine Ln+1 as Ls.

Notice that wn ≤ vn for each n. Let fn : Kn → Ln be induced by f and
let Pn = M(fn). Let Mn = p(Pn). Notice that rM [0, wn]∩Mn = rM (wn) and
rM [wn,∞) ⊂ Mn. The main purpose of (vi) is to ensure Mn+1 ⊂ Int(Mn).
Now, it is easy to check that end(M, rM )n = (Mn∪ rM [0,∞), rL(0)) defines
a preferred end of (M, rM ). By Lemma 4.5, (M, rM ) is an object of Pr.
A similar proof works for the double mapping cylinder.

4.9. Proposition. If f : (K, rK) → (L, rL) is a monomorphism of Pr,
then pro-πk(f) is a monomorphism of pro-groups for each k ≥ 1.

P r o o f. Choose preferred ends end(K, rK) of (K, rK) and end(L, rL)
of (L, rL). We may assume that f(Kn) ⊂ Ln for each n. Fix k ≥ 1 and
m ≥ 1. Suppose that for each p > m there is a map ap : (Sk, 1) → (Kp ∪
rK [0,∞), rK(0)) so that f ◦ ap ≈ 0 in Lp ∪ rL[0,∞) but ap is not null-
homotopic in Km ∪ rK [0,∞). Since Kp is a deformation retract of Kp ∪
rK [0,∞), there is a map bp : (Sk, 1) → (Kp, vp) (vp being the first vertex
on the ray which belongs to Kp) so that f ◦ bp ≈ 0 in Lp but bp is not
null-homotopic in Km. Define S as [0,∞)× 1 ∪⋃p>m{qp} × Sk and define
rS : [0,∞) → S by rS(t) = (t, 1). Combining the maps bp, p > m, one
constructs b : (S, rS) → (K, rK) so that f ◦ b ≈ f ◦ c and b is not properly
homotopic to the “constant” map c, a contradiction. The map c : (S, rS)→
(K, rK) is defined by c({qp} × Sk) = vp for p ≥ 1.

4.10. Proposition. If f : (K, rK) → (L, rL) is an epimorphism of Pr,
then end(f) : end(K, rK)→ end(L, rL) is an epimorphism of tow(H0).

P r o o f. First consider the case of f being an inclusion. Choose preferred
ends end(K, rK) of (K, rK) and end(L, rL) of (L, rL). We may assume that
Kn ⊂ Ln for each n (see Lemma 4.5). By 4.8, (DM(f), rM ) is an object of
Pr. Let i0, i1 : (L, rL) → (DM(f), rM ) be the two inclusions. Since i0 ◦ f is
properly homotopic to i1◦f , there is a proper homotopy H : L×I → DM(f)
joining i0 and i1. Given m ≥ 1, let C = L − Int(Lm+1). The image D of
C × {0, 1} ∪ (Km ∩ C) × I in DM(f) is compact, so H−1(D) is compact
in L × I. There is p > m such that (Lp × I) ∩ H−1(D) = ∅. This means
that H|Lp × I : Lp × I → DM(jm) is a homotopy joining i0|Lp and i1|Lp,
where jm : Km → Lm is the inclusion. By 2.7, the inclusion end(K, rK) →
end(L, rL) is an epimorphism of tow(H0).

In the general case one may assume f is a cellular map (see [F-T-W])
and then replace f by the inclusion j : (K, rK) → (M, rM ) of (K, rK) into
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the mapping cylinder of f . Since the inclusion (L, rL) → (M, rM ) is an
isomorphism of Pr, it induces an isomorphism of preferred ends.

4.11. Corollary. If f : (K, rK)→ (L, rL) is a bimorphism of Pr, then
f induces isomorphisms of proper homotopy groups.

P r o o f. Use 4.9, 4.10, and 2.10.

4.12. Corollary. If f : (K, rK) → (L, rL) is a bimorphism of Pr so
that dim(L) is finite, then f is an isomorphism.

P r o o f. We may assume that f is a cellular map (see [F-T-W]). It suffices
to show that f has a left inverse in Pr.

First, notice that f : (K, rK(0)) → (L, rL(0)) is an ordinary homotopy
equivalence (the finitness of dim(L) is not needed here). Indeed, replace f
by an inclusion and notice that the proper double mapping cylinder of f is
equivalent to the ordinary double mapping cylinder of f . Thus, as in 2.7, f is
an epimorphism of H0. It remains to show (see [D2]) that f : (K, rK(0))→
(L, rL(0)) induces monomorphisms of all homotopy groups. This follows
from the fact that πm(K, rK(0)) can be regarded as the set of proper homo-
topy classes of maps (Sm, rS)→ (K, rK), where Sm = [0,∞)×{1}∪{0}×Sm,
1 being the base point of the m-sphere Sm.

Let (M, rM ) be the mapping cylinder of f . We construct a proper map
Hn : M × 0∪ (K ∪M (n))× I →M so that Hn|M × 0 = id, Hn|K × I = id,
and Hn(M (n)×1) ⊂ K. Choose ends end(K, rK) of (K, rK) and end(M, rM )
of (M, rM ) so that Km ⊂ Mm for each m. The map H0 is constructed by
homotoping vertices in Mp −Mp−1 to vp inside Mp.

Suppose Hn−1 is given. Since end(K, rK) → end(M, rM ) induces iso-
morphisms of pro-homotopy groups, Lemma 8.1.2 of [D1-S] (see p. 104) says
that for each s there is p(s) > s such that πn(Mp(s),Kp(s))→ πn(Ms,Ks) is
trivial. This allows extending Hn−1 to Hn as follows: Given an n-cell σ of M
which is not contained in K the homotopy Hn−1 restricted to σ×0∪∂σ× I
can be extended over σ× I so that the image of σ×1 lies in K. This follows
from the fact that K is an ordinary deformation retract of M . However, we
require this extension to be done in such a manner that its image lies in Km

with m maximum possible (such an m obviously exists).
Let us show that Hn : M ×0∪ (K ∪M (n))× I →M obtained by pasting

together such extensions is proper. It suffices to show thatH−1
n (M−Int(Ms))

is compact for each s. Suppose there are infinitely many n-cells σv, v ≥ 1,
so that Hn(σv × I) ∩ (M − Int(Ms)) 6= ∅. Let w = p(s + 1). Notice that
there is v so that Hn−1(∂σv × 1) ⊂ Kw and Hn−1(∂σv × I ∪ σv × 0) ⊂Mw.
Since πn(Mw,Kw) → πn(Ms+1,Ks+1) is trivial, Hn(σv × I) ⊂ Ms+1, a
contradiction.
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Let dim(L) = d. Notice that Hd|L × {1} is a left inverse of (K, rK) →
(M, rM ) in Pr.
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