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K-theory, flat bundles and the Borel classes

by

Bjørn J a h r e n (Oslo)

Abstract. Using Hausmann and Vogel’s homology sphere bundle interpretation of
algebraic K-theory, we construct K-theory invariants by a theory of characteristic classes
for flat bundles. It is shown that the Borel classes are detected this way, as well as the
rational K-theory of integer group rings of finite groups.

1. Introduction. One of the basic problems with algebraic K-theory
is the lack of a good interpretation (geometric, algebraic or otherwise) of
the elements in the higher K-groups. This makes calculations harder, but
perhaps more importantly, it complicates applications, since even in the
cases where one can do calculations, the connection to the application is
often so indirect that it is hard to translate back.

To give just one example: Borel’s calculations show that K4k+1(Z) ⊗ Q
≈ Q for k ≥ 1. One consequence is that some homotopy groups of diffeo-
morphism groups of large discs (fixing the boundary) have rank one. But
to construct explicit generators from these calculations seems to be very
difficult!

If A is a ring, Kn(A) is defined as πn(BGL(A)+), i.e. by mapping
simple spaces (spheres) into complicated and poorly understood spaces
(BGL(A)+). In this paper we discuss an alternative (but equivalent) def-
inition, where we replace the spheres by more complicated manifolds, but
map into spaces that are much better understood (at least from a geometric
point of view)—namely the classifying spaces BGL(A). Then the elements
have geometric interpretation as (flat) bundles, and one can try to study
invariants for these.

The idea to construct geometric invariants for K-theory elements from
a flat bundle representation was, I believe, first used by Karoubi. He used
a representation by bundles over K(π, 1)-complexes and developed a theory
of simplicial connections and characteristic classes (see [9]). Here, however,
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we shall use an interpretation given by Hausmann and Vogel in [5], using
bundles over homology spheres which are actual manifolds. In fact, we shall
use a differentiable adaptation of Hausmann and Vogel’s theory (which
works in the PL category). This has the advantage that we can apply directly
a differential geometric theory of characteristic classes.

It should be noted, however, that Karoubi’s bundle interpretation is
slightly more general, since it works in the same manner in all degrees,
whereas that of Hausmann and Vogel only works in degrees higher than 4.

Hausmann and Vogel’s theory is recalled in Section 2, together with a
discussion of the differentiable case ([5] works in the PL category).

In Section 3 we discuss a theory of characteristic classes for flat bundles
(essentially due to Kamber and Tondeur), which we apply in Section 4 to
give invariants in the cases A = R, C or H. In Section 5 we compare with
Borel’s calculations, and prove that these can be formulated in terms of the
invariants from Section 4. Hence these invariants are highly nontrivial, since
they detect the ranks of K-groups of algebraic integers. In fact, they also
give a complete set of rational invariants in the case of group rings of finite
groups. This case is discussed briefly in Section 6. (For more details, see [6].)

2. Homology sphere bordism and K-theory. The starting point
is the “geometric” interpretation of the homotopy of the plus-construction
provided by Hausmann and Vogel in [5] (see also [4]):

Let X be a pointed space. We say that two pointed maps fi : Mn
i → X,

i = 1, 2, from closed, oriented n-manifolds M1 and M2 to X are homology
cobordant if there exists an oriented, pointed cobordism F : W → X between
f1 and f2 such that

H∗(W,M1;Z) ≈ H∗(W,M2;Z) ≈ 0.

(The cobordism is pointed if there is an arc in W joining the basepoints in
M1 and M2 and which is mapped to the basepoint in X by F .)

Let ΩHS
n (X) be the set of homology cobordism classes of maps f : Mn

→ X where M is an oriented homology sphere. Oriented connected sum
gives ΩHS

n (X) the structure of an abelian group.
This makes sense in the topological, PL or differentiable category, and

if we want to emphasize which category we are in, we write ΩHS
n (X)CAT ,

where CAT = TOP, PL, or DIFF.
For any space Y , we let Y + denote the result of the plus-construction

on Y with respect to the maximal locally perfect subgroup LPπ1(Y )
of π1(Y ) ([5]). If W is a cobordism between homology n-spheres M1

and M2, then (W+;M+
1 ,M

+
2 ) ' (Sn × I; ∂(Sn × I)), so (f : M → X) 7→

(f+ : M+ → X+) defines a map ΩHS
n (X)→ πn(X+) which is easily seen to

be a homomorphism.
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In the PL category Hausmann and Vogel prove ([5]):

Theorem 2.1. (a) ΩHS
n (X)PL → πn(X+) is an isomorphism if n ≥ 5.

(b) There are exact sequences

0→ ΩHS
4 (X)PL → π4(X+)→ ΩHS

3 (F)PL → ΩHS
3 (X)PL → π3(X+)→ 0,

0→ ΩHS
2 (X)PL → π2(X+)→ H2(LPπ1(X);Z)→ 0,

where F is the homotopy fiber of the plus-map X → X+.

Remark 2.2. In (b) there is no difference between the PL and differen-
tiable categories, so we get the same statement for ΩHS

n (X)DIFF.

In order to get the necessary modifications for the differentiable cat-
egory (for n ≥ 5), we investigate the relation between ΩHS

n (X)PL and
ΩHS
n (X)DIFF.

Theorem 2.3. For every n there is a functorial split exact sequence

0→ Γn
ι→ ΩHS

n (X)DIFF
%→ ΩHS

n (X)PL → 0

where Γn is the group of concordance classes of differentiable structures on
the n-sphere.

P r o o f. For n ≤ 5 there is no difference between the differentiable and
PL case, and Γn = 0. Hence we assume n ≥ 6. (The argument actually
works for n ≥ 5.)

By [10], every PL homology n-sphere M , n 6= 3, is the boundary of a
contractible manifold, which by smoothing theory has a (unique) differen-
tiable structure. Therefore M has a differentiable structure, so it follows
that ΩHS

n (X)DIFF → ΩHS
n (X)PL is surjective.

The map ι : Γn → ΩHS
n (X)DIFF takes a homotopy sphere Σ to the

constant map Σ → X. This is clearly a homomorphism, since addition in
Γn is also given by connected sum.

ι is injective: Let W be a homology cobordism between Σn and (stan-
dard) Sn. Then the plus-construction on W can be realized by surgeries
on one- and two-handles in the interior. Thus we obtain an h-cobordism
between Σn and Sn, which is trivial since n ≥ 5.

It is obvious that % ◦ ι = 0, so it remains to prove that ker % ⊆ ι(Γn).
Let f : M → X represent an element α ∈ ker %. Then f can be extended

to a map F : W → X, where ∂W = M and H∗(W ;Z) ≈ H∗(point;Z).
Deleting a small disk in W , we obtain a (PL) homology cobordism F ′ :
W ′ → X between f and the constant map Sn → X. By smoothing theory,
the differentiable structure on M can be extended (in fact uniquely) to
a differentiable structure on W ′. Restricting to the other end, we get a
differentiable structure γ on Sn. Then α = ι(γ).
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Functoriality of the sequence is obvious. But then the splitting is ob-
tained by mapping the sequence for X to the sequence for a point, since
ΩHS
n (∗)PL is trivial by the above mentioned result of Kervaire [10].

Corollary 2.4. For n ≥ 5 there is a split exact sequence

0→ Γn → ΩHS
n (X)DIFF → πn(X+)→ 0.

We now specialize to the case we are interested in, namely X = BGL(A)
for a ring A. As observed in [5], E(A) (the subgroup of GL(A) generated by
elementary matrices) is locally perfect, so πn(X+) ≈ Kn(A). From now on
we only consider the differentiable homology bordism groups, so we simplify
the notation by writing ΩHS

n (X) = ΩHS
n (X)DIFF.

From the results above, we then have exact sequences

(2.5) 0→ Γn → ΩHS
n (BGL(A))→ Kn(A)→ 0 (n ≥ 5), and

(2.6) 0→ ΩHS
4 (BGL(A))→ K4(A)→ ΩHS

3 (F)

→ ΩHS
3 (BGL(A))→ K3(A)→ 0

(F is the homotopy fiber of BGL(A)→ BGL(A)+).
But generators of ΩHS

n (BGL(A)) can also be thought of as classify-
ing maps for principal GL(A)-bundles (or GLk(A)-bundles for large k)—
actually covering spaces—over homology n-spheres. Hence we get the fol-
lowing interpretation of Kn(A), n ≥ 5:

Kn(A) ≈ {principal GLk(A)-bundles over smooth homology n-spheres}/∼
where the equivalence relation ∼ is generated by isomorphism, homology
cobordism, stabilization (in k), and change of differentiable structure.

Remarks 2.7. (1) The cases n = 3 and n = 4 are more mysterious. For
n = 3 we obviously get a similar interpretation, but with more relations. For
n = 4 we may not get all of K4(A). It is conceivable that the exact sequence
(2.6) splits into an isomorphism for n = 4 and a short exact sequence.
However, ΩHS

3 (F) is definitely not trivial, since it contains ΩHS
3 (point) =

θ3—the group of homology 3-spheres—as a direct summand, and this is
now known to be big. One might try to use ΩHS

3 (F)TOP instead, and an
optimistic conjecture would be that this is trivial.

For n = 1 and n = 2, however, it is easy to see what happens.
Since K1(A) = H1(BGL(A)), we can describe K1 by the same genera-

tors, but with arbitrary cobordisms as relations.
Similarly, since K2(A) = H2(E(A)), where E(A) is the subgroup of

GL(A) generated by elementary matrices, we can describe K2 as a cobor-
dism group of E(A)-bundles, but this time over arbitrary 2-manifolds. The
construction of the corresponding element in π2BGL(A)+ in this case goes
as before, but we have to kill all of π1M , even if it is not (locally) perfect.
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(2) For n ≥ 2 we can replace GL(A) by E(A) or SL(A) when A is
commutative. In the following we shall sometimes do this without further
comment.

Example 2.8. (i) In [7], Jones and Westbury construct examples of
flat bundles over 3-dimensional homology spheres, representing elements of
K3(C). For instance, they show that hyperbolic homology spheres natu-
rally give rise to elements of infinite order, and every element of finite order
can be represented by flat bundles over Seifert homology spheres of type
Σ(p, q, r). Such bundles are determined by a complex representation of the
fundamental group, and observing that some of these representations are,
in fact, defined over integers in certain number fields, one also can repre-
sent elements of K-theory of these rings. One particularly nice example is
the Poincaré sphere, whose fundamental group is a subgroup of SU2. This
subgroup may be defined over the cyclotomic integers Z[ζ5], and Jones and
Westbury show that the resulting element in K3(Z[ζ5]) generates the torsion
subgroup (which is isomorphic to Z/120).

(ii) Another interesting case is X = BS∞, the classifying space of the
infinite symmetric group. Then the Barratt–Priddy–Quillen theorem says
that πn(X+) ≈ πS

n, the stable homotopy groups of spheres, for n > 0.
Therefore these also have homology bordism interpretation.

The natural inclusion of Sk in GLk(Z) as the permutation matrices in-
duces a diagram

ΩHS
n (BS∞) πS

n

ΩHS
n (BGL(Z)) Kn(Z)

//

²² ²²
//

where the right hand vertical map is the standard homomorphism.
For n = 3 the horizontal homomorphisms are still surjective, and it would

be interesting to have nice descriptions of homology 3-spheres and bundles
representing the generators of πS

3 and K3(Z).

With the bundle interpretation of (elements of) K-theory groups, it is
natural to look for invariants in terms of characteristic classes. Our aim is
to use a simple differential geometric approach related to the Chern–Weil
theory, but measuring the incompatibility of the discrete and the metric
structure on a flat bundle. We shall do this first in the case of A equal to
the real, complex, or quaternionic numbers. For other rings one can use this
case to get invariants as follows:

Suppose we have a representation A → Mq(F ) (= q × q-matrices with
entries in F ), where F = R, C or H. Then we have an induced map K∗(A)→
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K∗(Mq(F )) ≈ K∗(F ) in K-theory. In the bundle interpretation, this takes a
principal GLk(A)-bundle over M to the associated GLkq(F )-bundle over M .

GLk(F )-bundles can be thought of as (principal bundles associated with)
flat F -vector bundles, so what we shall do in the next two sections is first
to study a general theory of characteristic classes for flat bundles, and then
apply it to bundles over homology spheres.

3. Characteristic classes for flat bundles. In this section we sketch
the constructions of characteristic classes for foliated bundles in [8], Ch. 3,
and apply it to our situation. For details, see [8].

Suppose that we have a differentiable, principal G-bundle π : P → M
over a manifold M , where G is a Lie group. Then P has a free right G-action
µ : P × G → P with quotient M . We write µ(p, g) = Lp(g) = Rg(p)—the
same notation as for left and right multiplication in G.

Let g be the Lie algebra of G. If p ∈ P , then the differential of Lp at the
unit e ∈ G is a monomorphism Lp∗ : g → TpP . Any x ∈ g then determines
a vector field x on P by x(p) = Lp∗(x).

In Cartan’s formalism, a connection in the principal bundle is then a
splitting ωp : TpP → g of Lp∗ for every p ∈ P such that

(1) ωp depends differentiably on p in the sense that they collect to a
differentiable map TP → g.

(2) Rg−1ω = Adgω (ω is G-invariant).

ω is a 1-form on P with values in the Lie algebra g, but we shall rather
think of the connection as the homomorphism

ω : g∗ → Ω1(P )

defined by φ 7→ φ ◦ ω.
g∗ and Ω1(P ) are both the degree one parts of natural differential graded

algebras (DGAs): the Koszul complex (Λ∗(g), dΛ) which computes the Lie
algebra cohomology of g, and the de Rham complex (Ω∗(P ), dΩ). Clearly,
ω extends to a map of graded algebras

ω : Λ∗(g)→ Ω∗(P ),

but this does not in general commute with differentials:
Consider the following diagram:

g∗ Ω1(P )

Λ2(g) Ω2(P )

ω //

dΛ

²²
dΩ

²²
ω

//

A calculation shows that:
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(1) If this diagram commutes, then ω : Λ∗(g) → Ω∗(P ) commutes with
differentials.

(2) The map dΩ ◦ ω − ω ◦ dΛ : g∗ → Ω2(P ) can be identified with the
curvature K ∈ Ω2(P ; g) of the connection.

It follows that ω extends to a map of DGAs precisely if the connection
is flat!

So, if the connection is flat, we obtain a homomorphism from the Lie
algebra cohomology H∗LIE(g) of g to the de Rham cohomology H∗DR(P ) of
P . However, this is not yet quite what we want.

By a flat bundle we shall mean a bundle with a flat connection. This
means that the structure group can be considered with the discrete topol-
ogy. Conversely, a bundle with discrete structure group has a unique flat
connection.

Let now H be a closed, connected subgroup of G, and consider the pro-
jection πH : P → P/H. This induces a monomorphism π∗H : Ω∗(P/H) →
Ω∗(P ) with image equal to the set of forms on P which are H-invariant and
which vanish on all vector fields of the form x for x in the Lie algebra h of H.
This subspace can be characterized completely in terms of the infinitesimal
action of H as

(3.1) im(π∗H) = {τ ∈ Ω∗(P ) | ixτ = 0, adxτ = 0, for all x ∈ h}.
The right hand side of (3.1) will be denoted by Ω∗(P )h. We have similar

actions of h on Λ∗(g), so we can define

Λ∗(g)h = {τ ∈ Λ∗(g) | ixτ = 0, adxτ = 0, for all x ∈ h}.
It turns out that Λ∗(g)h ⊂ Λ∗(g) is again a DGA, and ω induces a

restriction

ωh : Λ∗(g)h → Ω∗(P )h.

The homology of Λ∗(g)h is the relative Lie algebra cohomology and is
denoted by H∗LIE(g; h). Hence we have obtained a homomorphism

H∗LIE(g; h)→ H∗DR(P/H).

Assume now that the structure group of the original bundle P → M
can be reduced to H, but not necessarily as flat bundles. Then there is
a section M → P/H of the bundle P/H → M , and we get a composed
homomorphism

α = αP : H∗LIE(g; h)→ H∗DR(P/H)→ H∗DR(M).

Remarks 3.2. (1) Let P (H) be the principal H-bundle of the reduction.
Then P (H) is a sub-H-bundle of P . If the connection can also be reduced
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to H, we have a commutative diagram

(3.3)

Λ∗(g)h Λ∗(h)h 0

Ω∗(P/H) Ω∗(P )h Ω∗(P (H))h Ω∗(M)

//

ωh

²²

____________________

ωh

²² ²²≈ // // ≈ //

The bottom horizontal composition is precisely the splitting of Ω∗(M) →
Ω∗(P/H) given by reduction of the structure group, so α is trivial if the
bundle has a flat reduction. Hence α ∈ Hom(H∗LIE(g; h),H∗DR(M)) is an
obstruction to flat reduction of the structure group.

(2) The obvious application of α would then be to the investigation of flat
bundles with (nonflat) reductions on some fixed manifold M . Here, however,
we shall fix the pair (G,H) and vary M within its homology type.

For the applications in Section 4, we need the following

Proposition 3.4. Let W be a homology cobordism between two mani-
folds M1 and M2, and assume that Q→W is a flat , principal G-bundle
with an H-reduction σ : W → Q/H. Restriction to Mi then gives principal
G-bundles Pi → Mi with H-reductions σi = σ|Mi : Mi → Pi/H. Then the
following diagram commutes:

H∗LIE(g; h) H∗DR(M1)

H∗DR(M2) H∗DR(W )

αP1 //

αP2

²²
≈
²²≈ //

and the two compositions are equal to αQ.

P r o o f. This follows immediately from the commutative diagram

Λ∗(g)h Ω∗(Pi/H) Ω∗(Mi)

Λ∗(g)h Ω∗(P/H) Ω∗(W )

ωh //
�����

�����

σ∗i //

²² ²²ωh // σ∗ //

4. Application to K-theory. We now specialize to the case where M
is an oriented homology n-sphere and G = GL0

q(L), where L is a finite-
dimensional, semisimple algebra over R and GL0

q(L) is the identity com-
ponent of GLq(L). (L has a vector space structure such that the algebraic
structure on L is smooth and then GLq(L) also has the structure of a Lie
group.) Then we can always reduce the structure group to the maximal com-
pact subgroup K = Kq. In fact, P/K ' M , so H∗DR(P/K) → H∗DR(M) is
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uniquely determined (inverse of an isomorphism) and hence α is independent
of the choice of reduction.

M has interesting homology only in dimension n, and Hn
DR(M) ≈ R,

by an isomorphism which is uniquely determined by the orientation of M .
Therefore we can think of α as an element in (Hn

LIE(g; k))∗. In fact, using the
product structure, we see that α must vanish on all decomposables, i.e. on
products of at least two elements of positive degree. Hence we can consider
α an element of (Hn

LIE(glq(L), kq)/D)∗, where D is the submodule generated
by decomposables.

It follows from Proposition 3.4 that this construction induces a map

β : ΩHS
n (BGL0

q(L))→ (Hn
LIE(glq(L), kq)/D)∗,

and this clearly commutes with stabilization in q. Since Γn is finite, we then
use (2.5) to get

Theorem 4.1. β induces a homomorphism

B = BL : Kn(L)→ lim−→q (Hn
LIE(glq(L), kq)/D)∗.

P r o o f. It remains to prove that β is additive. Suppose that P → M is
the sum of P1 → M1 and P2 → M2, where M = M1#M2 = M0

1 ∪n−1 M
0
2 ,

M0
i = Mi − intDi, Di a small, open disc around the basepoint. Let further

P 0
i = Pi|M0

i .
Then we have a diagram of bundle maps

P1 P 0
1 P P 0

2 P2

M1 M0
1 M M0

2 M2

²²

⊃oo ⊂ //

²² ²²

⊂ //⊃oo

²² ²²⊃oo ⊂ // ⊃oo ⊂ //

We may assume that the reductions to the maximal compact subgroup are
compatible, such that the diagram

P1/H P 0
1 /H P/H P 0

2 /H P2/H

M1 M0
1 M M0

2 M2

⊃oo ⊂ // ⊃oo ⊂ //
OO

⊃oo ⊂ //

OO OO

⊃oo ⊂ //

OO OO

also commutes, where the vertical maps are sections of the induced bundle
maps. Moreover, without loss of generality we may assume that the reduc-
tions are flat over Di, resp. a small product neighborhood U of n − 1 =
M0

1 ∩M0
2 ⊂M .
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Let %1, %2 be maps M → Mi such that %i is the identity on M0
i and

constant outside Mi ∪ U . Consider now the diagram

Λ∗(g)k Ω∗(P1/H) Ω∗(M1)

Λ∗(g)k Ω∗(P/H) Ω∗(M)

Λ∗(g)k Ω∗(P2/H) Ω∗(M2)

//
�����

�����

//

%∗1
²²

//
�����

�����

//

// //

%∗2

OO

The three horizontal compositions induce α for the three bundles—let
us denote them by aP , aP1 and aP2 . The diagram does not commute, but
for every φ ∈ Λ∗(g)k we have

aP (φ)x = aPi(φ)x if x ∈M0
i ,

and since for every τ ∈ Ω∗(Mi), %∗i (τ) = 0 outside Mi ∪ U , we have

(4.3) aP (φ)x = %∗1aP1(φ)x + %∗2aP2(φ)x for x ∈M − U .
But since the reductions can be assumed to be flat in x and %i(x) for

x ∈ U , it follows by inspection of diagram (3.3) that both sides of (4.3) are
zero in U .

Since %i are degree one maps and hence canonically identify H∗DR(Mi)
and H∗DR(M), the assertion follows.

The most important examples are L = R, C or H. Then

(G,K) = (GL0
q(R), SOq), (GLq(C), Uq) or (GLq(H), Spq), resp.

Define Pn(F ), F = R, C or H, by

Pn(F ) =

{R if n ≡ 1 (mod 4),
R if n ≡ 1 (mod 2) and F = C,
0 otherwise.

Then we have the following calculations:

Proposition 4.2. Let kq(F ) be the maximal compact Lie subalgebra of
glq(F ). Then

(Hn
LIE(glq(F ), kq(F ))/D)∗ ≈ Pn(F ) for q � n.

Moreover , the isomorphisms can be chosen to be compatible with stabilization
in q.

P r o o f. We sketch the idea of the proof of this well known fact. Each of
the pairs of Lie algebras has a compact dual with the same cohomology. But
this is the same as the de Rham cohomology of the corresponding homoge-
neous spaces. In the three cases R, C and H we get H∗DR(U/SO), H∗DR(U)
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and H∗DR(U/Sp) resp., stably. The duals of these cohomology rings mod D
are the modules generated by primitive elements in real homology, which
are isomorphic to the homotopy groups tensored by R. But these are known
from Bott periodicity computations.

Corollary 4.3. β induces a homomorphism BF : Kn(F )→ Pn(F ) for
n ≥ 5.

If, more generally, L is a finite-dimensional, semisimple R-algebra, we
know from the structure theory that it is isomorphic to a product L ≈∏
iMdi(Fi) of matrix algebras over Fi = R, C or H. Therefore, by Morita

equivalence, Kn(L) ≈∏iKn(Fi), and hence we get homomorphisms

(4.4) BL : Kn(L)→
∏

i

Pn(Fi).

In Sections 5 and 6, we show that these homomorphisms are closely related
to the Borel regulator maps, and hence highly nontrivial.

5. Comparison with Borel’s computations. Let k be a number field
of degree d, and let Ak be its ring of integers. Then k has r1 real and r2

complex Archimedian valuations, where d = r1 + 2r2.
Each such valuation v determines an embedding iv of k into the comple-

tion kv, uniquely if kv = R and a conjugate pair of embeddings if kv = C.
Choosing one embedding for each conjugate pair, we get a product embed-
ding of k into the ring

k̂ =
∏
v

kv = Rr1 × Cr2 .

The important fact is now that Ak is a lattice in k̂. In fact, we can think of
k̂ as the decomposition of Ak ⊗Z R into simple algebras.

Now set L = k̂ in Theorem 4.1. Then BL in (4.4) reduces to the product
of all the homomorphisms Bkv from Corollary 4.3. Hence we have homo-
morphisms

(5.1) Kn(Ak)→ Kn(k)→ Kn(R)r1 ×Kn(C)r2

B→
{
Rr1+r2 if n ≡ 1 (mod 4),
Rr2 if n ≡ 3 (mod 4).

Call this composed homomorphism BA. Recall that in [2], Borel com-
puted the rank of Kn(Ak) to be exactly the exponents on the right hand
side for n odd > 1 (and 0 for n even). We shall show that Borel’s result can
be formulated as follows:

Theorem 5.2. After tensoring Kn(Ak) with R, BA becomes an isomor-
phism.



148 B. Jahren

In other words, except for torsion, we detect all of Kn(Ak) using the
homomorphisms βF of Corollary 4.3 for all embeddings Ak → R and C.

Remark. We really should not write the right hand side in (5.1) as pow-
ers of R, since this involves choosing a basis for each Pn(kv). One way to
do this is to use elements corresponding to integral generators of the homo-
topy of the homogeneous spaces giving rise to the computations sketched in
Proposition 4.2. The comparison of the image of BA to the resulting basis
of
∏
Pn(kv) involves very interesting number theory, and gives rise to the

so-called higher regulators ([11], [3]).

Proof of Theorem 5.2. Borel’s computations use the fact that all vector
spaces involved are finite-dimensional, and the isomorphisms

Kn(Ak)⊗Q ≈ PrimHn(SL(Ak);Q) ≈ (Hn(SL(Ak);Q)/D)∗ (n > 1),

to reduce the problem to that of computing H∗(SL(Ak);Q), or rather
H∗(SL(Ak);R). (As above, D is the module generated by products.)

To do this, he constructs an algebra homomorphism

j : IGq → H∗(SLq(Ak);R)

where Gq is the group of R-points of an algebraic group defined over Q and
whose Q-points are SLq(k). But then Gq ≈ SLq(k̂) ≈ ∏

v SLq(kv), and
SLq(Ak)→ Gq is the diagonal embedding, composed of all the embeddings
Ak ⊂ k → kv.

IG is the algebra of G-invariant forms on the symmetric space of max-
imal compact subgroups of G. Then the main theorem is that j becomes
an isomorphism in degrees below a number that grows to infinity with q.
(Borel’s result is much more general, but all we need here is this special
case.)

But it is a well known fact that IG ≈ H∗LIE(g; k) where K is a maximal
compact subgroup of G, and the computation reduces to the Lie algebra
homology computation already mentioned.

Consider the following diagram:

(5.3)

Kn(A) PrimHn(SL(A);R) (Hn(SL(A);R)/D)∗

Kn(k̂) lim−→q(H∗LIE(slq(k̂), k)/D)∗ lim−→q(IGq/D)∗

⊕
vKn(kv)

⊕
v Pn(kv)

⊕
v(ISLq(kv)/D)∗

//

BA
²²

≈ //

j∗

²²B
k̂ //

≈
²²

≈ //

≈
²²

≈
²²⊕vBkv // ≈ //

The lower half is obviously commutative, so we have to prove that the
upper half commutes.
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The composition

h : ΩHS
n (BSLq(A))→ Kn(A)→ Hn(SL(A);R)→ (Hn(SL(A);R))∗

takes {f : M → BSLq(A)} to the class given by c 7→ c(f∗([M ])), which
factors through (Hn(SLq(A);R))∗. It then suffices to prove that

(5.4)

ΩHS
n (BSLq(A)) (Hn(SLq(A);R))∗

(H∗LIE(slq(k̂), k))∗ (IGq )
∗

h //

BA
²²

j∗

²²≈
g

//

commutes for each q.
We need to make the two compositions very explicit. Let G = Gq =

SL0
q(k̂), K the maximal compact subgroup, and set X = G/K. X is a

contractible (diffeomorphic to a euclidean space) homogeneous G-space.
Then IG = Ω∗(X)G ≈ Λ∗(TeX) ≈ Λ∗(g)k, and the isomorphism IG ≈

H∗LIE(g; k) is just the fact that differentials are trivial on both sides.
Let P → M be a principal SLq(A)-bundle representing an element x

in ΩHS
n (BSLq(A)). Let σ : M → PG/K be the section associated with

a K-reduction of the associated G-bundle, and ω as defined in Section 4.
Then

gBA(x)(φ) =
\
M

σ∗ω(φ).

To compare this with the other composition, we need the following
de Rham cohomology interpretation of Hn(SLq(A);R):

Lemma 5.5. Hn(SLq(A);R) ≈ Hn(Ω∗(X)SLq(A)).

With this isomorphism, the map j : IG → H∗(SLq(A);R) is induced by
the inclusion IG = Ω∗(X)G ⊂ Ω∗(X)SLq(A).

The statement in the lemma is well known, but we shall need the explicit
isomorphism provided by the following

P r o o f. SLq(A) has a torsion free, normal subgroup Γ of finite index.
Then Γ\X is a manifold of the homotopy type of the classifying space BΓ .
Since Ω∗(Γ\X) ≈ Ω∗(X)Γ , we have H∗(BΓ ;R) ≈ H∗(Ω∗(X)Γ ) by the
de Rham theorem.

Let i∗ : H∗(BSLq(A);R) → H∗(BΓ ;R) be induced by the inclusion,
and define tr : H∗(BΓ ;R) → H∗(BSLq(A);R) to be the transfer divided
by the index [SLq(A) : Γ ] of Γ in SLq(A), such that tr ◦ i∗ = id. Then
i∗ ◦ tr is a projection on H∗(BΓ ;R), with image i∗(H∗(BSLq(A);R)) ≈
H∗(BSLq(A);R).

Both i∗ and tr have natural analogs as maps between Hn(Ω∗(X)SLq(A))
and Hn(Ω∗(X)Γ ): i∗ is again induced by inclusion, and tr by averaging,
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using the action of SLq(A)/Γ on Γ . It is then easy to check that the de Rham
isomorphism H∗(BΓ ;R) ≈ H∗(Ω∗(X)Γ ) commutes with the projections
i∗ ◦ tr. Hence it will induce an isomorphism between the two summands
H∗(BSLq(A);R) and H∗(Ω∗(X)SLq(A)).

Remark. It actually follows from Borel’s computations that i∗ (hence
also tr) is an isomorphism in low degrees.

Let φ ∈ Ωn(X)SLq(A). We can describe the cochain c(φ) on BSLq(A)
which φ determines by this isomorphism as follows:

Let f : 4n → BSLq(A) be a singular simplex, and let f̃ : 4̃n → BΓ be
the lifting of f to the pullback of BΓ → BSLq(A) over f . (4̃n consists of
[SLq(A) : Γ ] copies of 4n.) Then

c(φ)(f) =
1

[SLq(A) : Γ ]

\
4̃n

f̃∗φ.

Corollary 5.6. h : ΩHS
n (BSLq(A))→ (Hn(SLq(A);R))∗ is given by

h(f) =
1

[SLq(A) : Γ ]

\
M̃Γ

f̃∗φ,

where f : M → BSLq(A) and f̃ : M̃Γ → BΓ is a lifting of f to the pullback.
(M̃Γ →M is then an [SLq(A) : Γ ]-fold covering space.)

To finish the proof of Theorem 5.2, we now need to give a description
of the classifying map for a principal SLq(A)-bundle over a manifold M .
In fact, it follows from Corollary 5.6 that it suffices to do this for liftings
M̃Γ → BΓ = Γ\X.

So, let PA →M be an SLq(A)-bundle, and let P →M be the associated
flat G-bundle. Parallel transport with respect to the flat connection then
determines a trivialization of the pullback %∗P , where % : M̃ → M is the
universal covering space—hence also of %∗P/K.

The section σ : M → P/K then pulls back to a section σ̃ : M̃ → %∗P/K,
which we compose with the projection λ to the fiber G/K to give

γ = λ ◦ σ : M̃ → X.

Note that there is a natural homomorphism π1M → SLq(A) (coming e.g.
from parallel transport around loops in PA → M), and that γ commutes
with the actions of π1M and SLq(A) on M̃ and X. Hence we get induced
maps

γΓ : M̃Γ → Γ\X
for every Γ ⊂ SLq(A), where now M̃Γ = M̃/%−1

∗ (Γ ).
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But we also have

γ∗(φ) ∈ Ω∗(M̃)π1M ≈ Ω∗(M) if φ ∈ Ω∗(X)SLq(A),

so we can consider γ∗ as a homomorphism

γ∗ : Ω∗(X)SLq(A) → Ω∗(M).

It follows that if x ∈ ΩHS
n (BSLq(A)) is represented by PA →M , then h(x)

is given by

h(x)(φ) =
\
M

γ∗(φ).

(Hence we do not any longer refer to the finite index subgroup Γ .) It now
only remains to observe that

σ∗ ◦ ω = γ∗ ◦ j∗ = σ̃∗ ◦ λ∗ : Λ∗(g)k → Ω∗(M).

But this follows from the diagram

Ω∗(M̃) Ω∗(%∗P/K) Ω∗(X)

Ω∗(M) Ω∗(P/K) Λ∗(g)k

σ̃∗oo λ∗oo

∪
OO

σ∗oo

∪
OO

ωoo

∪
OO

and the fact that ω is just an infinitesimal version of λ.

Remark 5.7. Diagram (5.4) and the proof that it is commutative works
for all n. Hence, for n = 3, we find both that our invariant factors through
K3, and that we have the same interpretation of the Borel classes as in higher
degrees. For n = 2 or 4 we get zero in both cases, so the identification in
Theorem 5.2 is actually valid for all n > 1. In fact, using the interpretation
in Remark 2.7 for n = 1 and GLq instead of SLq (actually, it suffices to
take q = 1), we get a map which we can identify with the usual embedding
of (A∗k/torsion) as a codimension 1 lattice in Rr1+r2 .

6. The case of group rings. As another illustration, we take the ex-
ample of group rings. For geometric applications, this is the most important
example. We shall see that, properly interpreted, this case is very analogous
to the case of rings of integers.

Let π be a finite group. Then R[π] is a semisimple algebra, and

(6.1) R[π] ≈
∏

i

Mdi(Fi), where Fi = R, C or H.

The factors are matrix algebras corresponding to the irreducible, real rep-
resentations of π.
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Then the homomorphism

Bπ : Kn(Z[π])→ Kn(R[π]) ≈
∏

i

Kn(Fi)→
∏

i

Pi(Fi)

is in many ways similar to BA for rings of integers, and we have:

Theorem 6.2. After tensoring with R, Bπ becomes an isomorphism for
n > 1.

That is, we detect all of Kn(Z[π]) except torsion by taking all the irre-
ducible real representations of π and using the idea of Section 4!

The number of factors in the target of Bπ is equal to the number r
of irreducible real representations of π. By the definition of Pn(F ), this
means that the rank is r for n ≡ 1 (mod 4) (and > 1), the number of real
representations of complex type for n ≡ 3 (mod 4) and zero if n is even.

The proof of Theorem 6.2 proceeds very much like the proof of Theo-
rem 5.2, using the results of [6]. In fact, just as in Section 5, we see that Bπ
is equivalent to the dual of Borel’s homomorphism

jGLq(Z[π]) : IGLq(R[π])/D → H∗(GLq(Z[π]))/D.
This is not quite good enough since GLq is not semisimple, but in [6]
it is shown how one can define a semisimple replacement SLq(R[π]) ⊃
SLq(Z[π])—essentially by using the reduced norm for each factor of (6.1)
and taking the kernel. Then Borel’s result applies to give an isomorphism

jSL(Z[π]) : ISL(R[π])/D → H∗(SL(Z[π]))/D.
For general groups we do not have a simple structure theorem such as

(6.1), but F -representations % : π → GLq(F ) still induce homomorphisms
% : Z[π]→ R[π]→Mq(F ) and hence

B% : Kn(Z[π])→ Kn(Mq(F ))→ Kn(F ) B→ Pn(F ).

We can certainly detect elements this way, but in general rank(Kn(Z[π]))
may be nonzero also for even n. The simplest example is π = Z, where e.g.
K6(Z[π]) ≈ K6(Z)⊕K5(Z) has rank one.
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