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The cobordism of Real manifolds

by

Po H u (Chicago, IL)

Abstract. We calculate completely the Real cobordism groups, introduced by Land-
weber and Fujii, in terms of homotopy groups of known spectra.

1. Introduction. The notion of Reality was first introduced by Atiyah
[4] for K-theory. A Real bundle over a Z/2-space is a complex bundle, to-
gether with a complex antilinear Z/2-action compatible with the Z/2-action
on the base. A Real manifold is a Z/2-equivariant smooth manifold with
a Real structure on its normal bundle. The cobordism of Real manifolds
was first considered by Landweber [14] and later Fujii [12]. Landweber [15],
Araki [3], and Fujii [10] also introduced the Real Thom spectrum MR, a
Z/2-equivariant spectrum indexed over the complete universe in the sense
of Lewis, May and Steinberger [16], whose homotopy groups were calcu-
lated by Araki (see [13]). Landweber [14, 15] and Fujii [10] obtained partial
results relating the Real cobordism group, which we denote by ΩReal

? , to
π?MR. Interest in Real cobordism increased recently in connection with a
Real version of the Adams–Novikov spectral sequence (see [13]).

In this note, we completely calculate ΩReal
? in terms of MR and other

known spectra. It should be pointed out that our treatment of geometric
Real cobordism here is a fairly straightforward application of the methods
of Conner and Floyd [7], Costenoble and Waner [8], tom Dieck [9], and
Wasserman [20]. Nevertheless, the problem clearly was considered, though
not completely solved, in the literature ([14], [12], [15], [3], [10]). The pur-
pose of this paper is to record the answer, with a complete, self-contained
proof.

Ideally, we would like to show that the Real cobordism groups of compact
Real manifolds are MR?, in analogy with the case of complex cobordism.
However, as usual this turns out to be false, due to the lack of transversality.
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Hence, we consider first the case of free Real cobordism of free Real mani-
folds (see also Fujii [12] and Landweber [15]). There is the following result,
analogous to the case of equivariant cobordism:

Proposition 1. The free Real cobordism groups of free compact Real
manifolds are (MR ∧ EZ/2+)?.

For Real cobordism of general Real manifolds, consider the cofibration
sequence

EZ/2+ → S0 → ẼZ/2.
After smashing it with Σ−lαMR and taking Z/2-fixed points, we obtain the
cofibration sequence of nonequivariant spectra

(1) (Σ−lα(MR ∧ EZ/2))Z/2 → (Σ−lαMR)Z/2 → ΦZ/2(Σ−lαMR)

where ΦZ/2 denotes the geometric fixed points in the sense of [16]. These
can be found by taking fixed points on the prespectrum level. For MR, the
spaces are of the form T (γnReal|BU(n)). Taking fixed points gives T (γn|BO(n)),
and suspension by lα does not affect the geometric fixed points, so

ΦZ/2Σ−lαMR = ΦZ/2MR = MO.

From the connecting map d : ẼZ/2→ ΣEZ/2+, we get a connecting map

d : MO → Σ(Σ−lα(MR ∧ EZ/2)Z/2).

Now let M be a Real manifold of dimension k + lα, with fixed point
set MZ/2. MZ/2 is a real submanifold with dimension k, and so specifies
an element of πk(Σ−lαΦZ/2MR) = πkMO. However, this is not all of the
structure present on MZ/2: there is also an l-dimensional bundle η such that
η⊕νMZ/2 is trivial. We will call such manifolds l-trivial. While deferring the
precise definition of cobordism of l-trivial manifolds to the next section, we
have the following result.

Proposition 2. The cobordism groups of compact l-trivial real manifolds
are the homotopy groups of Σ−lT (γl|BO(l)).

There is a stabilization map ι : Σ−lT (γl|BO(l))→MO. Thus, composing
with the connecting map d, we get a map

(2) δ : Σ−lT (γl|BO(l))
ι→MO

d→ Σ(Σ−lα(MR ∧ EZ/2)Z/2).

Let MRl be the homotopy fiber of the map δ. Also, denote the Real
cobordism group of Real manifolds of dimension k + lα by ΩReal(k + lα).
The following theorem is the main result of this paper.

Theorem 3. For a given l > 0, MRl is the cobordism spectrum of com-
pact Real manifolds of dimension k + lα. In other words,

(3) ΩReal(k + lα) ∼= πkMRl.
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In Section 2, we will make precise the notions of Real cobordism of Real
manifolds and free Real cobordism of free Real manifolds, as well as that
of l-trivial manifolds and their cobordism. Section 3 will be devoted to the
proof of Proposition 1; and the main result will be proven in Section 4.

2. The main definitions. Let α denote the unique nontrivial irreducible
representation of Z/2. A Real manifold (with boundary) is a manifold (with
boundary) M with a smooth action of Z/2, together with a Real bundle ν
of dimension n(1 + α) over M , and an isomorphism

τM ⊕ ν ∼= m+ pα

where m+pα denotes the trivial Z/2-equivariant bundle isomorphic to direct
product with the representation Rm+pα. The Real dimension of M is then
defined to be m+ pα− n(1 + α). M is a free Real manifold if the action of
Z/2 on M is free.

A compact Real manifold M can be embedded smoothly and equivari-
antly into Rm+pα. Then ν is the normal bundle of M in Rm+pα. Note that
there may be Real bundles ν, ν′ of dimensions n(1+α), n′(1+α) on M such
that

τM ⊕ ν = m+ pα, τM ⊕ ν′ = m′ + p′α.

Hence, there may be more than one Real structure on M , with possibly
different Real dimensions k+ lα and k′+ l′α, where k+ l = k′+ l′ is the real
dimension of M . An actual example of this ambiguity of Real dimension is
the manifold S(nα), of nonequivariant dimension n− 1. Note that τS(nα) ⊕
1 = nα, so S(nα) is a Real manifold of dimension nα−1. On the other hand,
by division algebra theory, for n = 2, 4, 8, we have τS(n)

∼= n− 1, and hence
τS(nα) = τS(n)α ∼= (n− 1)α for n = 2, 4, 8, giving S(nα) a Real structure of
dimension (n− 1)α.

Let M be a Real manifold with boundary of dimension k + lα, and let
µ be the trivial 1-dimensional collar bundle of δM in M . If we choose m, p
sufficiently large, then on δM , the complement of µ in (m+pα)|δM is trivial
of dimension (m− 1) + pα. So we have an isomorphism

τδM ⊕ ν|δM ∼= (m− 1) + pα

giving δM an induced structure of a Real manifold of dimension (k − 1) +
lα. Again, choosing m, p sufficiently large, we see that this induced Real
structure is unique.

As in the nonequivariant case, given a Real manifold M with its structure
given by the Real normal bundle ν and isomorphism τM ⊕ ν ∼= m+ pα, we
can define the Real manifold −M as the same manifold and normal bundle,
but reversing one chosen coordinate in the trivialization isomorphism.
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Definition 4. A compact Real manifold M of dimension k + lα is Real
cobordant to 0 if there is a Real manifold with boundary P such that the
boundary of P is δP = M . If M is free, then it is free Real cobordant to 0 if
there is a free Real manifold P with δP = M . Two compact Real manifolds
M,N of dimension k + lα are cobordant if M q (−N) is Real cobordant to
0, and free Real cobordant if M q (−N) is free Real cobordant to 0.

Real cobordism and free Real cobordism are equivalence relations. The
cobordism classes of compact Real manifolds of dimension k + lα form an
abelian group under disjoint union, which is the Real cobordism group of
dimension k+ lα. Similarly, the free cobordism classes of free compact Real
manifolds of dimension k+ lα form the free Real cobordism group of dimen-
sion k + lα.

We also make precise the definition of l-trivial manifolds.

Definition 5. For a given l > 0, an l-trivial bundle is a real bundle ξ (i.e.
an Rn-bundle) such that ξ ⊕ η is trivial for some l-dimensional real bundle
η. An l-trivial manifold (with boundary) is a real manifold (with boundary)
N , with a normal bundle ν and an l-dimensional real bundle η that gives
an l-trivial structure to ν, i.e. isomorphisms

τN ⊕ ν = m, η ⊕ ν = p

where m, p denote trivial real bundles of these dimensions.

Note that if M is an l-trivial manifold with boundary of dimension k,
with l-bundle η, then δM is an l-trivial manifold of dimension k − 1, with
l-bundle η|δM .

Given an l-trivial manifold M with normal bundle ν and l-bundle η, we
define −M as the same manifold and bundles, but reversing one coordinate
in each of the trivialization isomorphisms τM ⊕ ν ∼= m and η ⊕ ν ∼= p.

Definition 6. An l-trivial manifold M is l-trivial cobordant to 0 if there
is an l-trivial manifold P with δP = M . Two l-trivial manifolds M and N
are l-trivial cobordant if M q (−N) is l-trivial cobordant to 0.

Thus, we have the cobordism groups of l-trivial manifolds for each given l.
Let us also establish here some notations and recall certain basic notions

in equivariant stable homotopy theory, such as can be found in Lewis, May,
and Steinberger [16]. For a Z/2-equivariant spectrum E, we denote homology
and cohomology in integral dimensions by E∗, E∗; and we denote homology
and cohomology over the complete universe, i.e. all dimensions k+ lα, k, l ∈
Z, by E?, E?.

Recall the contractible free Z/2-space EZ/2, which can be considered as

S(∞α) = lim−→S(nα)
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where S(nα) is the n-dimensional sphere on which Z/2 acts by the negative
map. There is the cofibration sequence

EZ/2+ → S0 → ẼZ/2.
The cofiber EZ/2 is the unreduced suspension of EZ/2, and is therefore
S∞α, the one-point compactification of R∞α. If E is a Z/2-equivariant spec-
trum, smashing the cofibration sequence with E gives the cofiber sequence

EZ/2+ ∧ E → E → ẼZ/2 ∧ E.
We can take Z/2-fixed points of the sequence. Recall also that

(ẼZ/2)Z/2 ∧ E ' (S∞α ∧ E)Z/2

is the geometric fixed point spectrum of E, denoted by ΦZ/2E.
Following Atiyah [4] and Landweber [15], let BU(n) denote the space

of n-dimensional subspaces of C∞, with an involution given by complex
conjugation. There is a canonical Real bundle γnReal of dimension n(1 + α)
over BU(n), which classifies the Real bundles of dimension n(1 + α). We
have a map of Thom spaces

(4) Σ1+αT (γnReal)→ T (γn+1
Real).

Let MR be the resulting Z/2-equivariant spectrum. Then MR is Real ori-
ented. Also, BU(n)× EZ/2 is a free Z/2-space with Z/2 acting diagonally.
There is the canonical free Real line bundle γn free

Real (of dimension n(1 + α))
over BU(n) × EZ/2, which is the induced bundle of the projection map
BU(n)× EZ/2→ BU(n). There is a prespectrum given by

(5) Σ1+αT (γn free
Real)→ T (γn+1 free

Real).

This is MR ∧ EZ/2+ after spectrification.

3. Free Real cobordism. This section will be dedicated to the proof
of Proposition 1, which will be done in a manner analogous to the case of
complex cobordism, as shown in Milnor [17] or Milnor and Stasheff [18].
We will show that given any equivariant map from Sp+mα to the Thom
space T of a smooth Real bundle over a free Real manifold, there is an
(equivariant) homotopic smooth map transverse to the zero section of the
base manifold. The cobordism of the resulting Real manifold depends only
upon the homotopy class of maps, so we have a well defined map from
πk+lα+n(1+α)(T ) to the cobordism group of Real manifolds of dimension
k + lα.

For any x in a Z/2-space, write x for its image under the action of
the nontrivial element of Z/2. Let M be a compact Real manifold. For n
large enough, we can consider M as embedded equivariantly in Rm+pα =
Rk+lα+n(1+α), with Real normal bundle ν of dimension n(1 + α).
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Lemma 7. Let M be a compact Real manifold , possibly with boundary ,
embedded in Rm+pα. Then there is an open neighborhood U of M in Rm+pα

which is diffeomorphic to the total space E(ν) of the normal bundle by an
equivariant diffeomorphism ϕ that sends each x ∈ M to the zero normal
vector at x in E(ν).

P r o o f. Similar to that for the nonequivariant tubular neighborhood
lemma.

Let N,M be free Real manifolds, ξ a smooth Real bundle of dimension
n(1+α) over M , with total space E(ξ) and Thom space T (ξ). Let∞ ∈ T (ξ)
denote the point at infinity. First, we will show that each continuous function
Sm+pα → T (ξ) is homotopic to a map g smooth throughout g−1(T (ξ)−∞) =
f−1(T (ξ)−∞).

Lemma 8. If f : N → T (ξ) is equivariant and continuous, then f is
homotopic to a map g which is smooth on g−1(T (ξ)−∞) = f−1(T (ξ)−∞).

P r o o f. Let | | be an equivariant Euclidean norm on E(ξ), and D(ξ)
be the elements v ∈ E(ξ) with |v| ≤ 1. Then D(ξ) is a compact manifold
with boundary and a smooth Z/2-action, and for some m, p, D(ξ) can be
smoothly and equivariantly embedded in Rm−1+pα by an embedding ϕ. Also,
let θ : [0, 1] → [0, 1] be a smooth map which is strictly increasing and
bijective. Then define

ψ : T (ξ)→ Rm+pα

by

v 7→ (θ(|v|), (1− θ(|v|))ϕ(v))

for v ∈ T (ξ)−∞ = D(ξ)− δD(ξ), and

∞ 7→ (1, 0, . . . , 0).

Then ψ gives an embedding of T (ξ) topologically in Rm+pα such that the
manifold T (ξ)−∞ is smoothly embedded. By a similar method, T (ξ)−∞
has a tubular neighborhood U diffeomorphic to E(ν), where ν is the normal
bundle of T (ξ)−∞ in Rm+pα.

Let δ : N → R be a positive function invariant under the Z/2-action
such that δ(x) → 0 as x → f−1(∞). Let U = f−1(T (ξ) − ∞). Then by
an argument similar to that for the nonequivariant case, we have a smooth
g : U → T (ξ)−∞ homotopic to f by some H(x, t) such that for all 0 ≤ t ≤ 1,
|H(x, t)− f(x)| < δ. Then we can extend H by setting H(x, t) =∞ for all
0 ≤ t ≤ 1, x ∈ f−1(∞), and H, g will be continuous everywhere. Moreover,
H(x, t) =∞ iff f(x) =∞.

The next step shows that for M free, a map Sm+pα → T (ξ) is homotopic
to one that is transverse to the 0-section M ⊂ T (ξ).
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Lemma 9. If M is a free Real manifold , ξ is a Real bundle on M , and f :
Sm+pα → T (ξ) is equivariant and continuous, then f is homotopic to a map
g which is smooth on f−1(T (ξ)−∞), and transverse to the zero section M .
The Real cobordism class of the manifold g−1(M) of codimension n(1 + α)
depends only on the homotopy class of g. Thus, we have a well defined
map from πm+pα(T (ξ),∞) to the Real cobordism group of Real manifolds of
dimension m+ pα− n(1 + α).

To prove this lemma, we use the following standard lemma (Milnor–
Stasheff [18]).

Lemma 10. Let U ⊆ Cr be open, and f : U → Cs smooth, with the
origin as a regular value throughout a relatively closed subset X ⊆ U . Let
K be a compact subset of U . Then there is a smooth map g : U → Cr,
g = f outside of a compact subset K ′ ⊆ U , and having the origin as a
regular value throughout X∪K. Given any ε > 0, we can choose g such that
|f(x)− g(x)| < ε for all x ∈ U .

Proof of Lemma 9. By the equivariant smooth approximation lemma,
we can assume that f is smooth on f−1(T (ξ) −∞). Since M is free under
the action of Z/2, so are E(ξ) and T (ξ) − ∞. Thus, the equivariant map
f : Sm+pα → T (ξ) must take every fixed point to ∞. We can cover the
compact set f−1(M) in Sp+mα by a finite number of open sets U1, . . . , Uk in
f−1(T (ξ)−∞). Each Ui is small enough such that it is disjoint from Ui, where
Ui denotes the image of Ui under the action of Z/2. We also make sure that
each f(Ui) ⊆ T (ξ)−∞ ⊆ E(ξ) is contained in some ξ−1(Vi) ∼= Vi×Cn, where
Vi is an open coordinate neighborhood of the bundle in M . Let Ki ⊆ Ui be
compact, with f−1(M) contained in the interior of K =

⋃k
i=1Ki. Also, for

x ∈ T (ξ) − ∞, we have the Euclidean norm 0 ≤ |x| < 1, with |x| = 0 iff
x ∈ M . By compactness, there is a constant ε > 0 such that |f(t)| ≥ ε for
all t 6∈ K.

Now we proceed according to the standard argument, by constructing
a sequence of equivariant maps f0, f1, . . . , fn such that f0 = f , each fi is
smooth throughout f−1

i (T (ξ) −∞) = f−1(T (ξ) −∞), and coincides with
fi−1 outside of a compact subset of Ui ∪ Ui. Also, we want each fi to be
transverse to M throughout

⋃i
j=1(Ki ∪Ki), and that ξ(fi(x)) ∈M is equal

to ξ(f(x)) for all x ∈ f−1(T (ξ) − ∞), i.e. each fi differs from fi−1 only
within each fiber.

Suppose we have fi−1 satisfying these conditions. Then fi−1 maps Ui
into ξ−1(Vi) and Ui into ξ−1(V i). By the equivariance of ξ, we have

ξ−1(Vi) ∼= Vi × Cn, ξ−1(V i) ∼= V i × Cn.
Let pi : ξ−1(Vi) → Cn and pi : ξ−1(V i) → Cn be the projections onto the
second coordinate. Then the composition pifi−1 has the origin as a regular
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value throughout the relatively closed subset Ui ∩
⋃i−1
j=1Kj in Ui. Then by

Lemma 10, it is approximated by qi : Ui → Cn which has the origin as a
regular value throughout Ui ∩ (K1 ∪ . . . ∪Ki) and differs from pifi−1 only
in a compact subset K ′i of Ui. We can make it so that

|qi(t)− pi(fi−1(t))| < ε/k

for all t. Define pifi : ξ−1(Vi) → Cn to be qi, and pifi : ξ−1(V i) → Cn
to be the conjugate of qi. Since fi and fi−1 differ only within fibers of ξ,
this determines fi on Ui ∪ Ui, and thus on Sm+pα, completely. Because we
made the corresponding changes over Ui and Ui, fi is equivariant. It is easy
to check that fi satisfies all the desired conditions. Let g = fk. Then g is
smooth, equivariant, and transverse to M throughout the compact set K.

We chose each fi such that for every t,

|fi(t)− fi−1(t)| < ε/k.

Then |g(t)−f(t)| < ε for every t, so |g(t)| 6= 0, i.e. g(t) 6∈M for every t 6∈ K.
Hence, we have g−1(M) ⊆ K. Therefore, g is transverse to M throughout
Sm+pα, and g−1(M) is a manifold with a Real structure induced by g.

If g and g′ are two maps Sm+pα → T (ξ), smooth throughout the inverse
images of T (ξ)−∞ and transverse to M , and homotopic by h, then we can
make the homotopy h transverse to M . Thus, the inverse image h−1(X)
is a Real manifold with boundary, giving the cobordism between g−1(X)
and g′−1(X). Hence, we have a well defined map from πm+pα(T (ξ)) to the
(m + pα − n(1 + α))th cobordism group of free Real manifolds. It is easy
to see that this is a group homomorphism, just as in the case of real and
complex manifolds.

We are now ready to prove Proposition 1, which gives the free Real
cobordism groups of free Real manifolds. We shall denote these cobordism
groups by ΩReal

free (k + lα).

Proof of Proposition 1. Let Gn,t be the space of all n-dimensional sub-
spaces in Ct, with Z/2-action by conjugation. Then Gn,t has the structure
of a Real manifold, and

BU(n) =
⋃
t

Gn,t.

There is a canonical Real line bundle γn,t over Gn,t, of dimension n(1 + α),
and for t large enough, γn,t classifies Real bundles of dimension n(1 + α)
over paracompact spaces. The projection

Gn,t × EZ/2+ → Gn,t
induces the bundle γn,t free

Real over Gn,t, which classifies Real bundles of di-
mension n(1 + α) over free Z/2-spaces.
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Let M be a compact free Real manifold of dimension k+lα. Then for n, t
large enough, M is embedded equivariantly in Rk+lα+n(1+α), with normal
bundle νn. There is the canonical smooth equivariant map

ϕ : M → Gn,t × EZ/2
where the first coordinate is the classification map of νn. The second coor-
dinate is the canonical map from a free space to EZ/2 = S(∞α). For some
s ≥ 0, M is mapped into the finite skeleton S(sα) of EZ/2. So we have

M
ϕ→ Gn,t × S(sα) i→ Gn,t × EZ/2.

Now the inclusion i induces the bundle γn,ts
free
Real over Gn,t × EZ/2, which

has the structure of a compact free Real manifold. ϕ gives a map of Real
bundles ν → γn,ts,free. Thus by the tubular neighborhood lemma, we have

ϕ : U ∼= E(ν)→ E(γn,ts
free
Real)→ T (γn,ts

free
Real)

which we can extend to Sm+pα, the one-point compactification of Rm+pα,
by mapping Sm+pα−U to∞. This is an equivariant smooth map transverse
to the zero section BU(n)× EZ/2 of γn free

Real, and

ϕ−1(Gn,t × S(sα)) = M.

Thus, M is in the image of the map

πk+lα+n(1+α)(T (γn,ts
free
Real))→ ΩReal

free (k + lα).

Passing to the limit over s, we get the surjective map

(6) πk+lα+n(1+α)(T (γn,t free
Real))→ ΩReal

free (k + lα).

Injectivity is proved in a similar manner for n, t sufficiently large. Thus, we
have

πk+lα+n(1+α)(T (γn,t free
Real)) ∼= ΩReal

free (k + lα).

This shows that Ωfree
Real(k+lα) is isomorphic to the stable homotopy group

πk+lα(MR ∧ EZ/2+), which is our theorem.

4. Cobordism of general Real manifolds. Let M be a compact Real
manifold of dimension k + lα, not necessarily free. Let MZ/2 denote the
subspace of M fixed by the action of Z/2. Then MZ/2 is a compact real
submanifold of M .

Lemma 11. The dimension of MZ/2 is k.

P r o o f. There is a Real normal bundle ν on M of dimension n(1 + α)
such that τM ⊕ ν = m + pα, where m = k + n, p = l + n. Restricting to
MZ/2, we have

τM |MZ/2 ⊕ ν|MZ/2 = m+ pα|MZ/2 .
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Since MZ/2 is fixed, the Z/2-action on a bundle over it takes each fiber
onto itself, so we can consider its fixed subbundle. The Real structure of ν
gives that over MZ/2, the Z/2-action on each fiber is a complex antilinear
transformation. Hence, each fiber, of complex dimension n, is the direct
sum of a fixed real subspace, and a real subspace where the Z/2-action is
multiplication by −1, where each subspace has dimension n. Let νZ/2 denote
the fixed subbundle of ν. Then νZ/2 has real dimension n, and ν breaks into
two copies of νZ/2, i.e.

ν = νZ/2(1 + α) = νZ/2 ⊕ iνZ/2

where the Z/2-action is complex conjugation. Also, at each point x ∈MZ/2,
M is locally equivariantly diffeomorphic to a representation of Z/2. Thus,
the fixed subbundle of τM |MZ/2 is τMZ/2 . Finally, the fixed subbundle of
m+ pα is m. Thus, taking Z/2-fixed points of the earlier equation, we get

τMZ/2 ⊕ νZ/2 = m.

So the dimension of MZ/2 is m− n = k.

In particular, this shows that if a Real manifold M has a nonempty fixed
submanifold MZ/2, then the Real dimension k + lα of M is independent of
the Real normal bundle giving M its Real structure, and that k, l ≥ 0.

What can we say about the fixed submanifold MZ/2? Note that there is
the normal bundle νM

MZ/2 of MZ/2 in M , with

m+ pα = τM |MZ/2 ⊕ ν|MZ/2 = τMZ/2 ⊕ νMMZ/2 ⊕ νZ/2(1 + α).

By the previous lemma, we have τMZ/2 ⊕ νZ/2 = m. Also, taking the non-
fixed complements, we get νM

MZ/2 ⊕ νZ/2α = pα. In particular, νM
MZ/2 has

dimension lα.
Considering only the real structures of the bundles, we see that a normal

bundle νZ/2 of MZ/2 is trivialized by an l-dimensional bundle. Thus, for a
Real manifold M of dimension k + lα, MZ/2 is an l-trivial real manifold.

We now prove Proposition 2, which determines the cobordism spectrum
of compact l-trivial manifolds.

Proof of Proposition 2. The classifying space for sums of pairs of bundles
ξ ⊕ η over a space X, with |ξ| = n, |η| = l, is BO(n) × BO(l), and the
universal bundle is γn × γl. There is a map

θ : BO(n)×BO(l)→ BO(n+ l)

that classifies γn×γl. Thus, if ξ⊕η is trivial, the map X → BO(n)×BO(l),
classifying the sum ξ⊕η over X, pulls back to the homotopy fiber of θ, which
is O(n+ l)/(O(n)×O(l)).
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The universal n-dimensional l-trivial bundle, which we denote by γnl , is
the pullback of γn over BO(n) under the map

O(n+ l)/(O(n)×O(l))→ BO(n)×BO(l)→ BO(n).

By the usual procedure, the cobordism of l-trivial manifolds is given by the
Thom spectrum limn→∞Σ−nT (γnl ). As n→∞, O(n)→ O(n+ l), so

O(n+ l)/(O(n)×O(l))→ BO(l).

Hence

lim
n→∞

Σ−nT (γnl ) = Σ−lT (γl|BO(l)).

Let Ωl(k) denote the cobordism group of compact k-dimensional l-trivial
manifolds. Then

(7) πk(Σ−lT (γl|BO(l))) ∼= Ωl(k),

i.e. Σ−lT (γl|BO(l)) is the cobordism spectrum of compact l-trivial mani-
folds.

We are now ready to prove Theorem 3. First, consider the manifolds rep-
resented by Σ−lT (γl|BO(l)). Suppose that we have a k-dimensional compact
l-trivial manifold N , with normal bundle ν and l-dimensional bundle η, such
that τN ⊕ ν = m, η ⊕ ν = p. Let | | be a Riemannian metric on ν, and

D(η) = {(x, v) | x ∈ N, v ∈ ηx, |v| ≤ 1}
be the disk bundle of ν with respect to | |. Give an action of Z/2 on D(η)
by

(x, v) 7→ (x,−v).

Then D(η) is a real manifold with boundary

S(η) = {(x, v) | x ∈ N, v ∈ ηx, |v| = 1}.
D(η) has a smooth Z/2-action that sends S(η) to S(η), and its tangent
bundle is

τD(η) = τN ⊕ η
with Z/2 fixing τN and acting by −1 on η. The bundle ν ⊕ iν on N , with
Z/2-action given by complex conjugation, has a natural Real structure. Let
ν(1 + α) be the pullback of ν ⊕ iν under the projection map D(η) → N .
Then there is an induced Real structure on ν(1 + α). Note that

τD(η) ⊕ ν(1 + α) = τN ⊕ η ⊕ ν(1 + α) = m+ pα.

Also, the collar bundle of S(η) in D(η) is fixed under the Z/2-action. Hence,
D(η) is a Real manifold with boundary, of dimension k + lα, so S(η) is a
free Real manifold of dimension (k − 1) + lα, with the Real normal bundle
ν(1 + α). If N is an l-trivial manifold with boundary N and l-dimensional
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bundle η, then S(η|N ) is the boundary of S(η). Thus, (N, η) 7→ S(η) is a
well defined map Ωl(k)→ ΩReal

free (k − 1 + lα).
Now recall the connecting map (2):

δ : Σ−lT (γl|BO(l))→MO → Σ(Σ−lα(MR ∧ EZ/2+)Z/2)

defined by means of homotopy theory. On coefficients, δ gives the map

δ∗ : Ωl(k) = πk(Σ−lT (γl|BO(l)))

→ πk(Σ(Σ−lα(MR ∧ EZ/2+)Z/2)) = πk−1+lα(MR ∧ EZ/2+)
= ΩReal

free (k − 1 + lα).

Lemma 12. δ∗ : Ωl(k)→ ΩReal
free (k − 1 + lα) sends the cobordism class of

N , with l-dimensional bundle η and normal bundle ν, to the class of S(η)
with a Real normal bundle ν(1 + α).

P r o o f. Σ−lT (γl|BO(l)) is the Thom spectrum of the pullback of γn over
O(n+ l)/(O(n)×O(l)), and the stabilization map ι : Σ−lT (γl|BO(l))→MO
is

ι : T (γn|O(n+l)/(O(n)×O(l)))→ T (γn|BO(n))

on the prespectrum level.
Let S(γlα) be the sphere bundle of γlα over BO(l), and let Sγ

lα be its
unreduced suspension. Then there is a map

T (γlα|BO(l))→ Sγ
lα

given by contracting the 0-section to a single point. Also, there is a classifi-
cation map S(γlα)+ → S(∞α)+ = EZ/2+, giving a map

c : Sγ
lα → S∞α.

Moreover, γn(1 + α) is Real of dimension n(1 + α) over the fixed space
BO(n), so there is a classification map

γn(1 + α)|BO(n) → γnReal|BU(n).

Hence, we have the map of Thom spaces

Σ(n+l)αT (γn|O(n+l)/(O(n)×O(l))) ∼= T (γn(1 + α)⊕ γlα|O(n+l)/(O(n)×O(l)))
ι→ T (γn(1 + α)× γlα|BO(n)×BO(l))
∼= T (γn(1 + α)|BO(n)) ∧ T (γlα|BO(l))

→ T (γnReal|BU(n)) ∧ Sγ
lα

c→ T (γnReal|BU(n)) ∧ S∞α
s→ ΣlαT (γnReal|BU(n)) ∧ S∞α
d→ ΣlαT (γnReal|BU(n)) ∧ΣEZ/2+

= ΣΣlαT (γn free
Real|BU(n)×EZ/2)
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where the map

s : T (γnReal|BU(n)) ∧ S∞α → Σ−lαT (γnReal|BU(n)) ∧ S∞α

is inverse to the map induced by the suspension S0 → Slα. Since ΣlαS∞α ∼=
S∞α, s is a homeomorphism. Passing to spectra, this gives the map of Z/2-
spectra (with Σ−lT (γl|BO(l)) considered as fixed):

Σ−lT (γl|BO(l))→ Σ−lα(MR ∧ S∞α) d→ Σ(Σ−lα(MR ∧ EZ/2+)).

Taking Z/2-fixed points, it becomes our map

δ : Σ−lT (γl|BO(l))
ι→MO

d→ Σ(Σ−lα(MR ∧ EZ/2+)Z/2).

Since the diagram

Sγ
lα ΣS(γlα)+

S∞α ΣS(∞α)+

c

²²

d //

c

²²
d //

is commutative, the above map of Thom spaces is the same as

Σ(n+l)αT (γn|O(n+l)/(O(n)×O(l))) = T (γn(1 + α)⊕ γlα|O(n+l)/(O(n)×O(l)))
ι→ T (γn(1 + α)⊕ γlα|BO(n)×BO(l))

= T (γn(1 + α)|BO(n)) ∧ T (γlα|BO(l))

→ T (γnReal|BU(n)) ∧ Sγ
lα

d→ T (γnReal|BU(n)) ∧ΣS(γlα)+

= T (γnReal|BU(n)) ∧ T (1|S(γlα))
= T (γnReal × 1|BU(n)×S(γlα))
s→ ΣΣlαT (γnReal|BU(n)×S(γlα))

→ ΣΣlαT (γn free
Real|BU(n)×EZ/2).

Given an l-trivial manifold N of dimension k, with l-dimensional bundle
η and n-dimensional normal bundle ν, for n � 0 the cobordism class of N
is represented by a smooth map

f : Sk+n → T (γn|O(n+l)/(O(n)×O(l)))

such that N is the preimage of the 0-section. We also have

Σ(n+l)αf : Sk+n+(n+l)α → Σ(n+l)αT (γn|O(n+l)/(O(n)×O(l))).

Following the maps of Thom spaces to ΣT (γnReal|BU(n)×S(γlα)), we see that
the 0-section changes from O(n+l)/(O(n)×O(l)) to BU(n)×S(γlα). Hence,
the preimage of the 0-section changes from N to the universal sphere bundle
S(η), giving the desired map of cobordism groups.
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The following lemma appears superficially similar to Theorem 1 of Land-
weber [14]. However, the two are different: Landweber’s theorem dealt with
cobordism after forgetting the Real structure, whereas we consider the fixed
points of a Real manifold.

For a real manifold M with a submanifold N , let ν|MN denote the normal
bundle of N in M .

Lemma 13. If in a compact Real manifold M of dimension k+ lα, MZ/2

is cobordant to 0 in the l-trivial category , then M is Real cobordant to a free
Real manifold M ′.

P r o o f. Let M ′ be an l-trivial manifold with boundary MZ/2. Then there
is an l-dimensional bundle η on M ′ with

η|MZ/2 ∼= ν|MMZ/2 .

Let T be a tubular neighborhood of MZ/2 in M with T ∼= E(ν|M
MZ/2). Let

δT denote the boundary of T . Then we can construct S(η|M ′), and attach
it to M by identifying

S(ν|MMZ/2) ∼= S(η|MZ/2)

with δT . The resulting space X is a smooth manifold except at δT =
S(η|MZ/2), with a free Z/2-action that is smooth except at δT , so X − δT
has the structure of a free Real manifold of dimension k + lα, except at
δT . Also, let Y be the space obtained by attaching M × [0, 1] to D(η) by
identifying D(η|MZ/2) with T , the closure of T . Then Y has the structure of
a (k + 1 + lα)-dimensional Real manifold with boundary except at δT , and
the “boundary” of Y is X q (−M). Thus, we will get a free Real manifold
cobordant to M if we can “smooth out” the corners of X at δT .

Since δT is compact, there is another tubular neighborhood S of MZ/2

in M ,

S ∼= E(ν|MMZ/2)

such that T ⊂ S, and there is a collar neighborhood U ∼= δS × [0, 1) of δS
in S with δT ⊂ U . Also,

δT ∼= S(ν|MMZ/2) ∼= δS

so we have

S − T ∼= δT × [0, 1).

There is also a collar neighborhood V ∼= S(η|MZ/2) × [0, 1) of S(η|MZ/2) in
S(η|M ′). Hence, we have a neighborhood of δT in X

(S − T ) ∪ V ∼= (δT × [0, 1)) ∪ (δT × [0, 1)) ∼= δT × ([0, 1) ∪ [0, 1)).
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We can smooth (S − T )∪ V by smoothing out [0, 1)∪ [0, 1). More precisely,
let f : (0, 1/2)→ (0, 1/2) be a smooth map such that

lim
x→0

f(x) = 1/2, lim
x→1/2

f(x) = 0,

and for all derivatives f (i) of f ,

lim
x→0

f (i)(x) =∞, lim
x→1/2

f (i)(x) = 0.

Let

W1 = {(0, y) | 1/2 ≤ y < 1},
W2 = {(x, f(x)) | 0 < x < 1/2},
W3 = {(x, 0) | 1/2 ≤ x < 1}.

Let W = W1 ∪W2 ∪W3. Then W is a smooth 1-dimensional manifold. By
attaching δT ×W to X − ((S − T ) ∪ V ), we obtain a smooth manifold P
with a free smooth Z/2-action. Similarly, let

W4 = {(x, y) | 0 < x < 1/2, 0 ≤ y ≤ f(x)}.
Let U = W1 ∪W4 ∪W3. Then, attaching U to Y , we get a smooth Z/2-
manifold Z with boundary P .

It remains to give a Real normal bundle to W that will be a smooth
transition between the Real normal bundles of M − S and S(η)− V . Let ξ′

be the collar bundle of MZ/2 in M ′, and ξ be the collar bundle of δS in S.
Then ξ, ξ′ are 1-dimensional and trivial. Note

τM |δS = ξ ⊕ τδS ∼= ξ ⊕ τδT and τS(η)|δV = ξ′ ⊕ τδT .
Then W gives a smooth transition between between ξ and ξ′, i.e.

τW
∼= µ⊕ τδT

where µ is a 1-dimensional trivial real bundle such that

µ|δS = ξ, µ|δV = ξ′.

Let νM be a Real normal bundle of M with dimension n(1 + α). Then at
δS,

τM ⊕ νM |δS ⊕ ξ′ ⊕ α ∼= ξ ⊕ τδS ⊕ νM |δS ⊕ ξ′ ⊕ α
∼= (k + n) + (l + n)α⊕ ξ′ ⊕ α
∼= (k + n+ 1) + (l + n+ 1)α.

Extending ξ′ to a trivial bundle of dimension 1 on M , we see that νM⊕ξ′⊕α
is a Real normal bundle to M . Also, τM ′ |δV ∼= ξ′ ⊕ τδT , so

τM |δV ⊕ νM |δS ⊕ ξ ⊕ α ∼= (k + n+ 1) + (l + n+ 1)α.

Since M ′ ∼= S(νM
MZ/2)× [0, 1) near δT , at δV , νM |δS⊕ξ⊕α extends to a Real

normal bundle of M ′. We can find a smooth trivial 1-dimensional bundle µ′
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over W such that

µ′|δS ∼= ξ′, µ′|δV ∼= ξ.

Then µ⊕ µ′ ∼= 2, and at every x ∈W ,

τW ⊕ νM |δS ⊕ µ′ ⊕ α ∼= µ⊕ τδS ⊕ νM |δS ⊕ µ′ ⊕ α
∼= 2⊕ τδS ⊕ νM |δS ⊕ α
∼= ξ ⊕ τδS ⊕ νM |δS ⊕ ξ′ ⊕ α
∼= τM |δS ⊕ (νM |δS ⊕ ξ′ ⊕ α)
∼= (k + n+ 1) + (l + n+ 1)α.

So νM |δ ⊕ µ′ ⊕α gives a Real normal bundle on W which is a smooth tran-
sition between the Real normal bundles of M and M ′. Therefore, P has the
structure of a free Real manifold. Similarly, the manifold Z with boundary
P has a compatible Real structure, giving a Real cobordism between P and
the original manifold M .

Proof of Theorem 3. We have the long exact sequence of homotopy groups

(8) . . .→ πk(MRl)
p→ πk(Σ−lT (γl|BO(l)))

δ∗→ πk−1+lα(MR ∧ EZ/2+)→ . . .

Given a class [f ] in πk(MRl), [p(f)] determines a cobordism class in the
l-trivial category, represented by the manifold N , with l-dimensional bundle
η and real normal bundle ν. Also, f gives a homotopy from δ∗p(f) to 0,
which gives a free Real cobordism M ′ of S(η) to 0. Thus, we can combine
D(η) and M ′ along their common boundary S(η), giving a Real manifold
M of dimension k+ lα, with the Real normal bundle ν(1 +α). Thus, define
the map

ϕ : πk(MRl)→ ΩReal(k + lα)

by letting ϕ[f ] be the cobordism class of M . The cobordism class of N
depends only on the homotopy class of f . Suppose that N is a (k + 1)-
dimensional l-trivial manifold with boundary N , with normal bundle ν and
l-dimensional real bundle η. Then N ′ gives a smooth homotopy H of p(f) to
0. Also, there is a smooth homotopy of δ∗H to 0, giving the space M ′. We
can combine D(η) and M ′, which gives a (k+ lα)-dimensional Real manifold
with boundary M . Therefore, ϕ is well defined.

To show that the map is an isomorphism, consider the following com-
mutative diagram:

πk(MRl) πk(Σ−lT (γl|BO(l))) πk−1+lα(MR ∧ EZ/2+)

ΩReal(k + lα) Ωl(k) ΩReal
free (k − 1 + lα)

// p //

ϕ

²²

δ∗ //

∼=
²²

//

∼=
²²

// q // δ∗ // i //
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Here q sends M to MZ/2 and i sends the free Real cobordism class of a
free manifold to its Real cobordism class. Thus, it suffices to show that the
sequence of cobordism groups is exact, since then by the Five Lemma, the
map ϕ is an isomorphism. At Ωl(k), given a real manifold M , q(M) = MZ/2.
There is a tubular neighborhoodN ′ ofMZ/2 inM such thatN ′ ∼= E(ν|M

MZ/2).
Then

δ∗q(M) = δ∗(MZ/2) = S(ν|MMZ/2),

which is cobordant to 0 via M \ N ′. Conversely, as we have seen above,
given an l-trivial N in Ωl(k) with l-dimensional bundle η, if its image is 0
in ΩReal

free (k − 1 + lα), then there is a free Real manifold M ′ with boundary
S(η). Thus, we can combine D(η) with M ′ to get a Real manifold M with
q : M → N . Hence, the sequence is exact at Ωl(k).

To show exactness at ΩReal
free (k − 1 + lα), suppose a free Real manifold

M is the image of some l-trivial N with l-dimensional bundle η. Then M
is Real cobordant to S(η), which in turn is Real cobordant to 0 via D(η).
Conversely, let M be a free Real manifold of dimension k − 1 + lα with
i(M) = 0, so there is a Real manifold P with boundary M . Then consider
PZ/2 in ΩXl(k) with

δ∗(MZ/2) = S(ν|PP Z/2)

in Ωfree
Real(k − 1 + lα). Let Q be a tubular neighborhood of PZ/2 in P , Q ∼=

E(ν|P
P Z/2). Then M is cobordant to S(ν|P

MZ/2) via P \Q, so [M ] = δ∗[PZ/2].
Finally, the previous lemma gives exactness at ΩReal(k + lα).
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