Embedding lattices in the Kleene degrees

by

Hisato Muraki (Nagoya)

Abstract

Under ZFC+CH, we prove that some lattices whose cardinalities do not exceed \aleph_{1} can be embedded in some local structures of Kleene degrees.

0. We denote by ${ }^{2} E$ the existential integer quantifier and by χ_{A} the characteristic function of A, i.e. $x \in A \Leftrightarrow \chi_{A}(x)=1$, and $x \notin A \Leftrightarrow \chi_{A}(x)=$ 0 . Kleene reducibility is defined as follows: for $A, B \subseteq{ }^{\omega} \omega, A \leq \mathcal{K} B$ iff there is $a \in{ }^{\omega} \omega$ such that χ_{A} is recursive in a, χ_{B}, and ${ }^{2} E$.

We introduce the following notations. \mathcal{K} denotes the upper semilattice of all Kleene degrees with the order induced by $\leq_{\mathcal{K}}$. For $X, Y \subseteq{ }^{\omega} \omega$, we set $X \oplus Y=\{\langle 0\rangle * x \mid x \in X\} \cup\{\langle 1\rangle * x \mid x \in Y\}$. Then $\operatorname{deg}(X \oplus Y)$ is the supremum of $\operatorname{deg}(X)$ and $\operatorname{deg}(Y)$. The superjump of X is the set $X^{\mathrm{SJ}}=\left\{\langle e\rangle * x \in{ }^{\omega} \omega \mid\{e\}\left((x)_{0},(x)_{1}, \chi_{X},{ }^{2} E\right) \downarrow\right\}$. Here, $\langle e\rangle * x$ is the real such that $(\langle e\rangle * x)(0)=e$ and $(\langle e\rangle * x)(n+1)=x(n)$ for $n \in \omega$. More generally, for $m \in \omega,\left\langle e_{0}, \ldots, e_{m}\right\rangle * x$ is the real such that $\left(\left\langle e_{0}, \ldots, e_{m}\right\rangle * x\right)(n)=e_{n}$ for $n \leq m$ and $\left(\left\langle e_{0}, \ldots, e_{m}\right\rangle * x\right)(n+m+1)=x(n)$ for $n \in \omega$. Further, $(x)_{0}=\lambda n \cdot x(2 n)$ and $(x)_{1}=\lambda n \cdot x(2 n+1)$. We identify $\left\langle(x)_{0},(x)_{1}\right\rangle$ with x. An X-admissible set is closed under $\lambda x \cdot \omega_{1}^{X ; x}$ iff it is $X^{S J}$-admissible.

The following conditions (1) and (2) are equivalent to $A \leq_{\mathcal{K}} B$ ([8]).
(1) There is $y \in^{\omega} \omega$ such that A is uniformly Δ_{1}-definable over all $(B ; y)$ admissible sets; i.e. there are $\Sigma_{1}(\dot{B})$ formulas φ_{0} and φ_{1} such that for any ($B ; y$)-admissible set M and for all $x \in{ }^{\omega} \omega \cap M$,

$$
x \in A \Leftrightarrow M \models \varphi_{0}(x, y) \Leftrightarrow M \models \neg \varphi_{1}(x, y) .
$$

(2) There are $y \in{ }^{\omega} \omega$ and $\Sigma_{1}(\dot{B})$ formulas φ_{0} and φ_{1} such that for all $x \in{ }^{\omega} \omega$,

$$
x \in A \Leftrightarrow L_{\omega_{1}^{B ; x, y}}[B ; x, y] \models \varphi_{0}(x, y) \Leftrightarrow L_{\omega_{1}^{B ; x, y}}[B ; x, y] \models \neg \varphi_{1}(x, y) .
$$

[^0]Here, we are thinking of the language of set theory with an additional unary predicate symbol \dot{B}. A set M is said to be $(B ; y)$-admissible iff the structure $\langle M, \in, B \cap M\rangle$ is admissible and $y \in M$. Next, $L_{\alpha}[B ; y]$ denotes the α th stage of the hierarchy constructible from $\{y\}$ relative to a unary predicate B, and $\omega_{1}^{B ; y}$ denotes the least $(B ; y)$-admissible ordinal.

For $K, K^{\prime} \subseteq{ }^{\omega} \omega$, we set $\mathcal{K}\left[K, K^{\prime}\right]=\left\{\operatorname{deg}(X) \mid K \leq_{\mathcal{K}} X \leq_{\mathcal{K}} K^{\prime}\right\}$. In $\S 3$, we will prove that under ZFC+ CH , for some $K \subseteq{ }^{\omega} \omega$, lattices whose fields $\subseteq{ }^{\omega} \omega$ and which are Kleene recursive in K^{SJ} can be embedded in $\mathcal{K}\left[K, K^{\mathrm{SJ}}\right]$. Without CH, it is unknown whether our Theorem can be proved or not.

1. Similarly to [3] and [6], we use lattice tables (lattice representations in [6]), on which lattices are represented by dual lattices of equivalence relations. For every lattice \mathcal{L} with cardinality $\leq 2^{\aleph_{0}}$, we denote the field of \mathcal{L} also by \mathcal{L} and regard $\mathcal{L} \subseteq{ }^{\omega} \omega$. We denote by $\mathbf{0}$ the identically 0 function from ω to ω.

Definition. Let \mathcal{L} be a lattice with relations $\leq_{\mathcal{L}}, \vee_{\mathcal{L}}$, and $\wedge^{\mathcal{L}}$. For $a, b \in$ $\mathcal{L}\left({ }^{\omega} \omega\right)$ and $l \in \mathcal{L}$, we define $a \equiv_{l} b$ by $\left.a(l)=b(l) . \Theta \subseteq \mathcal{L}^{(}{ }^{\omega} \omega\right)$ is called an upper semilattice table of \mathcal{L} iff Θ satisfies:
(R.0) If there is the least element $0_{\mathcal{L}}$ of \mathcal{L}, then for all $a \in \Theta, a\left(0_{\mathcal{L}}\right)=\mathbf{0}$.
(R.1) (Ordering) For all $a, b \in \Theta$ and $i, j \in \mathcal{L}$, if $i \leq_{\mathcal{L}} j$ and $a \equiv_{j} b$, then $a \equiv{ }_{i} b$.
(R.2) (Non-ordering) For all $i, j \in \mathcal{L}$, if $i \not \mathbb{L}_{\mathcal{L}} j$, then there are $a, b \in \Theta$ such that $a \equiv_{j} b$ and $a \not \equiv_{i} b$.
(R.3) (Join) For all $a, b \in \Theta$ and $i, j, k \in \mathcal{L}$, if $i \vee_{\mathcal{L}} j=k, a \equiv_{i} b$, and $a \equiv{ }_{j} b$, then $a \equiv_{k} b$.
In addition, if Θ satisfies (R.4) below, then Θ is called a lattice table of \mathcal{L} :
(R.4) (Meet) For all $a, b \in \Theta$ and $i, j, k \in \mathcal{L}$, if $i \wedge^{\mathcal{L}} j=k$ and $a \equiv_{k} b$, then there are $c_{0}, c_{1}, c_{2} \in \Theta$ such that $a \equiv_{i} c_{0} \equiv_{j} c_{1} \equiv_{i} c_{2} \equiv_{j} b$.

For every lattice \mathcal{L} with relations $\leq_{\mathcal{L}}, \vee_{\mathcal{L}}, \wedge^{\mathcal{L}}$, and $\mathcal{L} \subseteq{ }^{\omega} \omega$, we say that $\left(\mathcal{L}, \leq_{\mathcal{L}}, \vee_{\mathcal{L}}, \wedge^{\mathcal{L}}\right)$ is Kleene recursive in $X \subseteq{ }^{\omega} \omega$ iff $\mathcal{L} \oplus\left\{\langle i, j\rangle \mid i \leq_{\mathcal{L}} j\right\}$ $\oplus\left\{\langle i, j, k\rangle \mid i \vee_{\mathcal{L}} j=k\right\} \oplus\left\{\langle i, j, k\rangle \mid i \wedge^{\mathcal{L}} j=k\right\} \leq_{\mathcal{K}} X$.

In this paper, we need suitable restrictions in (R.2) and (R.4).
Proposition 1.1. Let \mathcal{L} be a lattice with relations $\leq_{\mathcal{L}}, \vee_{\mathcal{L}}, \wedge^{\mathcal{L}}$, and $\mathcal{L} \subseteq$ ${ }^{\omega} \omega$. Let $X \subseteq{ }^{\omega} \omega$. If $\left(\mathcal{L}, \leq_{\mathcal{L}}, \vee_{\mathcal{L}}, \wedge^{\mathcal{L}}\right)$ is Kleene recursive in X, then there are a lattice table Θ of \mathcal{L} and $F \subseteq{ }^{\omega} \omega \times \mathcal{L} \times{ }^{\omega} \omega$ such that $\Theta=\left\{F^{[x]} \mid x \in{ }^{\omega} \omega\right\}$, $F \leq_{\mathcal{K}} X$, and F satisfies:
(R. $\left.2^{*}\right) \quad$ For all $i, j \in \mathcal{L}$, if $i \not \mathbb{Z}_{\mathcal{L}} j$, then there are $a, b \in{ }^{\omega} \omega \cap L_{\omega_{1}^{i, j}}[i, j]$ such that $F^{[a]} \equiv{ }_{j} F^{[b]}$ and $F^{[a]} \not \equiv_{i} F^{[b]}$.
(R.4*) For all $a, b \in{ }^{\omega} \omega$ and $i, j, k \in \mathcal{L}$, if $i \wedge^{\mathcal{L}} j=k$ and $F^{[a]} \equiv_{k}$ $F^{[b]}$, then there are $c_{0}, c_{1}, c_{2} \in{ }^{\omega} \omega \cap L_{\omega_{1}^{a, b, i, j, k}}[a, b, i, j, k]$ such that $F^{[a]} \equiv{ }_{i} F^{\left[c_{0}\right]} \equiv{ }_{j} F^{\left[c_{1}\right]} \equiv{ }_{i} F^{\left[c_{2}\right]} \equiv{ }_{j} F^{[b]}$.

$$
\begin{equation*}
\text { For all } a \in{ }^{\omega} \omega, \operatorname{Rng}\left(F^{[a]}\right) \subseteq L_{\omega_{1}^{a}}[a] \tag{R.5}
\end{equation*}
$$

Here, for $x \in{ }^{\omega} \omega$, we set $F^{[x]}=\{\langle l, y\rangle \mid\langle x, l, y\rangle \in F\}$ and regard $F^{[x]}$: $\mathcal{L} \rightarrow{ }^{\omega} \omega$.

Proof. We fix X and \mathcal{L} as in the proposition. We assume that there is the least element $0_{\mathcal{L}}$ of \mathcal{L}. We will construct Θ and F with the required properties.

For $x \in{ }^{\omega} \omega$ and $m \in \omega$, we define the function $f^{\langle 0, m\rangle * x}: \mathcal{L} \rightarrow{ }^{\omega} \omega$ as follows: If $x \notin \mathcal{L}$ or $m \neq 2$, then

$$
f^{\langle 0, m\rangle * x}(l)= \begin{cases}\mathbf{0} & \text { if } l=0_{\mathcal{L}} \\ \langle 0, m\rangle * x & \text { otherwise }\end{cases}
$$

If $x \in \mathcal{L}$ and $m=2$, then

$$
f^{\langle 0,2\rangle * x}(l)= \begin{cases}\mathbf{0} & \text { if } l=0_{\mathcal{L}} \\ \langle 0,1\rangle * x & \text { if } 0_{\mathcal{L}} \neq l \leq_{\mathcal{L}} x \\ \langle 0,2\rangle * x & \text { otherwise }\end{cases}
$$

For $x \in{ }^{\omega} \omega$ and $n, m \in \omega$, we define the function $f^{\langle n+1, m\rangle * x}: \mathcal{L} \rightarrow{ }^{\omega} \omega$ inductively as follows: If $x=\langle a, b, i, j, k\rangle, a \neq b, \max \{a(0), b(0)\}=n$, $i, j, k \in \mathcal{L}, i \wedge^{\mathcal{L}} j=k, i \not \mathcal{L}_{\mathcal{L}} j, j \not Z_{\mathcal{L}} i, f^{a}(k)=f^{b}(k)$, and $m \leq 2$, then

$$
\begin{aligned}
& f^{\langle n+1,0\rangle * x}(l)= \begin{cases}f^{a}(l) & \text { if } l \leq_{\mathcal{L}} i \\
\langle n+1,0\rangle * x & \text { otherwise }\end{cases} \\
& f^{\langle n+1,1\rangle * x}(l)= \begin{cases}f^{\langle n+1,0\rangle * x}(l) & \text { if } l \leq_{\mathcal{L}} j \\
\langle n+1,1\rangle * x & \text { if } l \leq_{\mathcal{L}} i \text { and } l \not \leq_{\mathcal{L}} j \\
\langle n+1,2\rangle * x & \text { otherwise }\end{cases} \\
& f^{\langle n+1,2\rangle * x}(l)= \begin{cases}f^{b}(l) & \text { if } l \leq_{\mathcal{L}} j \\
\langle n+1,1\rangle * x & \text { if } l \leq_{\mathcal{L}} i \text { and } l \not \mathcal{L}_{\mathcal{L}} j \\
\langle n+1,3\rangle * x & \text { otherwise }\end{cases}
\end{aligned}
$$

In the other case,

$$
f^{\langle n+1, m\rangle * x}(l)= \begin{cases}\mathbf{0} & \text { if } l=0_{\mathcal{L}} \\ \langle n+1, m+1\rangle * x & \text { otherwise }\end{cases}
$$

We set $\Theta=\left\{f^{x} \mid x \in{ }^{\omega} \omega\right\}$ and $F=\left\{\langle x, l, y\rangle \in{ }^{\omega} \omega \times \mathcal{L} \times{ }^{\omega} \omega \mid f^{x}(l)=y\right\}$. Then $F^{[x]}=f^{x}$ for $x \in{ }^{\omega} \omega$. (To define f^{x} for all $x \in{ }^{\omega} \omega$, we make Θ contain some excess elements.)

We prove that Θ and F have the required properties. By definition, $\Theta=\left\{F^{[x]} \mid x \in{ }^{\omega} \omega\right\}, F \leq_{\mathcal{K}} X$, and F satisfies (R.5).

For $n \in \omega$, we set $\Theta_{n}=\left\{f^{x} \mid x \in^{\omega} \omega \wedge x(0) \leq n\right\}$.

Lemma 1.2. (1) Θ_{0} is an upper semilattice table of \mathcal{L}.
(2) F satisfies ($\mathrm{R} .2^{*}$).

Proof. (1) We check that Θ_{0} satisfies (R.0)-(R.3).
(R.0) By definition, for all $f^{x} \in \Theta_{0}, f^{x}\left(0_{\mathcal{L}}\right)=\mathbf{0}$.
(R.1) Suppose $f^{\langle 0, m\rangle * x}, f^{\left\langle 0, m^{\prime}\right\rangle * x^{\prime}} \in \Theta_{0}$ and $i, j \in \mathcal{L}$ satisfy $i \leq_{\mathcal{L}} j$ and $f^{\langle 0, m\rangle * x}(j)=f^{\left\langle 0, m^{\prime}\right\rangle * x^{\prime}}(j)$. If $f^{\langle 0, m\rangle * x}=f^{\left\langle 0, m^{\prime}\right\rangle * x^{\prime}}$ or $i=0_{\mathcal{L}}$, then clearly $f^{\langle 0, m\rangle * x}(i)=f^{\left\langle 0, m^{\prime}\right\rangle * x^{\prime}}(i)$. Suppose $f^{\langle 0, m\rangle * x} \neq f^{\left\langle 0, m^{\prime}\right\rangle * x^{\prime}}$ and $i \neq 0_{\mathcal{L}}$. Clearly $j \neq 0_{\mathcal{L}}$. By definition and $f^{\langle 0, m\rangle * x}(j)=f^{\left\langle 0, m^{\prime}\right\rangle * x^{\prime}}(j)$, we have $\left\{m, m^{\prime}\right\}=$ $\{1,2\}, x=x^{\prime} \in \mathcal{L}$, and $j \leq_{\mathcal{L}} x$ (moreover, $f^{\langle 0, m\rangle * x}(j)=f^{\left\{0, m^{\prime}\right\rangle * x^{\prime}}(j)=$ $\langle 0,1\rangle * x)$. Hence, $i \leq_{\mathcal{L}} x$ and so $f^{\langle 0, m\rangle * x}(i)=\langle 0,1\rangle * x=f^{\left\langle 0, m^{\prime}\right\rangle * x^{\prime}}(i)$ by definition.
(R.2) Let $i, j \in \mathcal{L}$ and $i \not \mathbb{L}_{\mathcal{L}} j$. We choose $f^{\langle 0,1\rangle * j}$ and $f^{\langle 0,2\rangle * j}$ in Θ_{0}. Since $i \not \mathbb{L}_{\mathcal{L}} j$, we have $f^{\langle 0,1\rangle * \mathcal{L}}(i)=\langle 0,1\rangle * j \neq\langle 0,2\rangle * j=f^{\langle 0,2\rangle * j}(i)$. If $j=0_{\mathcal{L}}$, then $f^{\langle 0,1\rangle * j}(j)=\mathbf{0}=f^{\langle 0,2\rangle * j}(j)$, and if $j \neq 0_{\mathcal{L}}$, then $f^{\langle 0,1\rangle * j}(j)=$ $\langle 0,1\rangle * j=f^{\langle 0,2\rangle * j}(j)$.
(R.3) Suppose $f^{\langle 0, m\rangle * x}, f^{\left\langle 0, m^{\prime}\right\rangle * x^{\prime}} \in \Theta_{0}$ and $i, j, k \in \mathcal{L}$ satisfy $i \vee_{\mathcal{L}} j=k$, $f^{\langle 0, m\rangle * x}(i)=f^{\left\langle 0, m^{\prime}\right\rangle * x^{\prime}}(i)$, and $f^{\langle 0, m\rangle * x}(j)=f^{\left\langle 0, m^{\prime}\right\rangle * x^{\prime}}(j)$. We may suppose $f^{\langle 0, m\rangle * x} \neq f^{\left\langle 0, m^{\prime}\right\rangle * x^{\prime}}$ and $k \neq 0_{\mathcal{L}}$. By definition, we have $\left\{m, m^{\prime}\right\}=\{1,2\}$, $x=x^{\prime} \in \mathcal{L}$, and $i, j \leq_{\mathcal{L}} x$. Hence, $k \leq_{\mathcal{L}} x$ and so $f^{\langle 0, m\rangle * x}(k)=\langle 0,1\rangle * x=$ $f^{\left\langle 0, m^{\prime}\right\rangle * x^{\prime}}(k)$ by definition.
(2) Since $\langle 0,1\rangle * j,\langle 0,2\rangle * j \in L_{\omega_{1}^{i, j}}[i, j]$, (2) is clear from the proof of (R.2) in (1).

Lemma 1.3. For all $n \in \omega$, if Θ_{n} is an upper semilattice table of \mathcal{L}, then Θ_{n+1} is an upper semilattice table of \mathcal{L}.

Proof. By definition, Θ_{n+1} satisfies (R.0). Since $\Theta_{n} \subseteq \Theta_{n+1}, \Theta_{n+1}$ satisfies (R.2). It is routine to check that Θ_{n+1} satisfies (R.1) and (R.3). Below, we check (R.1) in a few cases, and leave the check of (R.1) in the other cases and of (R.3) to the reader.

Suppose $f^{\left\langle m_{0}, m_{1}\right\rangle * x}, f^{\left\langle m_{0}^{\prime}, m_{1}^{\prime}\right\rangle * x^{\prime}} \in \Theta_{n+1}$ and $l, l^{\prime} \in \mathcal{L}$ satisfy $l \leq_{\mathcal{L}} l^{\prime}$ and $f^{\left\langle m_{0}, m_{1}\right\rangle * x}\left(l^{\prime}\right)=f^{\left\langle m_{0}^{\prime}, m_{1}^{\prime}\right\rangle * x^{\prime}}\left(l^{\prime}\right)$. We may assume $f^{\left\langle m_{0}, m_{1}\right\rangle * x} \neq f^{\left\langle m_{0}^{\prime}, m_{1}^{\prime}\right\rangle * x^{\prime}}$ and $l \neq 0_{\mathcal{L}}$. Since Θ_{n} is an upper semilattice table of \mathcal{L}, we may also assume that $f^{\left\langle m_{0}, m_{1}\right\rangle * x} \notin \Theta_{n}$ or $f^{\left\langle m_{0}^{\prime}, m_{1}^{\prime}\right\rangle * x^{\prime}} \notin \Theta_{n}$. We notice that if $f^{\left\langle m_{0}, m_{1}\right\rangle * x}$ or $f^{\left\langle m_{0}^{\prime}, m_{1}^{\prime}\right\rangle * x^{\prime}}$ is defined by "In the other case" in the construction of Θ_{n+1}, then $f^{\left\langle m_{0}, m_{1}\right\rangle * x}\left(l^{\prime}\right)=f^{\left\langle m_{0}^{\prime}, m_{1}^{\prime}\right\rangle * x^{\prime}}\left(l^{\prime}\right)$ does not occur.

CASE 1: $f^{\left\langle m_{0}^{\prime}, m_{1}^{\prime}\right\rangle * x^{\prime}} \in \Theta_{n}$ and there are $a, b \in{ }^{\omega} \omega$ and $i, j, k \in \mathcal{L}$ such that $m_{0}=n+1, m_{1}=1, x=\langle a, b, i, j, k\rangle, a \neq b, \max \{a(0), b(0)\}=n$, $i \wedge^{\mathcal{L}} j=k, i \not \mathbb{Z}_{\mathcal{L}} j, j \not \not_{\mathcal{L}} i$, and $f^{a}(k)=f^{b}(k)$.

Since $f^{\left\langle m_{0}^{\prime}, m_{1}^{\prime}\right\rangle * x^{\prime}} \in \Theta_{n}$, it follows that $f^{\left\langle m_{0}^{\prime}, m_{1}^{\prime}\right\rangle * x^{\prime}}\left(l^{\prime}\right)(0) \leq n$ and so $f^{\langle n+1,1\rangle * x}\left(l^{\prime}\right)(0) \leq n$. Then, by definition, $l^{\prime} \leq_{\mathcal{L}} j, l^{\prime} \leq_{\mathcal{L}} i$, and $f^{\langle n+1,1\rangle * x}\left(l^{\prime}\right)$ $=f^{\langle n+1,0\rangle * x}\left(l^{\prime}\right)=f^{a}\left(l^{\prime}\right)$. Hence $f^{a}\left(l^{\prime}\right)=f^{\left\langle m_{0}^{\prime}, m_{1}^{\prime}\right\rangle * x^{\prime}}\left(l^{\prime}\right)$. Since $f^{a} \in \Theta_{n}$
and Θ_{n} satisfies (R.1), $f^{a}(l)=f^{\left\langle m_{0}^{\prime}, m_{1}^{\prime}\right\rangle * x^{\prime}}(l)$. Clearly, $l \leq_{\mathcal{L}} i \wedge^{\mathcal{L}} j$, hence $f^{\langle n+1,1\rangle * x}(l)=f^{\langle n+1,0\rangle * x}(l)=f^{a}(l)=f^{\left\langle m_{0}^{\prime}, m_{1}^{\prime}\right\rangle * x^{\prime}}(l)$.

Case 2: There are $a, b, a^{\prime}, b^{\prime} \in{ }^{\omega} \omega$ and $i, j, k, i^{\prime}, j^{\prime}, k^{\prime} \in \mathcal{L}$ such that $m_{0}=$ $m_{0}^{\prime}=n+1, m_{1}=1, m_{1}^{\prime}=2, x=\langle a, b, i, j, k\rangle, x^{\prime}=\left\langle a^{\prime}, b^{\prime}, i^{\prime}, j^{\prime}, k^{\prime}\right\rangle, a \neq b$, $a^{\prime} \neq b^{\prime}, \max \{a(0), b(0)\}=\max \left\{a^{\prime}(0), b^{\prime}(0)\right\}=n, i \wedge^{\mathcal{L}} j=k, i^{\prime} \wedge^{\mathcal{L}} j^{\prime}=k^{\prime}$, $i \not \leq_{\mathcal{L}} j, j \not \leq_{\mathcal{L}} i, i^{\prime} \not \leq_{\mathcal{L}} j^{\prime}, j^{\prime} \not \leq_{\mathcal{L}} i^{\prime}, f^{a}(k)=f^{b}(k)$, and $f^{a^{\prime}}\left(k^{\prime}\right)=f^{b^{\prime}}\left(k^{\prime}\right)$.

By definition, we have two subcases.
SUBCASE 2.1: $l^{\prime} \leq_{\mathcal{L}} i \wedge^{\mathcal{L}} j \wedge^{\mathcal{L}} j^{\prime}$ and $f^{\langle n+1,1\rangle * x}\left(l^{\prime}\right)=f^{\langle n+1,0\rangle * x}\left(l^{\prime}\right)=$ $f^{a}\left(l^{\prime}\right)=f^{b^{\prime}}\left(l^{\prime}\right)=f^{\langle n+1,2\rangle * x^{\prime}}\left(l^{\prime}\right)$. Then, similarly to Case 1, we obtain $f^{\langle n+1,1\rangle * x}(l)=f^{a}(l)=f^{b^{\prime}}(l)=f^{\langle n+1,2\rangle * x^{\prime}}(l)$.

SUBCASE 2.2: $l^{\prime} \leq_{\mathcal{L}} i, l^{\prime} \not_{\mathcal{L}} j, x=x^{\prime}$, and $f^{\langle n+1,1\rangle * x}\left(l^{\prime}\right)=\langle n+1,1\rangle * x=$ $f^{\langle n+1,2\rangle * x^{\prime}}\left(l^{\prime}\right)$. Then $i=i^{\prime}, j=j^{\prime}, k=k^{\prime}, a=a^{\prime}$, and $b=b^{\prime}$ clearly. If $l \not \mathbb{L}_{\mathcal{L}} j$, then $f^{\langle n+1,1\rangle * x}(l)=\langle n+1,1\rangle * x=f^{\langle n+1,2\rangle * x^{\prime}}(l)$. Suppose $l \leq{ }_{\mathcal{L}} j$. Since $l \leq_{\mathcal{L}} i \wedge^{\mathcal{L}} j, f^{\langle n+1,1\rangle * x}(l)=f^{a}(l)$ and $f^{\langle n+1,2\rangle * x^{\prime}}(l)=f^{b}(l)$. Since $i \wedge^{\mathcal{L}} j=k, f^{a}(k)=f^{b}(k)$, and Θ_{n} satisfies (R.1), we have $f^{a}(l)=f^{b}(l)$. Hence, $f^{\langle n+1,1\rangle * x}(l)=f^{\langle n+1,2\rangle * x^{\prime}}(l)$.

By Lemmas 1.2 and $1.3, \Theta$ is an upper semilattice table of \mathcal{L}.
Lemma 1.4. F satisfies (R.4*). Hence, Θ is a lattice table of \mathcal{L}.
Proof. Suppose $a, b \in{ }^{\omega} \omega$ and $i, j, k \in \mathcal{L}$ satisfy $i \wedge^{\mathcal{L}} j=k$ and $f^{a}(k)=$ $f^{b}(k)$. In the case of $i \leq_{\mathcal{L}} j$ or $j \leq_{\mathcal{L}} i$, we set $c_{0}=c_{1}=c_{2}=b$ or $c_{0}=c_{1}=$ $c_{2}=a$, and then c_{0}, c_{1}, c_{2} have the required properties. Suppose $i \not \mathbb{L}_{\mathcal{L}} j$, $j \not Z_{\mathcal{L}} i$, and $a \neq b$. We set $n=\max \{a(0), b(0)\}$ and $c_{m}=\langle n+1, m\rangle *$ $\langle a, b, i, j, k\rangle$ for $m \leq 2$. Then $c_{0}, c_{1}, c_{2} \in L_{\omega_{1}^{a, b, i, j, k}}[a, b, i, j, k]$. By definition, $f^{a} \equiv_{i} f^{c_{0}} \equiv_{j} f^{c_{1}}$ and $f^{c_{2}} \equiv_{j} f^{b}$. Since $i \not \leq \mathcal{L} j$, we have $f^{c_{1}} \equiv_{i} f^{c_{2}}$.

This completes the proof of Proposition 1.1.
2. We start this section with

Lemma $2.1(\mathrm{ZFC}+\mathrm{CH})$. There is $S \subseteq \aleph_{1}$ such that ${ }^{\omega} \omega \subseteq L_{\aleph_{1}}[S]$.
Proof. We take a bijection $f: \aleph_{1} \rightarrow{ }^{\omega} \omega$ and set
$S=\left\{\xi \in \aleph_{1} \mid \exists \gamma \leq \xi \exists m, n \in \omega\left(\xi=\omega \cdot \gamma+2^{m} \cdot 3^{n} \wedge f(\gamma)(m)=n\right)\right\}$.
Notice that for all $\xi<\aleph_{1}$, there are unique $\gamma \leq \xi$ and unique $k \in \omega$ such that $\xi=\omega \cdot \gamma+k$. Let $x \in{ }^{\omega} \omega$ be arbitrary. We choose $\gamma \in \aleph_{1}$ such that $f(\gamma)=x$; then $x(m)=n \Leftrightarrow \omega \cdot \gamma+2^{m} \cdot 3^{n} \in S$ for all $m, n \in \omega$. Hence, $x \in L_{\aleph_{1}}[S]$.

We fix $S \subseteq \aleph_{1}$ such that ${ }^{\omega} \omega \subseteq L_{\aleph_{1}}[S]$. We define the function rk : ${ }^{\omega} \omega \rightarrow \aleph_{1}$ by $\operatorname{rk}(x)=\min \left\{\alpha \in \aleph_{1} \mid x \in L_{\alpha+1}[S]\right\}$ for $x \in{ }^{\omega} \omega$. We set $K_{0}=\{x \in \mathrm{WO} \mid$ o.t. $(x) \in S\}$ and

$$
\begin{aligned}
K_{1}=\left\{\langle m, n\rangle * x \in{ }^{\omega} \omega \mid \exists w \in \mathrm{WO}(\operatorname{rk}(x)\right. & =\text { o.t. }(w) \wedge \forall w^{\prime} \in \mathrm{WO}\left(w^{\prime}<_{L[S]} w\right. \\
& \left.\left.\left.\Rightarrow \text { o.t. }\left(w^{\prime}\right) \neq \operatorname{rk}(x)\right) \wedge w(m)=n\right)\right\}
\end{aligned}
$$

Here, WO denotes the set of all $x \in{ }^{\omega} \omega$ which code a well-ordering relation on ω, and o.t. (w) denotes the order type of w.

If e.g. $\boldsymbol{\Delta}_{n}^{1}$-determinacy $(2 \leq n \in \omega)$ is assumed, then by the localization of the theorem of Solovay [7], for any $\boldsymbol{\Delta}_{n}^{1}$ set $K \subseteq \omega_{\omega}, \mathcal{K}\left[K, K^{\mathrm{SJ}}\right]=$ $\left\{\operatorname{deg}(K), \operatorname{deg}\left(K^{\mathrm{SJ}}\right)\right\}$. Under ZFC+CH (even if some determinacy axiom is assumed), if $K_{0} \leq \mathcal{K} K \subseteq{ }^{\omega} \omega$, then $\mathcal{K}\left[K, K^{\mathrm{SJ}}\right] \neq\left\{\operatorname{deg}(K), \operatorname{deg}\left(K^{\mathrm{SJ}}\right)\right\}$ ([5]; in fact we can prove that $\mathcal{K}\left[K, K^{\mathrm{SJ}}\right]$ contains many elements). To prove the Theorem in $\S 3$, we use K_{1} in addition to K_{0}. We note that under ZFC+CH, $\left\{\mathbf{d} \in \mathcal{K} \mid \operatorname{deg}\left(K_{0} \oplus K_{1}\right) \leq \mathcal{K} \mathbf{d}\right\}$ is dense, which can be proved similarly to [2] and [4].

Lemma $2.2(\mathrm{ZFC}+\mathrm{CH})$. Let $K_{0} \oplus K_{1} \leq_{\mathcal{K}} K \subseteq{ }^{\omega} \omega$ and $T=S \cup K$.
(1) For all $x \in{ }^{\omega} \omega, L_{\omega_{1}^{K ; x}}[K ; x]$ is S-admissible, and so T-admissible.
(2) If M is K-admissible, then for all $x \in{ }^{\omega} \omega \cap M, \operatorname{rk}(x) \in M$.
(3) For all $x \in{ }^{\omega} \omega, x \in L_{\omega_{1}^{T ; x}}[T]$, hence $L_{\omega_{1}^{T ; x}}[T ; x]=L_{\omega_{1}^{T ; x}}[T]$.
(4) If M is T-admissible and $\mathrm{On} \cap M=\alpha$, then ${ }^{\omega} \omega \cap M=\left\{x \in{ }^{\omega} \omega \mid\right.$ $\operatorname{rk}(x)<\alpha\}$.

Proof. (1) It is sufficient to prove that S is Δ_{1} over $L_{\omega_{1}^{K ; x}}[K ; x]$. For all $\xi \in \omega_{1}^{K ; x}$, since there is an injection from ξ to ω in $L_{\omega_{1}^{K ; x}}[K ; x]$, there is $w \in \mathrm{WO} \cap L_{\omega_{1}^{K ; x}}[K ; x]$ which codes a well-ordering of order type ξ. Hence, for all $\xi \in \omega_{1}^{K ; x}$,

$$
\begin{aligned}
\xi \in S & \Leftrightarrow L_{\omega_{1}^{K ; x}}[K ; x] \models " \exists w \in K_{0}(\text { o.t. }(w)=\xi) " \\
& \Leftrightarrow L_{\omega_{1}^{K ; x}}[K ; x] \models " \forall w \in \mathrm{WO}\left(\text { o.t. }(w)=\xi \Rightarrow w \in K_{0}\right) " .
\end{aligned}
$$

Therefore, S is Σ_{1} and Π_{1} over $L_{\omega_{1}^{K ; x}}[K ; x]$.
 By definition, for all $m, n \in \omega, w(m)=n \Leftrightarrow\langle m, n\rangle * x \in K_{1}$. Since M is K_{1}-admissible, $w \in M$ and hence $\operatorname{rk}(x)=$ o.t. $(w) \in M$.
(3) Since $x \in L_{\omega_{1}^{T ; x}}[T ; x]$ and $L_{\omega_{1}^{T ; x}}[T ; x]$ is K-admissible, $\operatorname{rk}(x)<\omega_{1}^{T ; x}$ by (2). Since $L_{\omega_{1}^{T ; x}}[T]$ is S-admissible, $L_{\mathrm{rk}(x)+1}[S] \subseteq L_{\omega_{1}^{T ; x}}[T]$. By definition, $x \in L_{\mathrm{rk}(x)+1}[S]$, hence $x \in L_{\omega_{1}^{T ; x}}[T]$.
(4) Suppose $x \in{ }^{\omega} \omega$ and $\operatorname{rk}(x)<\alpha$. Since M is S-admissible, $L_{\mathrm{rk}(x)+1}[S]$ $\subseteq M$, hence $x \in M$. Conversely, if $x \in{ }^{\omega} \omega \cap M$, then since M is K-admissible, $\operatorname{rk}(x)<\alpha$ by (2).
3. Let S, rk, K_{0}, and K_{1} be as in $\S 2$.

Theorem (ZFC+CH). Let $K_{0} \oplus K_{1} \leq \mathcal{K} K \subseteq{ }^{\omega} \omega$. For any lattice \mathcal{L}, if $\mathcal{L} \subseteq{ }^{\omega} \omega$ and $\left(\mathcal{L}, \leq_{\mathcal{L}}, \vee_{\mathcal{L}}, \wedge^{\mathcal{L}}\right)$ is Kleene recursive in K^{SJ}, then \mathcal{L} can be embedded in $\mathcal{K}\left[K, K^{\mathrm{SJ}}\right]$.

This section is entirely devoted to proving the Theorem. We use AC and CH without notice in the proof.

We fix $K \subseteq{ }^{\omega} \omega$ such that $K_{0} \oplus K_{1} \leq_{\mathcal{K}} K$, and a lattice \mathcal{L} such that $\mathcal{L} \subseteq$ ${ }^{\omega} \omega$ and $\left(\mathcal{L}, \leq_{\mathcal{L}}, \vee_{\mathcal{L}}, \wedge^{\mathcal{L}}\right)$ is Kleene recursive in $K^{\text {SJ }}$. We set $T=S \cup K$. Then every T-admissible set is S-admissible and K-admissible, and ${ }^{\omega} \omega \subseteq L_{\aleph_{1}}[T]$. We fix a lattice table Θ of \mathcal{L} and $F \subseteq{ }^{\omega} \omega \times \mathcal{L} \times{ }^{\omega} \omega$ which are obtained by Proposition 1.1. For simplicity, we assume that $\left(\mathcal{L}, \leq_{\mathcal{L}}, \vee_{\mathcal{L}}, \wedge^{\mathcal{L}}\right)$ is Kleene recursive in $K^{\text {SJ }}$ with no additional real parameter and $F \leq_{\mathcal{K}} K^{\mathrm{SJ}}$ with no additional real parameter. For $x \in^{\omega} \omega$, we denote $F^{[x]}$ by f^{x} as in the proof of Proposition 1.1. We may assume that $f^{\mathbf{0}}$ is identically $\mathbf{0}$ on \mathcal{L} and $\mathbf{0}$ is the $\leq_{L[T]}$-least real.

For every total or partial function p from ${ }^{\omega} \omega$ to ${ }^{\omega} \omega$, we define the projections of p by

$$
P_{l}=\left\{\left\langle x, f^{p(x)}(l)\right\rangle \mid x \in \operatorname{Dom}(p)\right\} \quad \text { for } l \in \mathcal{L} .
$$

We will construct a total function $g:{ }^{\omega} \omega \rightarrow{ }^{\omega} \omega$ such that $l \in \mathcal{L} \mapsto$ $\operatorname{deg}\left(K \oplus G_{l}\right) \in \mathcal{K}\left[K, K^{\mathrm{SJ}}\right]$ is a lattice embedding. Recall that G_{l} denotes the projection of g on the coordinate l.

By recursion, we define a strictly increasing sequence $\left\langle\tau_{\alpha} \mid \alpha \in \aleph_{1}\right\rangle$ of countable ordinals which satisfies:
(T.1) $\quad \tau_{\alpha+1}$ is the least T-admissible ordinal such that ${ }^{\omega} \omega \cap\left(L_{\tau_{\alpha+1}}[T]-\right.$ $\left.L_{\tau_{\alpha}}[T]\right)$ is not empty.
(T.2) If α is a limit ordinal, then $\tau_{\alpha}=\bigcup_{\beta \in \alpha} \tau_{\beta}$.

The following is proved by routine work.
Lemma 3.1. (1) The graph of $\left\langle\tau_{\alpha} \mid \alpha \in \aleph_{1}\right\rangle$ is uniformly $\Sigma_{1}(T)$-definable over all T-admissible sets.
(2) For any T-admissible set M, if $\alpha \in \aleph_{1} \cap M$ and $\left\langle\tau_{\beta} \mid \beta \in \alpha\right\rangle \subseteq M$, then $\left\langle\tau_{\beta} \mid \beta \in \alpha\right\rangle \in M$.

Lemma 3.2. For all $\alpha \in \aleph_{1}$ and $x \in{ }^{\omega} \omega \cap\left(L_{\tau_{\alpha+1}}[T]-L_{\tau_{\alpha}}[T]\right)$, we have $L_{\tau_{\alpha+1}}[T]=L_{\omega_{1}^{K ; x}}[K ; x]$.

Proof. By Lemma 2.2, $x \in L_{\omega_{1}^{T ; x}}[T]$, hence it follows by the definition of $\tau_{\alpha+1}$ that $\tau_{\alpha+1} \leq \omega_{1}^{T ; x}$. Since $L_{\omega_{1}^{K ; x}}[K ; x]$ is T-admissible by Lemma 2.2 , $L_{\tau_{\alpha+1}}[T] \subseteq L_{\omega_{1}^{T ; x}}[T] \subseteq L_{\omega_{1}^{K ; x}}[K ; x]$. Conversely, since $L_{\tau_{\alpha+1}}[T]$ is $(K ; x)$ admissible, we have $L_{\omega_{1}^{K ; x}}[K ; x] \subseteq L_{\tau_{\alpha+1}}[T]$.

Remember that for any K-admissible set N, N is closed under $\lambda x . \omega_{1}^{K ; x}$ iff N is K^{SJ}-admissible, and moreover N is closed under $\lambda x . \omega_{1}^{K ; x}$ iff $\forall x \in$ ${ }^{\omega} \omega \cap N \exists \alpha \in \mathrm{On} \cap N\left(L_{\alpha}[K ; x] \text { is }(K ; x) \text {-admissible }\right)^{N}$. Hence the quantifiers in the statement " N is $K^{\text {SJ }}$-admissible" are bounded by N. Moreover, note that F is uniformly Δ_{1} over all K^{SJ}-admissible sets, since $F \leq \mathcal{K} K^{\mathrm{SJ}}$.

Lemma 3.3. Let p be a partial function from ${ }^{\omega} \omega$ to ${ }^{\omega} \omega$, M be a T admissible set, $p \in M$ and $l \in \mathcal{L} \cap M$. If for all $x \in \operatorname{Dom}(p)$, there is $\sigma \in \mathrm{On} \cap M$ such that $L_{\sigma}[T]$ is K^{SJ}-admissible and $p(x), l \in L_{\sigma}[T]$, then $P_{l} \in M$.

Proof. By Σ_{1}-collection, there exists $\gamma \in \mathrm{On} \cap M$ such that for all $x \in$ $\operatorname{Dom}(p)$ there is $\sigma<\gamma$ such that $L_{\sigma}[T]$ is K^{SJ}-admissible and $p(x), l \in L_{\sigma}[T]$ (moreover $f^{p(x)}(l) \in L_{\sigma}[T]$ by (R.5)). Then for all $x, y \in{ }^{\omega} \omega$ we have

$$
\begin{array}{rl}
\langle x, y\rangle \in P_{l} \Leftrightarrow M \models " & x \in \operatorname{Dom}(p) \wedge y \in L_{\gamma}[T] \\
& \wedge \exists \sigma<\gamma \exists z \in L_{\sigma}[T]\left(L_{\sigma}[T] \text { is } K^{\mathrm{SJ}}\right. \text {-admissible } \\
& \left.\wedge l, y \in L_{\sigma}[T] \wedge z=p(x) \wedge(\langle z, l, y\rangle \in F)^{L_{\sigma}[T]}\right) " .
\end{array}
$$

Hence, $P_{l} \in M$ by Δ_{1}-separation.
We construct $g^{\alpha}\left(\alpha \in \aleph_{1}\right)$ of the parts of g as follows:
Stage 0 . We set $g^{0}=\emptyset$.
Stage α Limit. We set $g^{\alpha}=\bigcup_{\beta \in \alpha} g^{\beta}$.
Stage $\alpha+1$.
Case 1: There is $t \in{ }^{\omega} \omega \cap L_{\tau_{\alpha}}[T]$ which satisfies (G.1) or (G.2) below:
(G.1) There are $e \in \omega, v \in{ }^{\omega} \omega, i, j \in \mathcal{L}$, and $\sigma \leq \tau_{\alpha}$ such that $t=\langle 0, e\rangle *\langle v, i, j\rangle, i \not \mathbb{L}_{\mathcal{L}} j, L_{\sigma}[T]$ is K^{SJ}-admissible, $t \in L_{\sigma}[T]$, and $\forall x \in{ }^{\omega} \omega \cap L_{\tau_{\alpha}}[T]\left(\chi_{G_{i}^{\alpha}}(x) \cong\{e\}\left(x, v, \chi_{K \oplus G_{j}^{\alpha}},{ }^{2} E\right)\right)$.
(G.2) There are $e_{0}, e_{1} \in \omega, v_{0}, v_{1} \in{ }^{\omega} \omega, i, j, k \in \mathcal{L}$, and $\sigma \leq \tau_{\alpha}$ such that $t=\left\langle 1, e_{0}, e_{1}\right\rangle *\left\langle v_{0}, v_{1}, i, j, k\right\rangle, i \wedge^{\mathcal{L}} j=k, L_{\sigma}[T]$ is $K^{\mathrm{SJ}}-$ admissible, $t \in L_{\sigma}[T], \forall x \in{ }^{\omega} \omega \cap L_{\tau_{\alpha}}[T]\left(\left\{e_{0}\right\}\left(x, v_{0}, \chi_{K \oplus G_{i}^{\alpha}},{ }^{2} E\right)\right.$ $\left.\cong\left\{e_{1}\right\}\left(x, v_{1}, \chi_{K \oplus G_{j}^{\alpha}},{ }^{2} E\right)\right)$, and there is a partial function $p \in$ $L_{\tau_{\alpha+1}}[T]$ from ${ }^{\omega} \omega$ to ${ }^{\omega} \omega$ such that $g^{\alpha} \subseteq p, \operatorname{Rng}\left(p-g^{\alpha}\right)$ $\subseteq L_{\sigma}[T]$, and $\exists x \in{ }^{\omega} \omega \cap L_{\tau_{\alpha+1}}[T]\left(\left\{e_{0}\right\}\left(x, v_{0}, \chi_{K \oplus P_{i} * \mathbf{0}},{ }^{2} E\right)\right.$ $\left.\not \approx\left\{e_{1}\right\}\left(x, v_{1}, \chi_{K \oplus P_{j} * 0},{ }^{2} E\right)\right)$. Here, $P_{l} * \mathbf{0}=P_{l} \cup\{\langle y, \mathbf{0}\rangle \mid y \in$ $\left.{ }^{\omega} \omega-\operatorname{Dom}(p)\right\}$ for $l \in \mathcal{L}$.
We choose the $\leq_{L[T]}$-least $t \in{ }^{\omega} \omega \cap L_{\tau_{\alpha}}[T]$ which satisfies (G.1) or (G.2) and distinguish two subcases.

Subcase 1.1: t satisfies (G.1). We choose the $\leq_{L[T]}$ least $z \in{ }^{\omega} \omega \cap$ $\left(L_{\tau_{\alpha+1}}[T]-L_{\tau_{\alpha}}[T]\right)$ and the $\leq_{L[T]}$ least $\langle a, b\rangle \in{ }^{\omega} \omega \times{ }^{\omega} \omega$ such that $f^{a}(j)=$ $f^{b}(j)$ and $f^{a}(i) \neq f^{b}(i)$ by (R.2). Notice that if σ is as in (G.1), then
$a, b, f^{a}(i) \in L_{\sigma}[T]$ by $\left(\mathrm{R} .2^{*}\right)$ and (R.5). We set $z^{\prime}=\left\langle z, f^{a}(i)\right\rangle$ and define partial functions p^{a}, p^{b} by

$$
p^{a}(x)\left(p^{b}(x) \text { resp. }\right)= \begin{cases}g^{\alpha}(x) & \text { if } x \in \operatorname{Dom}\left(g^{\alpha}\right) \\ a(b \text { resp. }) & \text { if } x=z\end{cases}
$$

Then $P_{j}^{a}=P_{j}^{b}, z^{\prime} \in P_{i}^{a}$, and $z^{\prime} \notin P_{i}^{b}$. If $\{e\}\left(z^{\prime}, v, \chi_{K \oplus P_{j}^{a} * \mathbf{0}},{ }^{2} E\right) \cong 0$, then we define

$$
g^{\alpha+1}(x)= \begin{cases}p^{a}(x) & \text { if } x \in \operatorname{Dom}\left(p^{a}\right) \\ \mathbf{0} & \text { if } x \in \omega_{\omega} \omega \cap L_{\tau_{\alpha+1}}[T]-\operatorname{Dom}\left(p^{a}\right),\end{cases}
$$

and if $\{e\}\left(z^{\prime}, v, \chi_{K \oplus P_{j}^{a} * \mathbf{0}},{ }^{2} E\right) \neq 0$, then we define

$$
g^{\alpha+1}(x)= \begin{cases}p^{b}(x) & \text { if } x \in \operatorname{Dom}\left(p^{b}\right), \\ \mathbf{0} & \text { if } x \in{ }^{\omega} \omega \cap L_{\tau_{\alpha+1}}[T]-\operatorname{Dom}\left(p^{b}\right) .\end{cases}
$$

Subcase 1.2: t satisfies (G.2). We choose the $\leq_{L[T]}$-least partial function $p \in L_{\tau_{\alpha+1}}[T]$ as in (G.2) and define

$$
g^{\alpha+1}(x)= \begin{cases}p(x) & \text { if } x \in \operatorname{Dom}(p) \\ \mathbf{0} & \text { if } x \in \omega_{\omega} \cap L_{\tau_{\alpha+1}}[T]-\operatorname{Dom}(p)\end{cases}
$$

Case 2: Otherwise. We define

$$
g^{\alpha+1}(x)= \begin{cases}g^{\alpha}(x) & \text { if } x \in \operatorname{Dom}\left(g^{\alpha}\right) \\ \mathbf{0} & \text { if } x \in{ }^{\omega} \omega \cap L_{\tau_{\alpha+1}}[T]-\operatorname{Dom}\left(g^{\alpha}\right)\end{cases}
$$

In the construction at Stage $\alpha+1$ above, notice that for $l \in \mathcal{L}, G_{l}^{\alpha+1}=$ $P_{l}^{a} * \mathbf{0} \cap L_{\tau_{\alpha+1}}[T]$ or $=P_{l}^{b} * \mathbf{0} \cap L_{\tau_{\alpha+1}}[T]$ (Subcase 1.1), or $=P_{l} * \mathbf{0} \cap L_{\tau_{\alpha+1}}[T]$ (Subcase 1.2), or $=G_{l}^{\alpha} * \mathbf{0} \cap L_{\tau_{\alpha+1}}[T]$ (Case 2) respectively.

We define $g=\bigcup_{\alpha \in \aleph_{1}} g^{\alpha}$. Then, for all $\alpha \in \aleph_{1}, g\left[{ }^{\omega} \omega \cap L_{\tau_{\alpha}}[T]=g^{\alpha}\right.$ and $g^{\alpha}:{ }^{\omega} \omega \cap L_{\tau_{\alpha}}[T] \rightarrow{ }^{\omega} \omega \cap L_{\tau_{\alpha}}[T]$. Moreover $g^{\alpha+1}:{ }^{\omega} \omega \cap L_{\tau_{\alpha+1}}[T] \rightarrow{ }^{\omega} \omega \cap L_{\tau_{\alpha}}[T]$ by definition. If there is no $\sigma \leq \tau_{\alpha}$ such that $L_{\sigma}[T]$ is K^{SJ}-admissible, then $\operatorname{Rng}\left(g^{\alpha+1}\right)=\{\mathbf{0}\}$. As for projections, for all $\alpha \in \aleph_{1}$ and $l \in \mathcal{L} \cap L_{\tau_{\alpha}}[T]$, we have $G_{l} \cap L_{\tau_{\alpha}}[T]=G_{l}^{\alpha}$.

Lemma 3.4. Let $\varrho \in \aleph_{1}$ and $L_{\varrho}[T]$ be K^{SJ}-admissible.
(1) For all $\alpha<\aleph_{1}$, if $\varrho \leq \tau_{\alpha}$, then there is $\sigma \leq \tau_{\alpha}$ such that $L_{\sigma}[T]$ is K^{SJ}-admissible and $\operatorname{Rng}\left(g^{\alpha+1}-g^{\alpha}\right) \subseteq L_{\sigma}[T]$.
(2) For all $x \in{ }^{\omega} \omega$, there is $\sigma \leq \max \{\operatorname{rk}(x), \varrho\}$ such that $L_{\sigma}[T]$ is $K^{\mathrm{SJ}_{-}}$ admissible and $g(x) \in L_{\sigma}[T]$.

Proof. (1) We distinguish three cases at Stage $\alpha+1$.
CASE 1: $g^{\alpha+1}$ is constructed in Subcase 1.1 at Stage $\alpha+1$. We choose σ as in (G.1). By definition, there is $c \in^{\omega} \omega \cap L_{\sigma}[T]$ ($c=a$ or $=b$ in Subcase
1.1) such that $\operatorname{Rng}\left(g^{\alpha+1}-g^{\alpha}\right)=\{c, \mathbf{0}\}$. Since $\mathbf{0} \in L_{\sigma}[T], \operatorname{Rng}\left(g^{\alpha+1}-g^{\alpha}\right) \subseteq$ $L_{\sigma}[T]$.

CASE 2: $g^{\alpha+1}$ is constructed in Subcase 1.2 at Stage $\alpha+1$. We choose the $\leq_{L[T] \text {-least partial function } p \text { and } \sigma \text { as in (G.2). By (G.2), } \operatorname{Rng}\left(p-g^{\alpha}\right) \subseteq}^{\substack{\text { l }}}$ $L_{\sigma}[T]$, hence $\operatorname{Rng}\left(g^{\alpha+1}-g^{\alpha}\right) \subseteq L_{\sigma}[T]$.

Case 3: $g^{\alpha+1}$ is constructed in Case 2 at Stage $\alpha+1$. By definition, $\operatorname{Rng}\left(g^{\alpha+1}-g^{\alpha}\right)=\{\mathbf{0}\} \subseteq L_{\varrho}[T]$.
(2) We choose $\alpha<\aleph_{1}$ such that $x \in L_{\tau_{\alpha+1}}[T]-L_{\tau_{\alpha}}[T]$. By Lemma 2.2, $\tau_{\alpha} \leq \operatorname{rk}(x)$. If $\varrho \leq \tau_{\alpha}$, then by (1) there is $\sigma \leq \operatorname{rk}(x)$ such that $L_{\sigma}[T]$ is $K^{\mathrm{SJ}_{-}}$ admissible and $g(x)=g^{\alpha+1}(x) \in L_{\sigma}[T]$. If $\tau_{\alpha}<\varrho$, then since $\operatorname{Rng}\left(g^{\alpha+1}\right) \subseteq$ $L_{\tau_{\alpha}}[T]$, we have $g(x) \in L_{\varrho}[T]$.

Since $L_{\aleph_{1}}[T]$ is $K^{\text {SJ }}$-admissible and ${ }^{\omega} \omega \subseteq L_{\aleph_{1}}[T]$, for all $x \in{ }^{\omega} \omega$ there exists $\varrho<\aleph_{1}$ such that $L_{\varrho}[T]$ is K^{SJ}-admissible and $x \in L_{\varrho}[T]$ (using the Löwenheim-Skolem Theorem). For $x \in{ }^{\omega} \omega$, we set $\varrho(x)=\min \left\{\sigma<\aleph_{1} \mid\right.$ $L_{\sigma}[T]$ is K^{SJ}-admissible and $\left.x \in L_{\sigma}[T]\right\}$.

Lemma 3.5. Let $\alpha \in \aleph_{1}$ and $l \in \mathcal{L}$.
(1) For any T-admissible set M, if $\tau_{\alpha} \in M$, then $g^{\alpha} \in M$.
(2) For any T-admissible set M, if $\tau_{\alpha}, \varrho(l) \in M$, then $G_{l}^{\alpha} \in M$.
(3) If $\varrho(l)<\tau_{\alpha+1}$, then $L_{\tau_{\alpha+1}}[T]$ is G_{l}-admissible.

Proof. (1) We prove

$$
\forall \alpha \in \aleph_{1} \forall M: T \text {-admissible set }\left(\tau_{\alpha} \in M \Rightarrow\left\langle g^{\beta} \mid \beta \leq \alpha\right\rangle \in M\right)
$$

by induction.
If $\alpha=0$, then this is clear.
Let $0<\alpha \in \aleph_{1}$. We assume that for all $\beta \in \alpha$ and every T-admissible set M we have $\left(\tau_{\beta} \in M \Rightarrow\left\langle g^{\gamma} \mid \gamma \leq \beta\right\rangle \in M\right)$. Let M be a T-admissible set and $\tau_{\alpha} \in M$.

Let $\alpha=\beta+1$ for some β. By assumption, $g^{\beta} \in L_{\tau_{\alpha}}[T]$. In the construction at Stage $\beta+1, p^{a}, p^{b}$ in Subcase 1.1 and p in Subcase 1.2 are elements of $L_{\tau_{\alpha}}[T]$. Since $L_{\tau_{\alpha}}[T] \in M$, by definition $g^{\beta+1} \in M$. Hence $\left\langle g^{\beta} \mid \beta \leq \alpha\right\rangle \in M$.

Let α be a limit ordinal. For every limit ordinal $\beta \in \alpha$, since $\left\langle g^{\gamma} \mid \gamma \leq \beta\right\rangle$ $\in L_{\tau_{\beta+1}}[T]$, the construction at Stage β can be expressed over $L_{\tau_{\beta+1}}[T]$. And for every $\beta+1 \in \alpha$, since the conditions of every case at Stage $\beta+1$ can be expressed over $L_{\tau_{\beta+1}}[T]$ (notice that if $t=\langle\ldots\rangle *\langle\ldots, i, j, \ldots\rangle$ and $\varrho(t) \leq \tau_{\beta}$, then $G_{i}^{\beta}, G_{j}^{\beta} \in L_{\tau_{\beta+1}}[T]$ by Lemmas 3.4 and 3.3 , hence we can express (G.1) (G.2); otherwise, we proceed to Case 2 immediately), the construction at Stage $\beta+1$ can be expressed over $L_{\tau_{\beta+2}}[T]$. Thus, $\left\langle g^{\beta} \mid \beta \in \alpha\right\rangle$ is Δ_{1-} definable over M with parameter $\left\langle\tau_{\beta} \mid \beta \leq \alpha\right\rangle$, hence $\left\langle g^{\beta} \mid \beta \in \alpha\right\rangle \in M$. (By

Lemma 3.1, $\left\langle\tau_{\beta} \mid \beta \leq \alpha\right\rangle \in M$.) Therefore, by definition, $g^{\alpha} \in M$, and so $\left\langle g^{\beta} \mid \beta \leq \alpha\right\rangle \in M$.
(2) By (1), $g^{\alpha} \in M$. For all $x \in \operatorname{Dom}\left(g^{\alpha}\right)$, since $\operatorname{rk}(x) \in M$, there is $\sigma \in \mathrm{On} \cap M$ such that $L_{\sigma}[T]$ is K^{SJ}-admissible and $g^{\alpha}(x), l \in L_{\sigma}[T]$ by Lemma 3.4. Hence, $G_{l}^{\alpha} \in M$ by Lemma 3.3.
(3) By (2), $G_{l}^{\alpha} \in L_{\tau_{\alpha+1}}[T]$. In the construction at Stage $\alpha+1, p^{a}, p^{b}$ in Subcase 1.1 and p in Subcase 1.2 are elements of $L_{\tau_{\alpha+1}}[T]$, hence similarly to (2), $P_{l}^{a}, P_{l}^{b}, P_{l} \in L_{\tau_{\alpha+1}}[T]$ by Lemma 3.3. Since $G_{l}^{\alpha+1}=P_{l}^{a} * \mathbf{0} \cap L_{\tau_{\alpha+1}}[T]$ or $=P_{l}^{b} * \mathbf{0} \cap L_{\tau_{\alpha+1}}[T]$ or $=P_{l} * \mathbf{0} \cap L_{\tau_{\alpha+1}}[T]$ or $=G_{l}^{\alpha} * \mathbf{0} \cap L_{\tau_{\alpha+1}}[T]$, we see that $L_{\tau_{\alpha+1}}[T]$ is $G_{l}^{\alpha+1}$-admissible and so G_{l}-admissible.

Lemma 3.6. For all $l \in \mathcal{L}, G_{l} \leq_{\mathcal{K}} K^{\mathrm{SJ}}$, hence $\operatorname{deg}\left(K \oplus G_{l}\right) \in \mathcal{K}\left[K, K^{\mathrm{SJ}}\right]$.
Proof. For $\alpha \in \aleph_{1}$, similarly to Lemma 3.5, the construction of g^{α} (i.e. constructions till Stage α) and the conditions of every case at Stage $\alpha+1$ can be expressed over $L_{\tau_{\alpha+1}}[T]$. Hence, there are formulas ψ_{1} and ψ_{2} such that:

$$
L_{\tau_{\alpha+1}}[T] \models \psi_{1}(p, \alpha)
$$

\Leftrightarrow There is $t \in{ }^{\omega} \omega \cap L_{\tau_{\alpha}}[T]$ which satisfies (G.1) or (G.2) at
Stage $\alpha+1$ and let t be the $\leq_{L[T] \text {-least such real, }}$,
if $t=\langle 0, e\rangle *\langle v, i, j\rangle$ satisfies (G.1) and z, a, b, p^{a}, p^{b} are
as in Subcase 1.1

$$
\begin{aligned}
& \text { then }\{e\}\left(\left\langle z, f^{a}(i)\right\rangle, v, \chi_{K \oplus P_{j}^{a}},{ }^{2} E\right) \cong 0 \wedge p=p^{a} \\
& \quad \text { or }\{e\}\left(\left\langle z, f^{a}(i)\right\rangle, v, \chi_{K \oplus P_{j}^{a}},{ }^{2} E\right) \nVdash 0 \wedge p=p^{b}
\end{aligned}
$$

and if $t=\left\langle 1, e_{0}, e_{1}\right\rangle *\left\langle v_{0}, v_{1}, i, j, k\right\rangle$ satisfies (G.2),
then p is the $\leq_{L[T] \text {-least partial function as in (G.2). }}^{\text {- }}$.

$$
\begin{aligned}
L_{\tau_{\alpha+1}}[T] & =\psi_{2}(p, \alpha) \\
& \Leftrightarrow \text { There is no } t \in{ }^{\omega} \omega \cap L_{\tau_{\alpha}}[T] \text { which satisfies (G.1) or (G.2) } \\
& \text { at Stage } \alpha+1 \text { and } p=g^{\alpha} .
\end{aligned}
$$

Here, ψ_{1} and ψ_{2} correspond to Case 1 and Case 2 respectively.
We choose $r \in$ WO such that o.t. $(r)=\varrho(l)$. We prove $G_{l} \leq_{\mathcal{K}} K^{\text {SJ }}$ via r using (2) of $\S 0$. Let $x, y \in \omega^{\omega} \omega$ be arbitrary and $\left.M=L_{\omega_{1}^{K}}{ }^{\mathrm{SJ}} ; x, y, r\right)$ Notice that if $x \in L_{\tau_{\alpha+1}}[T]-L_{\tau_{\alpha}}[T]$, then by Lemma 3.2 and K^{SJ}-admissibility of M, we have $L_{\tau_{\alpha+1}}[T]=L_{\omega_{1}^{K ; x}}[K ; x] \in M$. By Lemma 3.4, there is $\sigma \leq \max \{\operatorname{rk}(x), \varrho(l)\}$ such that $L_{\sigma}[T]$ is $K^{\text {SJ }}$-admissible and $g(x), l \in L_{\sigma}[T]$; moreover, $f^{g(x)}(l) \in L_{\sigma}[T]$. Hence,

```
\(\langle x, y\rangle \in G_{l} \Leftrightarrow M \models " \exists \alpha \in \omega_{1}^{K ; x} \exists p \in L_{\omega_{1}^{K ; x}}[K ; x]\)
    \(\left(L_{\omega_{1}^{K ; x}}[K ; x]=L_{\tau_{\alpha+1}}[T] \wedge x \notin L_{\tau_{\alpha}}[T]\right.\)
    \(\wedge L_{\tau_{\alpha+1}}[T] \models \psi_{1}(p, \alpha) \vee \psi_{2}(p, \alpha)\)
    \(\wedge\left(\exists \sigma \leq \max \{\operatorname{rk}(x), \varrho(l)\}\left(x \in \operatorname{Dom}(p) \wedge p(x), l \in L_{\sigma}[T]\right.\right.\)
    \(\wedge L_{\sigma}[T]\) is \(K^{\mathrm{SJ}}\)-admissible \(\left.\wedge\left(y=f^{p(x)}(l)\right)^{L_{\sigma}[T]}\right)\)
    \(\vee(x \notin \operatorname{Dom}(p) \wedge y=\mathbf{0})))\).
```

Notice that the quantifiers in the statement " $\omega_{1}^{K ; x}=\tau_{\alpha+1}$ " are bounded by $L_{\omega_{1}^{K ; x}}[K ; x]$, since $\omega_{1}^{K ; x}=\tau_{\alpha+1}$ iff $\neg \exists \tau \in \omega_{1}^{K ; x}\left(\tau_{\alpha}<\tau \wedge \tau\right.$ satisfies (T.1)) ${ }^{L_{1}^{K ; x}[K ; x]}$. Hence " $\langle x, y\rangle \in G_{l} "$ is Δ_{1} over M. Therefore, $G_{l} \leq_{\mathcal{K}} K^{\text {SJ }}$.

Lemma 3.7. (1) $G_{0_{\mathcal{L}}} \equiv \mathcal{K} \emptyset$.
(2) For all $i, j \in \mathcal{L}$, if $i \leq_{\mathcal{L}} j$, then $K \oplus G_{i} \leq_{\mathcal{K}} K \oplus G_{j}$.
(3) For all $i, j, k \in \mathcal{L}$, if $i \vee_{\mathcal{L}} j=k$, then $\left(K \oplus G_{i}\right) \oplus\left(K \oplus G_{j}\right) \equiv_{\mathcal{K}} K \oplus G_{k}$.

Proof. (1) By definition, $G_{0_{\mathcal{L}}}=\left\{\left\langle x, f^{g(x)}\left(0_{\mathcal{L}}\right)\right\rangle \mid x \in{ }^{\omega} \omega\right\}=\{\langle x, \mathbf{0}\rangle \mid$ $\left.x \in{ }^{\omega} \omega\right\} \equiv \mathcal{K} \emptyset$.
(2) We choose $r \in \mathrm{WO}$ such that o.t. $(r)=\varrho(i, j)$. To prove $K \oplus G_{i} \leq_{\mathcal{K}}$ $K \oplus G_{j}$, it is sufficient to prove that for all $x, y \in{ }^{\omega} \omega$,

$$
\begin{aligned}
\langle x, y\rangle \in G_{i} \Leftrightarrow M \models " & \exists \sigma \leq \max \{\operatorname{rk}(x), \varrho(i, j)\} \exists a, z \in L_{\sigma}[T] \\
& \left(L_{\sigma}[T] \text { is } K^{\mathrm{SJ}}-\text { admissible } \wedge i, j \in L_{\sigma}[T]\right. \\
& \left.\wedge\langle x, z\rangle \in G_{j} \wedge\left(f^{a}(j)=z \wedge f^{a}(i)=y\right)^{L_{\sigma}[T]}\right) ",
\end{aligned}
$$

where $M=L_{\omega_{1}^{K \oplus G_{j} ; i, j, x, y, r}}\left[K \oplus G_{j} ; i, j, x, y, r\right]$.
Suppose $\langle x, y\rangle \in G_{i}$. By Lemma 2.2, $\operatorname{rk}(x) \in M$. By Lemma 3.4, there is $\sigma \leq \max \{\operatorname{rk}(x), \varrho(i, j)\}$ such that $L_{\sigma}[T]$ is $K^{\text {SJ }}$-admissible and $g(x), i, j \in$ $L_{\sigma}[T]$. By (R.5), we have $f^{g(x)}(i), f^{g(x)}(j) \in L_{\sigma}[T]$. Thus, if we set $a=g(x)$ and $z=f^{a}(j)$, then since $y=f^{a}(i)$ and $F \leq_{\mathcal{K}} K^{\mathrm{SJ}}$, the right-hand side holds. Conversely, suppose that $x, y \in{ }^{\omega} \omega$ satisfy the right-hand side. Let a, z be as in the right-hand side. By $\langle x, z\rangle \in G_{j}, f^{g(x)}(j)=z=f^{a}(j)$. Then, by (R.1), $f^{g(x)}(i)=f^{a}(i)$. Hence, $y=f^{g(x)}(i)$, and so $\langle x, y\rangle \in G_{i}$.
(3) By (2), $K \oplus G_{i} \oplus G_{j} \leq_{\mathcal{K}} K \oplus G_{k}$. We choose $r \in$ WO such that o.t. $(r)=\varrho(i, j, k)$. To prove $K \oplus G_{k} \leq_{\mathcal{K}} K \oplus G_{i} \oplus G_{j}$, it is sufficient to prove that for all $x, y \in{ }^{\omega} \omega$,

$$
\begin{aligned}
\langle x, y\rangle \in G_{k} \Leftrightarrow M \models & " \exists \sigma \leq \max \{\operatorname{rk}(x), \varrho(i, j, k)\} \exists a, z, z^{\prime} \in L_{\sigma}[T] \\
& \left(L_{\sigma}[T] \text { is } K^{\mathrm{SJ}} \text {-admissible } \wedge i, j, k \in L_{\sigma}[T]\right. \\
& \wedge\langle x, z\rangle \in G_{i} \wedge\left\langle x, z^{\prime}\right\rangle \in G_{j} \\
& \left.\wedge\left(f^{a}(i)=z \wedge f^{a}(j)=z^{\prime} \wedge f^{a}(k)=y\right)^{L_{\sigma}[T]}\right) ",
\end{aligned}
$$

where $M=L_{\omega_{1}^{K \oplus G_{i} \oplus G_{j} ; i, j, k, x, y, r}}\left[K \oplus G_{i} \oplus G_{j} ; i, j, k, x, y, r\right]$.

Suppose $\langle x, y\rangle \in G_{k}$. Similarly to (2), we set $a=g(x), z=f^{a}(i)$, $z^{\prime}=f^{a}(j)$ and choose $\sigma \leq \max \{\operatorname{rk}(x), \varrho(i, j, k)\}$ such that $L_{\sigma}[T]$ is $K^{\mathrm{SJ}_{-}}$ admissible and $g(x), i, j, k \in L_{\sigma}[T]$. Then the right-hand side holds. Conversely, suppose that $x, y \in{ }^{\omega} \omega$ satisfy the right-hand side. Let a, z, z^{\prime} be as in the right-hand side. Similarly to (2), we have $f^{g(x)}(k)=f^{a}(k)=y$ by (R.3), and so $\langle x, y\rangle \in G_{k}$.

Lemma 3.8. Let $\alpha \in \aleph_{1}$ and $t \in{ }^{\omega} \omega \cap L_{\tau_{\alpha}}[T]$ be the $\leq_{L[T] \text {-least real which }}$ satisfies (G.1) or (G.2) at Stage $\alpha+1$.
(1) If $t=\langle 0, e\rangle *\langle v, i, j\rangle$ satisfies (G.1), then there is $x \in{ }^{\omega} \omega \cap L_{\tau_{\alpha+1}}[T]$ such that

$$
\chi_{G_{i}^{\alpha+1}}(x) \not \approx\{e\}\left(x, v, \chi_{K \oplus G_{j}^{\alpha+1}},{ }^{2} E\right)
$$

and so $\chi_{G_{i}}(x) \neq\{e\}\left(x, v, \chi_{K \oplus G_{j}},{ }^{2} E\right)$.
(2) If $t=\left\langle 1, e_{0}, e_{1}\right\rangle *\left\langle v_{0}, v_{1}, i, j, k\right\rangle$ satisfies (G.2), then there is $x \in$ ${ }^{\omega} \omega \cap L_{\tau_{\alpha+1}}[T]$ such that

$$
\left\{e_{0}\right\}\left(x, v_{0}, \chi_{K \oplus G_{i}^{\alpha+1}},{ }^{2} E\right) \not \neq\left\{e_{1}\right\}\left(x, v_{1}, \chi_{K \oplus G_{j}^{\alpha+1}},{ }^{2} E\right)
$$

and so $\left\{e_{0}\right\}\left(x, v_{0}, \chi_{K \oplus G_{i}},{ }^{2} E\right) \neq\left\{e_{1}\right\}\left(x, v_{1}, \chi_{K \oplus G_{j}},{ }^{2} E\right)$.
Proof. Both in (1) and in (2) (i.e. in (G.1) and in (G.2)), since $\varrho(t) \leq \tau_{\alpha}$, $L_{\tau_{\alpha+1}}[T]$ is G_{i}-admissible and G_{j}-admissible by Lemma 3.5.
(1) We choose the $\leq_{L[T]}$-least $z \in{ }^{\omega} \omega \cap\left(L_{\tau_{\alpha+1}}[T]-L_{\tau_{\alpha}}[T]\right)$ and the $\leq_{L[T]}$-least $\langle a, b\rangle \in{ }^{\omega} \omega \times{ }^{\omega} \omega$ such that $f^{a}(j)=f^{b}(j) \wedge f^{a}(i) \neq f^{b}(i)$. We set $z^{\prime}=\left\langle z, f^{a}(i)\right\rangle$. Then $z^{\prime} \in L_{\tau_{\alpha+1}}[T]$. Let p^{a} and p^{b} be as in Subcase 1.1 at Stage $\alpha+1$.

CASE 1: $\{e\}\left(z^{\prime}, v, \chi_{K \oplus P_{j}^{a} * 0},{ }^{2} E\right) \cong 0$. Then, for $l \in\{i, j\}, G_{l} \cap L_{\tau_{\alpha+1}}[T]=$ $G_{l}^{\alpha+1}=P_{l}^{a} * \mathbf{0} \cap L_{\tau_{\alpha+1}}[T]$ by definition. Since $L_{\tau_{\alpha+1}}[T]$ is $\left(G_{j} ; v, z^{\prime}\right)$-admissible, $\{e\}\left(z^{\prime}, v, \chi_{K \oplus G_{j}},{ }^{2} E\right) \cong\{e\}\left(z^{\prime}, v, \chi_{K \oplus G_{j}^{\alpha+1}},{ }^{2} E\right) \cong 0$. By definition, $z^{\prime} \in G_{i}^{\alpha+1} \subseteq G_{i}$. Hence,

$$
\{e\}\left(z^{\prime}, v, \chi_{K \oplus G_{j}^{\alpha+1}},{ }^{2} E\right) \not \models 1 \cong \chi_{G_{i}^{\alpha+1}}\left(z^{\prime}\right)
$$

and $\{e\}\left(z^{\prime}, v, \chi_{K \oplus G_{j}},{ }^{2} E\right) \neq \chi_{G_{i}}\left(z^{\prime}\right)$.
CASE 2: $\{e\}\left(z^{\prime}, v, \chi_{K \oplus P_{j}^{a} * 0},{ }^{2} E\right) \neq 0$. Similarly to Case 1 ,

$$
\{e\}\left(z^{\prime}, v, \chi_{K \oplus G_{j}},{ }^{2} E\right) \cong\{e\}\left(z^{\prime}, v, \chi_{K \oplus G_{j}^{\alpha+1}},{ }^{2} E\right) \not \approx 0 .
$$

Since $g(z)=g^{\alpha+1}(z)=b$ and $f^{b}(i) \neq f^{a}(i)$, we have $z^{\prime} \notin G_{i}^{\alpha+1}$ and $z^{\prime} \notin G_{i}$. Hence,

$$
\{e\}\left(z^{\prime}, v, \chi_{K \oplus G_{j}^{\alpha+1}},{ }^{2} E\right) \not \models 0 \cong \chi_{G_{i}^{\alpha+1}}\left(z^{\prime}\right)
$$

and $\{e\}\left(z^{\prime}, v, \chi_{K \oplus G_{j}},{ }^{2} E\right) \not \not \chi_{G_{i}}\left(z^{\prime}\right)$.
(2) We choose the $\leq_{L[T]}$-least partial function $p \in L_{\tau_{\alpha+1}}[T]$ from ${ }^{\omega} \omega$ to ${ }^{\omega} \omega$ as in (G.2). Then, for $l \in\{i, j\}, G_{l} \cap L_{\tau_{\alpha+1}}[T]=G_{l}^{\alpha+1}=P_{l} * \mathbf{0} \cap L_{\tau_{\alpha+1}}[T]$. Hence, by (G.2), there is $x \in{ }^{\omega} \omega \cap L_{\tau_{\alpha+1}}[T]$ such that

$$
\left\{e_{0}\right\}\left(x, v_{0}, \chi_{K \oplus G_{i}^{\alpha+1}},{ }^{2} E\right) \not \not 二\left\{e_{1}\right\}\left(x, v_{1}, \chi_{K \oplus G_{j}^{\alpha+1}},{ }^{2} E\right)
$$

and hence $\left\{e_{0}\right\}\left(x, v_{0}, \chi_{K \oplus G_{i}},{ }^{2} E\right) \neq\left\{e_{1}\right\}\left(x, v_{1}, \chi_{K \oplus G_{j}},{ }^{2} E\right)$.
Lemma 3.9. For all $t \in{ }^{\omega} \omega,\left\{\alpha \in \aleph_{1} \mid t\right.$ satisfies (G.1) or (G.2) at Stage $\alpha+1\}$ is countable. Hence $\bigcup_{t<L_{L T T]}}\left\{\alpha \in \aleph_{1} \mid t\right.$ satisfies (G.1) or (G.2) at Stage $\alpha+1\}$ is countable and so bounded for all $s \in{ }^{\omega} \omega$ (since $\left\{t \in{ }^{\omega} \omega \mid t<_{L[T]} s\right\}$ is countable).

Proof. We set $X_{t}=\left\{\alpha \in \aleph_{1} \mid t\right.$ satisfies (G.1) or (G.2) at Stage $\left.\alpha+1\right\}$ for $t \in{ }^{\omega} \omega$. We prove that for all $t \in{ }^{\omega} \omega, X_{t}$ is countable by induction on t.

Let $t \in{ }^{\omega} \omega$ and assume that for all $u \in{ }^{\omega} \omega$, if $u<_{L[T]} t$ then X_{u} is countable. Suppose that, on the contrary, X_{t} is uncountable. By the inductive assumption $\bigcup_{u L_{L[T]} t} X_{u}$ is countable, hence we can take $\beta \in X_{t}-\bigcup_{u L_{L[T]} t} X_{u}$. Then t is the $<_{L[T]}$-least real which satisfies (G.1) or (G.2) at Stage $\beta+1$. Since X_{t} is uncountable, there is $\alpha \in X_{t}$ such that $\beta+1 \leq \alpha$.

Case 1: t satisfies (G.1) at Stage $\beta+1$. There are $e \in \omega, v \in{ }^{\omega} \omega$, and $i, j \in$ \mathcal{L} such that $t=\langle 0, e\rangle *\langle v, i, j\rangle$. By Lemma 3.8, there is $x \in{ }^{\omega} \omega \cap L_{\tau_{\beta+1}}[T](\subseteq$ $\left.L_{\tau_{\alpha}}[T]\right)$ such that $\chi_{G_{i}^{\beta+1}}(x) \neq\{e\}\left(x, v, \chi_{K \oplus G_{j}^{\beta+1}},{ }^{2} E\right)$. Then, similarly to the proof of Lemma 3.8, since $G_{l}^{\alpha} \cap L_{\tau_{\beta+1}}[T]=G_{l}^{\beta+1}$ for $l \in\{i, j\}$ and $L_{\tau_{\beta+1}}[T]$ is G_{j}-admissible, we have $\chi_{G_{i}^{\alpha}}(x) \neq\{e\}\left(x, v, \chi_{K \oplus G_{j}^{\alpha}},{ }^{2} E\right)$. Hence, t does not satisfy (G.1) at Stage $\alpha+1$. Moreover, since $t(0)=0, t$ does not satisfy (G.2) at Stage $\alpha+1$. This contradicts $\alpha \in X_{t}$.

CASE 2: t satisfies (G.2) at Stage $\beta+1$. There are $e_{0}, e_{1} \in \omega, v_{0}, v_{1} \in$ ${ }^{\omega} \omega$, and $i, j, k \in \mathcal{L}$ such that $t=\left\langle 1, e_{0}, e_{1}\right\rangle *\left\langle v_{0}, v_{1}, i, j, k\right\rangle$. Similarly to Case 1, there is $x \in{ }^{\omega} \omega \cap L_{\tau_{\beta+1}}[T]$ such that $\left\{e_{0}\right\}\left(x, v_{0}, \chi_{K \oplus G_{i}^{\alpha}},{ }^{2} E\right) \neq$ $\left\{e_{1}\right\}\left(x, v_{1}, \chi_{K \oplus G_{j}^{\alpha}},{ }^{2} E\right)$. Hence, t does not satisfy (G.2) at Stage $\alpha+1$. Moreover, since $t(0)=1, t$ does not satisfy (G.1) at Stage $\alpha+1$. This contradicts $\alpha \in X_{t}$.

Lemma 3.10. For all $i, j \in \mathcal{L}$, if $i \not \mathbb{L}_{\mathcal{L}} j$, then $K \oplus G_{i} \not \mathbb{L}_{\mathcal{K}} K \oplus G_{j}$.
Proof. Assume $i \not \mathbb{L}_{\mathcal{L}} j$ and $G_{i} \leq \mathcal{K} K \oplus G_{j}$. We choose $e \in \omega$ and $v \in{ }^{\omega} \omega$ such that for all $x \in{ }^{\omega} \omega, \chi_{G_{i}}(x) \cong\{e\}\left(x, v, \chi_{K \oplus G_{j}},{ }^{2} E\right)$. We set $t=\langle 0, e\rangle *\langle v, i, j\rangle$. By Lemma 3.9, we can choose $\alpha \in \aleph_{1}$ such that for all $u<_{L[T]}$ t, u does not satisfy (G.1) or (G.2) (taking u in place of t) at Stage $\alpha+1$. Choosing α sufficiently large, we may assume that there is $\alpha^{\prime}<\alpha$ such that $\alpha=\alpha^{\prime}+1$ and $\varrho(t) \leq \tau_{\alpha^{\prime}}$. Then, by Lemma 3.5, $L_{\tau_{\alpha}}[T]$
is G_{j}-admissible, and so by the choice of e, v, for all $x \in{ }^{\omega} \omega \cap L_{\tau_{\alpha}}[T]$, we have $\chi_{G_{i}^{\alpha}}(x) \cong\{e\}\left(x, v, \chi_{K \oplus G_{j}^{\alpha}},{ }^{2} E\right)$. Hence, t satsfies (G.1) at Stage $\alpha+1$. Moreover, t is the $\leq_{L[T] \text {-least real which satisfies (G.1) or (G.2) at Stage }}$ $\alpha+1$. Therefore, by Lemma 3.8, there is $x \in{ }^{\omega} \omega \cap L_{\tau_{\alpha+1}}[T]$ such that $\chi_{G_{i}}(x) \not \approx\{e\}\left(x, v, \chi_{K \oplus G_{j}},{ }^{2} E\right)$. This is a contradiction.

Lemma 3.11. Let $i, j, k \in \mathcal{L}, i \wedge^{\mathcal{L}} j=k, \alpha \in \aleph_{1}, e_{0}, e_{1} \in \omega$, and $v_{0}, v_{1} \in$ ${ }^{\omega} \omega$. Assume that there are partial functions $p, p^{\prime} \in L_{\tau_{\alpha+1}}[T]$ from ${ }^{\omega} \omega$ to ${ }^{\omega} \omega$, $\sigma \leq \tau_{\alpha}$, and $x \in{ }^{\omega} \omega$ such that $g^{\alpha} \subseteq p, p^{\prime}, \operatorname{Dom}(p)=\operatorname{Dom}\left(p^{\prime}\right), P_{k}=P_{k}^{\prime}$, $L_{\sigma}[T]$ is K^{SJ}-admissible, $i, j, k \in L_{\sigma}[T], \operatorname{Rng}\left(p-g^{\alpha}\right), \operatorname{Rng}\left(p^{\prime}-g^{\alpha}\right) \subseteq L_{\sigma}[T]$, and $\left\{e_{0}\right\}\left(x, v_{0}, \chi_{K \oplus P_{i} * \mathbf{0}},{ }^{2} E\right) \neq\left\{e_{1}\right\}\left(x, v_{1}, \chi_{K \oplus P_{j}^{\prime} * \mathbf{0}},{ }^{2} E\right)$. Then there is a partial function $p^{\prime \prime} \in L_{\tau_{\alpha+1}}[T]$ from ${ }^{\omega} \omega$ to ${ }^{\omega} \omega$ such that $g^{\alpha} \subseteq p^{\prime \prime}, \operatorname{Rng}\left(p^{\prime \prime}-g^{\alpha}\right) \subseteq$ $L_{\sigma}[T]$, and $\left\{e_{0}\right\}\left(x, v_{0}, \chi_{K \oplus P_{i}^{\prime \prime} * 0},{ }^{2} E\right) \not \neq\left\{e_{1}\right\}\left(x, v_{1}, \chi_{K \oplus P_{j}^{\prime \prime} * \mathbf{0}},{ }^{2} E\right)$.

Proof. We set $D=\operatorname{Dom}(p)-\operatorname{Dom}\left(g^{\alpha}\right)$. Since $P_{k}=P_{k}^{\prime}$, for all $y \in D$, $f^{p(y)}(k)=f^{p^{\prime}(y)}(k)$. By (R.4*), for all $y \in D$ there are $c_{0}^{y}, c_{1}^{y}, c_{2}^{y} \in{ }^{\omega} \omega \cap L_{\sigma}[T]$ such that $f^{p(y)} \equiv_{i} f^{c_{0}^{y}} \equiv_{j} f^{c_{1}^{y}} \equiv_{i} f^{c_{2}^{y}} \equiv_{j} f^{p^{\prime}(y)}$. Since $p, p^{\prime}, D, L_{\sigma}[T] \in$ $L_{\tau_{\alpha+1}}[T]$ and $F \leq_{\mathcal{K}} K^{\mathrm{SJ}}$, there exists $\left\langle\left\langle c_{0}^{y}, c_{1}^{y}, c_{2}^{y}\right\rangle \mid y \in D\right\rangle \in L_{\tau_{\alpha+1}}[T]$ such that for all $y \in D, c_{0}^{y}, c_{1}^{y}, c_{2}^{y} \in{ }^{\omega} \omega \cap L_{\sigma}[T]$ and $f^{p(y)} \equiv_{i} f^{c_{0}^{y}} \equiv_{j} f^{c_{1}^{y}} \equiv_{i} f^{c_{2}^{y}} \equiv_{j}$ $f^{p^{\prime}(y)}$ by Δ_{1}-separation. We define $p^{n}: \operatorname{Dom}(p) \rightarrow{ }^{\omega} \omega(n \in 3)$ by

$$
p^{n}(y)= \begin{cases}g^{\alpha}(y) & \text { if } y \in \operatorname{Dom}\left(g^{\alpha}\right) \\ c_{n}^{y} & \text { if } y \in D\end{cases}
$$

Then $p^{n} \in L_{\tau_{\alpha+1}}[T]$ and $\operatorname{Rng}\left(p^{n}-g^{\alpha}\right) \subseteq L_{\sigma}[T]$ for $n \in 3$. By definition, $P_{i}=P_{i}^{0}, P_{j}^{0}=P_{j}^{1}, P_{i}^{1}=P_{i}^{2}$, and $P_{j}^{2}=P_{j}^{\prime}$. If we assume that for all $n \in 3,\left\{e_{0}\right\}\left(x, v_{0}, \chi_{K \oplus P_{i}^{n} * 0},{ }^{2} E\right) \cong\left\{e_{1}\right\}\left(x, v_{1}, \chi_{K \oplus P_{j}^{n} * \mathbf{0}},{ }^{2} E\right)$, then we obtain $\left\{e_{0}\right\}\left(x, v_{0}, \chi_{K \oplus P_{i} * 0},{ }^{2} E\right) \cong\left\{e_{1}\right\}\left(x, v_{1}, \chi_{K \oplus P_{j}^{\prime} * 0},{ }^{2} E\right)$, a contradiction. So there is $n \in 3$ such that $\left\{e_{0}\right\}\left(x, v_{0}, \chi_{K \oplus P_{i}^{n}},{ }^{2} E\right) \not \approx\left\{e_{1}\right\}\left(x, v_{1}, \chi_{K \oplus P_{j}^{n}},{ }^{2} E\right)$.

Lemma 3.12. For all $i, j, k \in \mathcal{L}$, if $i \wedge^{\mathcal{L}} j=k$, then $\operatorname{deg}\left(K \oplus G_{k}\right)$ is the $\leq_{\mathcal{K}}$-infimum of $\operatorname{deg}\left(K \oplus G_{i}\right)$ and $\operatorname{deg}\left(K \oplus G_{j}\right)$.

Proof. It is sufficient to prove that for all $X \subseteq{ }^{\omega} \omega$, if $X \leq_{\mathcal{K}} K \oplus G_{i}$ and $X \leq \mathcal{K} K \oplus G_{j}$, then $X \leq \mathcal{K} K \oplus G_{k}$. We fix $X \subseteq{ }^{\omega} \omega$ such that $X \leq \mathcal{K} K \oplus G_{i}$ and $X \leq \mathcal{K} K \oplus G_{j}$, and choose $e_{0}, e_{1} \in \omega$ and $v_{0}, v_{1} \in{ }^{\omega} \omega$ such that for all $x \in{ }^{\omega} \omega, \chi_{X}(x) \cong\left\{e_{0}\right\}\left(x, v_{0}, \chi_{K \oplus G_{i}},{ }^{2} E\right) \cong\left\{e_{1}\right\}\left(x, v_{1}, \chi_{K \oplus G_{j}},{ }^{2} E\right)$. We set $t=\left\langle 1, e_{0}, e_{1}\right\rangle *\left\langle v_{0}, v_{1}, i, j, k\right\rangle$. By Lemma 3.9, we choose $\gamma \in \aleph_{1}$ such that $\sup \left(\bigcup_{u<L_{[T]} t}\left\{\alpha \in \aleph_{1} \mid u\right.\right.$ satisfies (G.1) or (G.2) at Stage $\left.\left.\alpha+1\right\}\right)<\gamma$ and $\varrho(t) \leq \tau_{\gamma}$.

Claim 1. For all $\alpha \in \aleph_{1}$, if $\gamma \leq \alpha$, then there is no partial function $p \in L_{\tau_{\alpha+1}}[T]$ from ${ }^{\omega} \omega$ to ${ }^{\omega} \omega$ as in (G.2) at Stage $\alpha+1$.

Proof. Assume $\gamma \leq \alpha \in \aleph_{1}$ and there is a partial function $p \in L_{\tau_{\alpha+1}}[T]$ from ${ }^{\omega} \omega$ to ${ }^{\omega} \omega$ as in (G.2) at Stage $\alpha+1$. Then t satisfies (G.2) at Stage $\alpha+1$ by the choice of $e_{0}, e_{1}, v_{0}, v_{1}$. Since $\gamma \leq \alpha, t$ is the $\leq_{L[T]}$-least real which satisfies (G.1) or (G.2) at Stage $\alpha+1$. Thus, by Lemma 3.8, there is $x \in{ }^{\omega} \omega$ such that $\left\{e_{0}\right\}\left(x, v_{0}, \chi_{K \oplus G_{i}},{ }^{2} E\right) \not \equiv\left\{e_{1}\right\}\left(x, v_{1}, \chi_{K \oplus G_{j}},{ }^{2} E\right)$. This is a contradiction and completes the proof of Claim 1.

Claim 2. For all $\alpha \in \aleph_{1}$ with $\gamma \leq \alpha$ and for all partial functions $p, p^{\prime} \in L_{\tau_{\alpha+1}}[T]$ from ${ }^{\omega} \omega$ to ${ }^{\omega} \omega$, if $g_{\alpha} \subseteq p, p^{\prime}, \operatorname{Dom}(p)=\operatorname{Dom}\left(p^{\prime}\right), P_{k}=$ P_{k}^{\prime}, and there is $\sigma \leq \tau_{\alpha}$ such that $L_{\sigma}[T]$ is K^{SJ}-admissible, $t \in L_{\sigma}[T]$, and $\operatorname{Rng}\left(p-g^{\alpha}\right), \operatorname{Rng}\left(p^{\prime}-g^{\alpha}\right) \subseteq L_{\sigma}[T]$, then for all $x \in{ }^{\omega} \omega \cap L_{\tau_{\alpha+1}}[T]$, $\left\{e_{0}\right\}\left(x, v_{0}, \chi_{K \oplus P_{i} * 0},{ }^{2} E\right) \cong\left\{e_{0}\right\}\left(x, v_{0}, \chi_{K \oplus P_{i}^{*} * 0},{ }^{2} E\right)$.

Proof. Assume $\gamma \leq \alpha<\aleph_{1}$ and Claim 2 does not hold for some partial functions p, p^{\prime}. Then there is $x \in{ }^{\omega} \omega \cap L_{\tau_{\alpha+1}}[T]$ such that

$$
\left\{e_{0}\right\}\left(x, v_{0}, \chi_{K \oplus P_{i} * 0},{ }^{2} E\right) \not \equiv\left\{e_{0}\right\}\left(x, v_{0}, \chi_{K \oplus P_{i}^{\prime} * 0},{ }^{2} E\right) .
$$

Since Claim 1 implies that p^{\prime} is not as in (G.2) at Stage $\alpha+1$,

$$
\left\{e_{0}\right\}\left(x, v_{0}, \chi_{K \oplus P_{i}^{\prime} * 0},{ }^{2} E\right) \cong\left\{e_{1}\right\}\left(x, v_{1}, \chi_{K \oplus P_{j}^{\prime} * 0},{ }^{2} E\right) .
$$

Hence

$$
\left\{e_{0}\right\}\left(x, v_{0}, \chi_{K \oplus P_{i} * 0},{ }^{2} E\right) \not \not 二\left\{e_{1}\right\}\left(x, v_{1}, \chi_{K \oplus P_{j}^{\prime} * 0},{ }^{2} E\right) .
$$

Thus, by Lemma 3.11, there is a partial function $p^{\prime \prime} \in L_{\tau_{\alpha+1}}[T]$ as in (G.2) at Stage $\alpha+1$. This contradicts Claim 1 and completes the proof of Claim 2.

Claim 3. For all $\alpha \in \aleph_{1}$ with $\gamma \leq \alpha$, set $H_{\alpha}=G_{i}^{\alpha} \cup\left\{\langle x, y\rangle \in{ }^{\omega} \omega \mid\right.$ $x \notin L_{\tau_{\alpha}}[T] \wedge \exists a \in{ }^{\omega} \omega\left(y=f^{a}(i) \wedge a\right.$ is the $\leq_{L[T]}$-least real such that $\left.\left.\left\langle x, f^{a}(k)\right\rangle \in G_{k}\right)\right\}$. Then:
(1) H_{α} is uniformly Δ_{1}-definable over all T, G_{k}-admissible sets of which τ_{α} is an element.
(2) For all $x \in{ }^{\omega} \omega \cap L_{\tau_{\alpha+1}}[T]$,

$$
\left\{e_{0}\right\}\left(x, v_{0}, \chi_{K \oplus G_{i}},{ }^{2} E\right) \cong\left\{e_{0}\right\}\left(x, v_{0}, \chi_{K \oplus H_{\alpha}},{ }^{2} E\right) .
$$

Proof. (1) It is sufficient to prove that $H_{\alpha}-G_{i}^{\alpha}$ is uniformly $\Delta_{1^{-}}$ definable over all T, G_{k}-admissible sets of which τ_{α} is an element. By Lemma 3.4, for all $x \in{ }^{\omega} \omega-L_{\tau_{\alpha}}[T]$ (notice $\varrho(t) \leq \tau_{\gamma} \leq \tau_{\alpha} \leq \operatorname{rk}(x)$), there is $\sigma \leq \operatorname{rk}(x)$ such that $L_{\sigma}[T]$ is K^{SJ}-admissible and $g(x), i, k \in L_{\sigma}[T]$, and moreover if a is the $\leq_{L[T]}$ least real such that $\left\langle x, f^{a}(k)\right\rangle \in G_{k}$, then since $a \leq_{L[T]} g(x)$, we have $a \in L_{\sigma}[T]$ and so $f^{a}(k), f^{a}(i) \in L_{\sigma}[T]$. Hence, for any T, G_{k}-admissible set M with $\tau_{\alpha} \in M$ and for all $x, y \in{ }^{\omega} \omega \cap M$,

$$
\begin{array}{rl}
\langle x, y\rangle \in H_{\alpha} & -G_{i}^{\alpha} \\
\Leftrightarrow M \models " & x \notin L_{\tau_{\alpha}}[T] \wedge \exists \sigma \leq \operatorname{rk}(x) \exists a \in{ }^{\omega} \omega \cap L_{\sigma}[T] \\
& \left(L_{\sigma}[T] \text { is } K^{\mathrm{SJ}} \text {-admissible } \wedge i, k \in L_{\sigma}[T]\right. \\
& \wedge \exists z \in L_{\sigma}[T]\left(\left(z=f^{a}(k)\right)^{L_{\sigma}}[T] \wedge\langle x, z\rangle \in G_{k}\right) \\
& \wedge \forall b, z \in{ }^{\omega} \omega \cap L_{\sigma}[T]\left(\left(b<_{L[T]} a \wedge z=f^{b}(k)\right)^{L_{\sigma}[T]} \Rightarrow\langle x, z\rangle \notin G_{k}\right) \\
& \left.\wedge\left(y=f^{a}(i)\right)^{L_{\sigma}[T]}\right) ",
\end{array}
$$

i.e. the quantifiers in the formula which states " $\langle x, y\rangle \in H_{\alpha}-G_{i}^{\alpha \text { " }}$ are bounded by $L_{\sigma}[T]$ and $\operatorname{rk}(x)$.
(2) By definition, there is a partial function $p \in L_{\tau_{\alpha+1}}[T]$ such that $g^{\alpha} \subseteq p$ and

$$
g^{\alpha+1}(x)= \begin{cases}p(x) & \text { if } x \in \operatorname{Dom}(p), \\ \mathbf{0} & \text { if } x \in \omega_{\omega} \cap L_{\tau_{\alpha+1}}[T]-\operatorname{Dom}(p) .\end{cases}
$$

Then $P_{i} * \mathbf{0} \cap L_{\tau_{\alpha+1}}[T]=G_{i}^{\alpha+1}=G_{i} \cap L_{\tau_{\alpha+1}}[T]$. By Lemma 3.4, there is $\sigma \leq \tau_{\alpha}$ such that $L_{\sigma}[T]$ is K^{SJ}-admissible, $t \in L_{\sigma}[T]$, and $\operatorname{Rng}\left(p-g^{\alpha}\right) \subseteq$ $L_{\sigma}[T]$. We define $p^{\prime}: \operatorname{Dom}(p) \rightarrow{ }^{\omega} \omega$ by

$$
p^{\prime}(x)= \begin{cases}g^{\alpha}(x) & \text { if } x \in \operatorname{Dom}\left(g^{\alpha}\right), \\ \text { the } \leq_{L[T]-\text { least } a \in{ }^{\omega} \omega} \text { such that }\left\langle x, f^{a}(k)\right\rangle \in G_{k} & \text { if } x \in \operatorname{Dom}(p)-\operatorname{Dom}\left(g^{\alpha}\right) .\end{cases}
$$

Then for all $x \in \operatorname{Dom}(p)$ we have $f^{p^{\prime}(x)}(k)=f^{g(x)}(k)=f^{p(x)}(k)$, and so $P_{k}^{\prime}=P_{k}$. Since $p^{\prime}(x) \leq_{L[T]} g(x)$ for all $x \in \operatorname{Dom}(p)$, it follows that $\operatorname{Rng}\left(p^{\prime}-g^{\alpha}\right) \subseteq L_{\sigma}[T]$. Since $L_{\tau_{\alpha+1}}[T]$ is G_{k}-admissible, similarly to (1), p^{\prime} is Δ_{1} over $L_{\tau_{\alpha+1}}[T]$ and so $p^{\prime} \in L_{\tau_{\alpha+1}}[T]$ by Δ_{1}-separation. Moreover, $P_{i}^{\prime} * \mathbf{0} \cap L_{\tau_{\alpha+1}}[T]=H_{\alpha} \cap L_{\tau_{\alpha+1}}[T]$ by definition (notice the assumption
 $\left\{e_{0}\right\}\left(x, v_{0}, \chi_{K \oplus P_{i} * 0},{ }^{2} E\right) \cong\left\{e_{0}\right\}\left(x, v_{0}, \chi_{K \oplus P_{i}^{\prime} * 0},{ }^{2} E\right)$ and hence

$$
\left\{e_{0}\right\}\left(x, v_{0}, \chi_{K \oplus G_{i}},{ }^{2} E\right) \cong\left\{e_{0}\right\}\left(x, v_{0}, \chi_{K \oplus H_{\alpha}},{ }^{2} E\right) .
$$

This completes the proof of Claim 3.
Let $x \in{ }^{\omega} \omega-L_{\tau_{\gamma}}[T]$ and $n \in 2$, and $M=L_{\omega_{1}^{K \oplus G_{k} ; x}}\left[K \oplus G_{k} ; x\right]$. By Lemma 2.2, M is T-admissible, and if $x \in L_{\tau_{\alpha+1}}[T]-L_{\tau_{\alpha}}[T]$, then $\gamma \leq \alpha$ and $\tau_{\alpha} \leq \operatorname{rk}(x) \in \tau_{\alpha+1} \cap M$. Hence by Claim 3,

$$
\begin{aligned}
& \chi_{X}(x) \cong n \\
& \Leftrightarrow \exists \alpha \in \aleph_{1}\left(x \in L_{\tau_{\alpha+1}}[T]-L_{\tau_{\alpha}}[T] \wedge\left\{e_{0}\right\}\left(x, v_{0}, \chi_{K \oplus H_{\alpha}},{ }^{2} E\right) \cong n\right) \\
& \Leftrightarrow M \models \text { " } \exists \alpha \leq \operatorname{rk}(x)\left(\tau_{\alpha} \leq \operatorname{rk}(x)\right. \\
& \wedge \neg \exists \tau \leq \operatorname{rk}(x)\left(\tau_{\alpha}<\tau \wedge \tau\right. \text { satisfies (T.1)) } \\
& \left.\wedge\left\{e_{0}\right\}\left(x, v_{0}, \chi_{K \oplus H_{\alpha}},{ }^{2} E\right) \cong n\right) \text {. }
\end{aligned}
$$

Therefore, $X-L_{\tau_{\gamma}}[T]$ and $\left({ }^{\omega} \omega-X\right)-L_{\tau_{\gamma}}[T]$ are uniformly Σ_{1}-definable over all $\left(K \oplus G_{k} ; w\right)$-admissible sets, where w is a real in WO such that o.t. $(w)=\tau_{\gamma}$. Since $L_{\tau_{\gamma}}[T]$ is countable, $X \leq_{\mathcal{K}} K \oplus G_{k}$.

This completes the proof of the Theorem.
Remark. In the Theorem, we may replace " $\left(\mathcal{L}, \leq_{\mathcal{L}}, \vee_{\mathcal{L}}, \wedge^{\mathcal{L}}\right)$ is Kleene recursive in K^{SJ} " by " $\left(\mathcal{L}, \leq_{\mathcal{L}}, \vee_{\mathcal{L}}, \wedge^{\mathcal{L}}\right)$ is Kleene recursive in the finite times superjump of K ".

Concerning, for example, $\left(K^{\mathrm{SJ}}\right)^{\mathrm{SJ}}$, for any K-admissible set N, N is closed under $\lambda x \cdot \omega_{1}^{K ; x}$ and $\lambda x \cdot \omega_{1}^{K^{\mathrm{SJ}} ; x}$ iff N is $\left(K^{\mathrm{SJ}}\right)^{\mathrm{SJ}}$-admissible, and the quantifiers in the statement " N is closed under $\lambda x . \omega_{1}^{K^{\mathrm{SJ}} ; x}$ " are bounded by N as " $\forall x \in{ }^{\omega} \omega \cap N \exists \alpha \in \mathrm{On} \cap N\left(L_{\alpha}[K ; x]\right.$ is $(K ; x)$-admissible $\wedge \forall y \in$ ${ }^{\omega} \omega \cap L_{\alpha}[K ; x] \exists \beta<\alpha\left(L_{\beta}[K ; y]\right.$ is $(K ; y)$-admissible $\left.)\right)^{N}$ ". Replacing " $L_{\sigma}[T]$ is K^{SJ}-admissible" by " $L_{\sigma}[T]$ is $\left(K^{\mathrm{SJ}}\right)^{\mathrm{SJ}}$-admissible" in the proof of the Theorem, we can prove the following:

Theorem $^{\prime}(\mathrm{ZFC}+\mathrm{CH})$. Let $K_{0} \oplus K_{1} \leq \mathcal{K} K \subseteq{ }^{\omega} \omega$. For any lattice \mathcal{L}, if $\mathcal{L} \subseteq{ }^{\omega} \omega$ and $\left(\mathcal{L}, \leq_{\mathcal{L}}, \vee_{\mathcal{L}}, \wedge^{\mathcal{L}}\right)$ is Kleene recursive in $\left(K^{\mathrm{SJ}}\right)^{\mathrm{SJ}}$, then \mathcal{L} can be embedded in $\mathcal{K}\left[K, K^{\mathrm{SJ}}\right]$.

References

[1] K. J. Devlin, Constructibility, Springer, 1984.
[2] K. Hrbáček, On the complexity of analytic sets, Z. Math. Logik Grundlag. Math. 24 (1978), 419-425.
[3] M. Lerman, Degrees of Unsolvability, Springer, 1983.
[4] H. Muraki, Local density of Kleene degrees, Math. Logic Quart. 43 (1995), 183-189.
[5] -, Non-distributive upper semilattice of Kleene degrees, J. Symbolic Logic 64 (1999), 147-158.
[6] R. A. Shore and T. A. Slaman, The $p-T$ degrees of the recursive sets: lattice embeddings, extensions of embeddings and the two-quantifier theory, Theoret. Comput. Sci. 97 (1992), 263-284.
[7] R. Solovay, Determinacy and type 2 recursion (abstract), J. Symbolic Logic 36 (1971), 374.
[8] G. Weitkamp, Kleene recursion over the continuum, Ph.D. Thesis, Pennsylvania State Univ., 1980.

Department of Mathematics
Nagoya University
Chikusa-ku, Nagoya 464-8602, Japan
E-mail: muraki@math.nagoya-u.ac.jp

[^0]: 1991 Mathematics Subject Classification: 03D30, 03D65.

