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Rigid ℵε-saturated models of superstable theories

by

Ziv S h a m i (Notre Dame, IN) and Saharon S h e l a h (Jerusalem)

Abstract. In a countable superstable NDOP theory, the existence of a rigid ℵε-
saturated model implies the existence of 2λ rigid ℵε-saturated models of power λ for
every λ > 2ℵ0 .

1. Introduction. Ehrenfeucht conjectured that given a theory T , the
class of cardinals for which T has a rigid model is quite well behaved. She-
lah refuted Ehrenfeucht’s conjecture showing that this class can be quite
complicated.

In this paper we deal with problems related to this question in the con-
text of stability. More specifically, we will study the existence of stable rigid
models which satisfy an additional saturation property (note that if no sat-
uration property is required, then a very simple example of a stable rigid
model can be found, namely the model whose language is {Pn | n < ω}
and consists of the disjoint union of the Pn’s, each of which has exactly one
element.)

We will give a partial solution to the following questions:

1. What classes of superstable theories have a rigid ℵε-saturated model?
2. Assuming that there exists a rigid ℵε-saturated model, what can be

said about the number of ℵε-saturated models, or perhaps even about the
number of rigid ℵε-saturated models, in large enough cardinality?

In Section 3 we consider two properties of a superstable theory T :

(1) T is strongly deep.
(2) T does not admit a nontrivial nonorthogonal automorphism of some

saturated model.

We prove that (1) is a necessary condition for the existence of a rigid
ℵε-saturated model, and that (2) is a sufficient condition.
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In Section 4, we assume that T is a superstable NDOP theory. We prove
that (2) is actually equivalent to the existence of a rigid ℵε-saturated model.
We can then conclude that the existence of a single rigid ℵε-saturated model
implies that T has 2λ such models for every sufficiently large λ.

In this paper, the notations will be very similar to Shelah’s notations in
[Sh-C]: T will denote any complete stable theory with no finite models in
some language L, and κ, λ, µ will denote cardinals.

We work in some huge saturated modelM. Sets A,B,C, . . . will be sub-
sets ofM, with cardinality strictly less than the cardinality ofM; a, b, c, . . .
will denote finite tuples in M; M , N will always be elementary submodels
of M; p, q, r will denote types, usually complete over some set A; S(A) will
denote the set of complete types over A. Also, for a tuple b and a set A, b/A
denotes the type of b over A.

2. Building a dimensionally diverse ℵε-saturated model. In this
section, T denotes any stable theory. We give a brief outline of some standard
constructions following [Sh-C]. Here κ(T ) will denote the smallest infinite
cardinal κ such that there is no chain {pα ∈ S(Aα) | α < κ} such that
for all α < β < κ, pβ is a forking extension of pα. Recall that M is F aµ -
saturated if for every A ⊆ M such that |A| < µ, every strong type over A
is realized in M . M is F aµ -prime over A if M is F aµ -saturated and for every
F aµ -saturated model N such that A ⊆ N there is an elementary embedding
of M into N over A. We say that M is ℵε-saturated (resp. ℵε-prime over
A) if M is F aω -saturated (resp. F aω -prime over A).

Definition 1. We say that an ℵε-saturated model M (of a superstable
T ) is dimensionally diverse if for any two stationary regular types p, q over
finite subsets of M , p ⊥ q if and only if dim(p,M) 6= dim(q,M).

We also recall the following standard definition:

Definition 2. For superstable T , we say that T is multidimensional if
for every cardinal α, there are nonalgebraic pi, i < α, which are pairwise
orthogonal.

Our aim in this section is to prove the following standard theorem.

Theorem 1. Let T be superstable, and let µ, δ be cardinals such that
ℵδ = δ, µ < δ and 2|T | < δ. Then:

(1) There exists a µ-saturated model M of cardinality δ which is dimen-
sionally diverse (in particular if µ ≥ ℵ1, then M is ℵε-saturated).

(2) If T is multidimensional , then for every increasing sequence of car-
dinals µ = 〈µα | α < δ〉 with µα ∈ (µ, δ) there exists a µ-saturated and
ℵε-saturated model M of cardinality δ which is dimensionally diverse, and
such that for every α < δ there is a stationary and regular (= s.r.) type pα
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(over a finite subset of M ) such that for every s.r. type p, dim(p,M) = µα
if and only if p 6⊥ pα. Moreover , for every s.r. type p (over a finite subset
of M) dim(p,M) = µβ for some β < δ.

Fact 1. Let M =
⋃
i<αMi, where 〈Mi | i < α〉 is an increasing and con-

tinuous sequence of κ-saturated models, let A ⊆M0 be such that |A| < κ, and
let p ∈ S(A) be a stationary regular type. Then dim(p,M) = dim(p,M0) +∑
i<α dim(pi,Mi+1), where pi is the stationarization of p to Mi.

Fact 2. If cf(λ) ≥ κ(T ), M is F aλ -prime over A, and I ⊆ M is an
indiscernible sequence over A, then |I| ≤ λ.

Following are two claims which we will use in our proof of Theorem 1
(although weaker versions thereof would suffice).

Claim 1. Suppose cf(µ) ≥ κ = κ(T ) and M |= T is F aκ -saturated. Let
A ⊆ M be such that |A| ≤ µ, and suppose M+ is F aµ -prime over M ∪ A.
In addition, let B ⊆ M+ be such that |B| < κ, and suppose p ∈ S(B)
is stationary and λ = dim(p,M+) > µ. Then p 6⊥ M . Moreover , if p is
regular then there is a stationary regular type q ∈ S(B∗), where B∗ ⊆ M
and |B∗| < κ, such that dim(q,M) = λ and q 6⊥ p.

P r o o f. Left to the reader.

Claim 2. Suppose cf(µ) ≥ κ = κ(T ) and M |= T is F aκ -saturated. Let
pi ∈ S(M), i < α, be pairwise orthogonal and let E =

⋃
i<αEi where Ei is

a Morley sequence of pi. In addition, suppose N is F aµ -prime over M ∪ E,
and let B ⊆ N be such that |B| < κ. If q ∈ S(B) is stationary and regular
and dim(q,N) > µ, then q 6⊥M .

P r o o f. Assume, for contradiction, that q ⊥ M . Let M+ be F aµ -prime
over M ∪B with M+ ≺ N , and let q̃ ∈ S(M+) be the stationarization of q.
Then either dim(q,M+) > µ or dim(q̃, N) > µ, by Fact 1. Now, there exists
S ⊆ α with |S| < κ such that pi ⊥ tp(M+/M) for all i ∈ α \ S. Thus
dim(q,M+) > µ contradicts Claim 1, and dim(q̃, N) > µ contradicts the
above and Fact 2.

Fact 3. If cf(δ) ≥ κ(T ), and 〈Mi | i < δ〉 is an elementary chain of
λ-saturated models, then M∗ =

⋃
i<δMi is λ-saturated. In particular , if T

is superstable, then the union of any elementary chain of λ-saturated models
is λ-saturated.

Theorem 1 easily follows from the above:

Proof of Theorem 1 (sketch). Define by induction an increasing elemen-
tary chain 〈Mα | α < δ〉 of µ-saturated models. At the αth step, choose a
nonalgebraic stationary type pα (over a finite set) which is orthogonal to pβ
for all β < α, and define Mα to be µ-prime over

⋃
β<αMβ ∪Dom(pα) ∪ Iα,
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where Iα is a Morley sequence of pα with cardinality µα. Now let M∗ =⋃
α<δMα. From Fact 1, Claim 1 and Claim 2 it follows that M∗ realizes the

desired dimensions (µα), and by Fact 3, M∗ is µ-saturated.

3. The existence of a rigid ℵε-saturated model. In this section T is
assumed to be superstable. We say that a superstable theory is strongly deep
if the depth of every type is positive (if and only if the depth of every type
is infinity). We prove that whenever T has a rigid ℵε-saturated model, T is
strongly deep. We also introduce the notion of a nontrivial nonorthogonal
automorphism and prove that if some saturated model does not have such
an automorphism, then in arbitrarily large cardinality, T has a maximal
number of rigid ℵε-saturated models (i.e. 2λ such models in cardinality λ).

Definition 3. We say that T is strongly deep if for every ℵε-saturated
model M , and for every (without loss of generality regular) type p ∈ S(M),
if N is ℵε-prime over M ∪{a} where a |= p, then q ⊥M for some q ∈ S(N).

Lemma 1. Let N0 be ℵε-saturated , let p ∈ S(N0) be regular , and let
〈ei | i < α〉 be a Morley sequence of p. Suppose N+ is ℵε-prime over
N0 ∪

⋃
i<α ei. Then the following are equivalent :

(i) There is p1 ∈ S(N1) such that p1 ⊥ N0, where N1 is ℵε-prime over
N0 ∪ e0.

(ii) There is p+ ∈ S(N+) such that p+ ⊥ N0.

P r o o f. (i)⇒(ii). We may assume that N1 ≺ N+. If there is such a p1,
choose p+ to be the nonforking extension of p1 to N+.

(ii)⇒(i). Assume that such a p+ is given; then p+ is strongly based on
some finite subset A of N+. Therefore tp(A/N0 ∪

⋃
i<α ei) is F aℵ0

-isolated,
and we may assume α = n < ω. Now, if every p ∈ S(N1) is nonorthogonal
to N0, then by induction on n we have p+ 6⊥ N0 (recall that the depth of
parallel types is the same), which is a contradiction.

Theorem 2. If T has an ℵε-saturated model N such that |Aut(N)| < 2ℵ0 ,
then T is strongly deep.

P r o o f. Suppose not; then there is some depth 0 type p. Let N0 ≺ N
be ℵε-prime over ∅ (without loss of generality p ∈ S(N0)). Let I ⊆ N be a
maximal Morley sequence of p (without loss of generality I is infinite) and
let M be a maximal model such that N0 ≺ M ≺ N and M ∪

N0

I (so M is

ℵε-saturated). We claim that N is ℵε-minimal over M ∪ I. Otherwise, let
P ≺ N be ℵε-prime over M ∪ I, so for some b ∈ N , b/P is a nonalgebraic
regular type.

Claim 1. b/P ⊥ N0.
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Indeed, if not then (by [Sh-C]) there is c ∈ N such that c/P is regular,
c/P 6⊥ b/P and c ∪

N0

P . Thus {c,M, I} is independent over N0, contrary to

the definition of M .

Claim 2. For all d ∈ N if d/M ⊥ N0 then d ∈M .

Indeed, let d satisfy the above, so d ∪
M
I and M ∪

N0

I. Therefore M∪d ∪
N0

I,

so d ∈M by the maximality of M .

Claim 3. b/P ⊥M .

Otherwise b/P 6⊥M , so there is c ∈ N with c/P regular such that c ∪
M
P

and c/P 6⊥ b/P . Hence by Claim 1, c/P ⊥ N0, so c/M ⊥ N0. But then
applying Claim 2, we get c ∈M , which is a contradiction.

Now, continuing the proof of the theorem, we recall that tp(I/M) does
not fork over N0, so Claim 3 and Lemma 1 imply that for all e ∈ I,
Depth(e/M) > 0. But Depth(e/M) = Depth(e/N0) = 0, a contradiction.
So, we have shown that N is ℵε-minimal over M ∪I, and therefore ℵε-prime
over M ∪ I. By the uniqueness of ℵε-prime models and the fact that M ∪

N0

I,

we conclude that every permutation of I induces an automorphism of N ,
thus |Aut(N)| ≥ 2ℵ0 , which is a contradiction.

Conclusion 1. If T has an ℵε-saturated model N such that |Aut(N)| <
2ℵ0 , then T is multidimensional (because even Depth(T ) > 0 implies that T
is multidimensional).

Definition 4. We say that σ ∈ Aut(M) (where M is ℵε-saturated) is
a nontrivial nonorthogonal automorphism (= n.n.a.) if for any nonalgebraic
p ∈ S(M), p 6⊥ σ(p), and σ 6= id.

Remark 1. σ ∈ Aut(M) (with M as above) is a n.n.a. if and only if its
unique extension σeq to M eq is a n.n.a.

Theorem 3. If δ = ℵδ > β ≥ 2|T | and the saturated model of cardinality
β does not have a nontrivial nonorthogonal automorphism, then T has 2δ

rigid β-saturated models of cardinality δ.

P r o o f. It is enough to show that every dimensionally diverse β-saturated
model of cardinality δ is rigid. This is indeed enough, since using Theorem 1
we may then take a dimensionally diverse β-saturated modelN of cardinality
δ. So N is rigid and by Conclusion 1, T is multidimensional. Then, by
Theorem 1, for every subset D of (β, δ) which consists of cardinals, we may
choose a β-saturated model which realizes exactly the dimensions in D (in
the sense of Theorem 1(2)), from which the theorem follows.

So let M be a dimensionally diverse β-saturated model of cardinality
δ, and let σ ∈ Aut(M). Assume by way of contradiction that σ 6= id. We
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define by induction an increasing chain of elementary submodels of M : Let
M0 be a saturated model of cardinality β such that σ|M0 6= id. For all n < ω
let Mi+1 be F aβ -prime over

⋃
i∈Z σ

i(Mn). Now, according to Fact 3, Mn is a
saturated model of cardinality β for all n < ω. Hence if Mω =

⋃
i<ωMi, then

Mω is also a saturated model of cardinality β. Clearly, σ|Mω is a nontrivial
automorphism of Mω, so by the assumption of the theorem, there is a regular
type p ∈ S(Mω) such that p ⊥ σ(p). Hence for some finite A ⊂ Mω, p is
strongly based on A, so dim(p|A,M) = dim(σ(p|A),M), which contradicts
the fact that M is dimensionally diverse.

4. A characterization for superstable NDOP countable theories.
In this section T is assumed to be a superstable NDOP countable theory.
We will use [Sh-401] to get the following characterization: such a theory has
a rigid ℵε-saturated model if and only if no ℵε-saturated model has a non-
trivial nonorthogonal automorphism. Then we will use this characterization
to show that the existence of a single rigid ℵε-saturated model implies the
existence of a maximal number of such models in every sufficiently large
cardinality.

We work in Meq.

Definition 5. We say that A is almost finite if A is contained in the
algebraic closure of some finite set.

4.1. The L∞,ℵε(d.q)-characterization theorem of [Sh-401]. Let M0,M1

be ℵε-saturated. We say that they are L∞,ℵε(d.q)-equivalent if there is a
family F which satisfies the following:

(1) Each f ∈ F is an elementary partial map from M0 to M1 such that
Dom(f) is almost finite.

(2) F is closed under restriction.
(3) For every f ∈ F , and every al ∈Ml (al are finite sequences, l = 0, 1)

there exists g ∈ F such that f ⊆ g, acl(a0) ⊆ Dom(g), and acl(a1) ⊆
Rang(g).

(4) Whenever tp(e/A) (where A is almost finite) is stationary and
regular, then for some almost finite A∗ ⊇ A, if f ∪ {〈e0, e1〉} ∈ F and
tp(e0/Dom(f)) is conjugate to the stationarization of tp(e/A) to A∗, then

dim(p,Dom(f), I0) = dim(f(p),Rang(f), I1),

where p denotes e0/Dom(f), I0 = {e ∈ M0 | f ∪ {〈e, e1〉} ∈ F}, and
I1 = {e ∈M1 | f ∪ {〈e0, e〉} ∈ F}.

Condition (4) is the main assumption; roughly speaking, it implies that
whenever F sends a stationary and regular type p to a type q, then the full
structure of dimensions above p will be the same as the full structure of
dimensions above q.



Models of superstable theories 43

We can now state the Characterization Theorem for ℵε-saturated models
M0, M1:

M0,M1 are isomorphic if and only if they are L∞,ℵε(d.q)-equivalent.

Theorem 4. If T has a nontrivial nonorthogonal automorphism of some
ℵε-saturated model , then no ℵε-saturated model of T is rigid.

P r o o f. By Remark 1, without loss of generality T = T eq. Suppose N0 is
an ℵε-saturated model which has a n.n.a. σ0, and let a0 6= a1 be in N0 such
that σ0(a0) = a1. Let N be some ℵε-saturated model (of T ); we will show
that N is not rigid. Choose b0, b1 ∈ N such that tp(b0, b1) = tp(a0, a1).

Let F be the family of all partial elementary maps f from (N, b0) to
(N, b1) with an almost finite domain, such that for some partial elementary
map τ , with almost finite domain, (σ0 | A0)τ = τσ, where A0 = Rang(τ).
By [Sh-401] it is sufficient to show that F satisfies (1)–(4) above.

(1) and (2) are immediate. (3) is also immediate by the fact that N is
ℵε-saturated. To show (4), we will prove the following claim: if tp(e/A) is
stationary and regular, where A is almost finite, then it can be replaced by
a nonforking extension of it, denoted again by tp(e/A) (where A is almost
finite and A ∪ {e} ⊆ N), such that if σi(A) = A′ and σi(e) = ei for σi ∈ F
(i = 0, 1) then e0 ]

A′
e1. (4) will follow from this, as the claim implies that

for all f ∈ F with Dom(f) = A, if e∗0 = e, e∗1 = f(e), M0 = M1 = N and
I0, I1 are defined as in (4) of Subsection 4.1 (with e∗i instead of ei,) then
dim(tp(e∗0/A), A, I0) = dim(tp(e∗1/f(A)), f(A), I1) = 1.

Proceeding to prove this claim, we note that by Theorem 2, T is without
loss of generality strongly deep. Let M0 be an ℵε-prime model over ∅ such
that tp(e/M0) is a nonforking extension of tp(e/A), let M+

0 be ℵε-prime
over M0 ∪ {e} and let e+ be such that tp(e+/M+

0 ) ⊥M0, with tp(e+/M+
0 )

nonalgebraic and regular. Now let B ⊆M+
0 be finite such that tp(e+/M+

0 ) is
strongly based on B, so there is some finite C ⊆M0 with tp(B/acl(C∪{e}))
` tp(B/M0∪{e}). We may assume without loss of generality that M+

0 ⊆ N
(because the ℵε-prime model over the union of M0 and a countable set is
also ℵε-prime over ∅; see [Sh-C]).

Now, from the way condition (4) was stated we may also assume that
A ⊇ C. Assume, towards a contradiction, that e0 ∪

A′
e1, and let σ+

i be in F
with σi ⊆ σ+

i and Dom(σ+
i ) ⊇ B ∪ acl(A ∪ {e}), for i = 0, 1. Choose M ′0

to be an ℵε-prime model over ∅ such that A′ ⊆M ′0 and {e0, e1} ∪
A′
M ′0, and

set Bi = σi(B). Since tp(e0, e1/M
′
0) determines the type tp(acl({e0} ∪ A′),

acl({e1}∪A′)/M ′0), and tp(B/ acl({e}∪A)) ` tp(B/{e}∪M0), we conclude
that we may choose M∗0 and M∗1 which are ℵε-prime over M ′0 ∪ {e0} and
M ′1 ∪ {e1} respectively, and such that Bi ⊆ M∗i for i = 0, 1. So if we set
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q = tp(e+/B) and qi = σ+
i (q) for i = 0, 1, then by the definition of F , q 6⊥ qi

for i = 0, 1. Let qi ∈ S(M∗i ) be a nonforking extension of qi. Since qi ⊥M ′0
(as M∗i is ℵε-prime over M ′i ∪ {ei} ∪Bi and unique up to isomorphism over
M ′i ∪ {ei} ∪Bi,) and since M∗0 ∪

M ′0
M∗1 , we conclude that q0 ⊥ q1. Thus q, q0

and q1 contradict the fact that nonorthogonality is an equivalence relation
on stationary regular types.

Theorem 5. If T has a rigid ℵε-saturated model then for every cardinal
λ ≥ (2ℵ0)

+
, T has 2λ rigid ℵε-saturated models of power λ.

Before proving the theorem, we will need a combinatorial lemma. To
that end, we first introduce the following notations.

Notations. 1) T denotes a subtree of <ωλ. Let η, ν ∈ T . Then:

(i) ν− = η if and only if ν is a successor of η.
(ii) lg(η) denotes the length of η.

(iii) Tν = {η ∈ T | ν / η}, T +
ν = {η ∈ T | ν / η or ν = η}.

2) R = 〈(Nη, aη) | η ∈ T 〉 denotes an ℵε-representation (see Chapter X,
Def. 5.2 in [Sh-C]).

3) For an ℵε-representation R = 〈(Nη, aη) | η ∈ T 〉, ER denotes the
equivalence relation on T defined by: ER(η, η′) if and only if there exists
ν ∈ T such that η = ν∧〈α〉, η′ = ν∧〈α′〉 for some α, α′, and tp(aη/Nν) =
tp(aη′/Nν).

Definition 6. (1) We say that a subtree T of <ωλ is µ-wide if for all
η ∈ T , |{ν ∈ T | ν− = η}| ≥ µ.

(2) Suppose T0, T1 ⊆ <ωλ are subtrees. We say that T0, T1 are µ-equiva-
lent if there exists Ai = 〈A%i | % ∈ Ti〉 (i = 0, 1) such that

(a) for i = 0, 1 and all % ∈ Ti, |A%i | < µ,
(b) for i = 0, 1, A%i ⊆ T%, and
(c) T0 \

⋃
τ∈U0

(T0)τ and T1 \
⋃
τ∈U1

(T1)τ are isomorphic as partial
orders, where Ui =

⋃
%∈Ti A

%
i .

(3) A tree T ⊆ <ωλ is called µ-strongly rigid if for every η and α0 <
α1 < λ (such that η∧〈αi〉 ∈ T ), T +

η∧〈α0〉, T
+
η∧〈α1〉 are not µ-equivalent, and T

is µ-wide.
(4) We say that an ℵε-representation R = 〈(Nη, aη) | η ∈ T 〉 is

(i) of maximal width if for every ν∈T , {tp(aη/Nη−) | η∈T , η−=ν}
is a maximal set of pairwise orthogonal regular types (modulo
equality) such that tp(aη/Nη−) ⊥ Nν− ;

(ii) equally divided if |η∧〈α〉/ER| = |η∧〈β〉/ER| for all η, α, and β
such that η∧〈α〉, η∧〈β〉 ∈ T ;

(iii) µ-wide if |η/ER| ≥ µ for all η ∈ T .
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Before stating the following lemma, we would like to point out that much
stronger versions of it have been proved by Shelah.

Lemma 2. For every λ > µ there exist 2λ trees T ⊆ λ<ω which are
µ-strongly rigid and µ-nonequivalent , of power λ.

P r o o f. First, it is enough to show the existence of a single such tree in
which the root has λ many successors. So, let us construct such a tree:

(a) Let 〈An | n < ω〉 be a partition of the set of positive natural numbers,
such that for all n < ω, An is infinite and min(An) > n. Also, suppose
An = {knl | l < ω}, where kni < knj for i < j.

(b) Let h : λ→ λ be surjective such that for all α < λ, |h−1(α)| = λ.
(c) Let T0 = <ωλ = {ηi | i < λ} (ηi 6= ηj for i 6= j).
(d) For every ordinal i, let ti = {ν | ν is a strictly decreasing sequence

of ordinals < ω + i}.
(e) Now, let us define our tree: T ∗ = {% ∈ <ωλ | for all k < lg(%), if

(∗)(k, %) then %(k) < µ}, where (∗)(k, %) is the following statement: If n < ω
is the unique natural number such that k ∈ An, and l(∗), i(∗) are such that
k = knl(∗) and % | n = ηi(∗), then 〈h(%(knl )) | l < l(∗)〉 6∈ ti(∗).

(f) The following ranks are useful. Let (n, S, η) be a triple with n < ω,
S ⊆ <ωλ a subtree, and η ∈ S. We define an ordinal rank rkn[η, S] by:

(i) rkn[η, S] ≥ 0 for every η ∈ S.
(ii) rkn[η, S] ≥ α + 1 if there exist {η∗i | i < µ+}, where η∗i are dis-

tinct elements of S, each extending η and satisfying lg(η∗i ) ∈ An
and rkn[η∗i , S] ≥ α.

(g) It can be easily verified that:

(i) If S ⊆ T ⊆ <ωλ are µ-equivalent subtrees, η ∈ S, and n < ω, then
rkn[η, S] = rkn[η, T ].

(ii) If i<λ, n<ω and lg(ηi)=n where ηi∈T ∗ then rkn[ηi, T ∗] = ω+i.

Now, by (g) we conclude that T ∗ is µ-strongly rigid.

Fact 5 (Chapter X, [Sh-C]). Suppose that T is a superstable NDOP
theory. Let Ri = 〈(N i

η, a
i
η) | η ∈ Ti〉 be ℵε-representations which are ℵ1-wide,

let Mi be ℵε-prime over
⋃
η∈Ti N

i
η and let σ : M0 →M1 be an isomorphism.

Then there are T ∗i ⊆ Ti such that T ∗i , Ti are ℵ1-equivalent for i = 0, 1
and an isomorphism σ̃ : T ∗0 → T ∗1 (of partial orders) such that for all
ηi ∈ T ∗i (i = 0, 1) if piηi = tp(aiηi/N

i
η−i

), then

σ(p0
η0

) 6⊥ p1
η1

implies σ̃((η0/ER0) ∩ T ∗0 ) = (η1/ER1) ∩ T ∗1 .
Proof of Theorem 5. By Lemma 2, for every λ > 2ℵ0 there exist 2λ trees

T ⊆ <ωλ which are 2ℵ0-strongly rigid and 2ℵ0-nonequivalent, of power λ.
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We will show that for every such T , if R = 〈(Mη, eη) | η ∈ T 〉 is an
equally divided ℵε-representation of maximal width, and M is ℵε-prime over
it, then M is rigid. This is sufficient because by Fact 5, any two ℵε-prime
models over 2ℵ0 -nonequivalent trees are nonisomorphic.

So, assume σ ∈ Aut(M). We must show σ = id: otherwise by Theorem 4,
there exists a nonalgebraic regular type p∗ ∈ S(M) such that p∗ ⊥ σp∗. Since
T has NDOP and M is ℵε-minimal over

⋃
η∈T Mη, we have p∗ 6⊥ Mη0 for

some η0 ∈ T . As M is ℵε-prime over an ℵε-representation of maximal width,
p∗ 6⊥ pη0

∧〈α∗〉 for some α∗. Therefore σpη0
∧〈α∗〉 6⊥ σp∗ ⊥ p∗ 6⊥ pη0

∧〈α∗〉. In
particular,
(∗) σpη0

∧〈α∗〉 ⊥ pη0
∧〈α∗〉.

But by Fact 5, there exist T ∗0 , T ∗1 ⊆ T (without loss of generality η0
∧〈α∗〉

∈ T ∗0 ), and an isomorphism of partial orders σ̃ : T ∗0 → T ∗1 such that T ∗i
(i = 0, 1) are ℵ1-equivalent to T , and η∗ such that σpη0

∧〈α∗〉 6⊥ pη∗ . So by
(∗), pη∗ 6= pη0

∧〈α∗〉 and by Fact 5, σ̃(η∧〈α∗〉/ER) = η∗/ER 6= (η0
∧〈α∗〉)/ER,

contradicting the fact that T is even 2ℵ0 -strongly rigid (here we used the
fact that T is equally divided).

Example 1. Let L = {E, f} and let M be the following L-structure:
|M | = Z×ω, E is the equivalence relation defined by E[(m0, k0), (m1, k1)] if
and only if m0 = m1, and f : |M | → |M | is any function with the properties:

(i) For all (m, k) ∈ |M |, f(m, k) = (m+ 1, k′) for some k′.
(ii) For all (m, k) ∈ |M |, f−1(m, k) is infinite.

It is not hard to see that T = Th(M) is an ω-stable NDOP theory in which
no saturated model has a n.n.a., and therefore T has 2λ rigid ℵε-saturated
models of cardinality λ for every λ > 2ℵ0 .
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