Embedding lattices in the Kleene degrees

by

Hisato Muraki (Nagoya)

Abstract. Under ZFC+CH, we prove that some lattices whose cardinalities do not exceed \aleph_1 can be embedded in some local structures of Kleene degrees.

0. We denote by ${}^{2}E$ the existential integer quantifier and by χ_{A} the characteristic function of A, i.e. $x \in A \Leftrightarrow \chi_{A}(x) = 1$, and $x \notin A \Leftrightarrow \chi_{A}(x) = 0$. Kleene reducibility is defined as follows: for $A, B \subseteq {}^{\omega}\omega, A \leq_{\mathcal{K}} B$ iff there is $a \in {}^{\omega}\omega$ such that χ_{A} is recursive in a, χ_{B} , and ${}^{2}E$.

We introduce the following notations. \mathcal{K} denotes the upper semilattice of all Kleene degrees with the order induced by $\leq_{\mathcal{K}}$. For $X, Y \subseteq {}^{\omega}\omega$, we set $X \oplus Y = \{\langle 0 \rangle * x \mid x \in X\} \cup \{\langle 1 \rangle * x \mid x \in Y\}$. Then $\deg(X \oplus Y)$ is the supremum of $\deg(X)$ and $\deg(Y)$. The *superjump* of X is the set $X^{\mathrm{SJ}} = \{\langle e \rangle * x \in {}^{\omega}\omega \mid \{e\}((x)_0, (x)_1, \chi_X, {}^{2}E)\downarrow\}$. Here, $\langle e \rangle * x$ is the real such that $(\langle e \rangle * x)(0) = e$ and $(\langle e \rangle * x)(n+1) = x(n)$ for $n \in \omega$. More generally, for $m \in \omega, \langle e_0, \ldots, e_m \rangle * x$ is the real such that $(\langle e_0, \ldots, e_m \rangle * x)(n) = e_n$ for $n \leq m$ and $(\langle e_0, \ldots, e_m \rangle * x)(n+m+1) = x(n)$ for $n \in \omega$. Further, $(x)_0 = \lambda n.x(2n)$ and $(x)_1 = \lambda n.x(2n+1)$. We identify $\langle (x)_0, (x)_1 \rangle$ with x. An X-admissible set is closed under $\lambda x.\omega_1^{X;x}$ iff it is X^{SJ} -admissible.

The following conditions (1) and (2) are equivalent to $A \leq_{\mathcal{K}} B$ ([8]).

(1) There is $y \in {}^{\omega}\omega$ such that A is uniformly Δ_1 -definable over all (B; y)admissible sets; i.e. there are $\Sigma_1(\dot{B})$ formulas φ_0 and φ_1 such that for any (B; y)-admissible set M and for all $x \in {}^{\omega}\omega \cap M$,

$$x \in A \Leftrightarrow M \models \varphi_0(x, y) \Leftrightarrow M \models \neg \varphi_1(x, y).$$

(2) There are $y \in {}^{\omega}\omega$ and $\Sigma_1(\dot{B})$ formulas φ_0 and φ_1 such that for all $x \in {}^{\omega}\omega$,

$$x \in A \Leftrightarrow L_{\omega_1^{B;x,y}}[B;x,y] \models \varphi_0(x,y) \Leftrightarrow L_{\omega_1^{B;x,y}}[B;x,y] \models \neg \varphi_1(x,y).$$

1991 Mathematics Subject Classification: 03D30, 03D65.

^[47]

Here, we are thinking of the language of set theory with an additional unary predicate symbol \dot{B} . A set M is said to be (B; y)-admissible iff the structure $\langle M, \in, B \cap M \rangle$ is admissible and $y \in M$. Next, $L_{\alpha}[B; y]$ denotes the α th stage of the hierarchy constructible from $\{y\}$ relative to a unary predicate B, and $\omega_1^{B;y}$ denotes the least (B; y)-admissible ordinal.

For $K, K' \subseteq {}^{\omega}\omega$, we set $\mathcal{K}[K, K'] = \{ \deg(X) \mid K \leq_{\mathcal{K}} X \leq_{\mathcal{K}} K' \}$. In §3, we will prove that under ZFC+CH, for some $K \subseteq {}^{\omega}\omega$, lattices whose fields $\subseteq {}^{\omega}\omega$ and which are Kleene recursive in K^{SJ} can be embedded in $\mathcal{K}[K, K^{SJ}]$. Without CH, it is unknown whether our Theorem can be proved or not.

1. Similarly to [3] and [6], we use lattice tables (lattice representations in [6]), on which lattices are represented by dual lattices of equivalence relations. For every lattice \mathcal{L} with cardinality $\leq 2^{\aleph_0}$, we denote the field of \mathcal{L} also by \mathcal{L} and regard $\mathcal{L} \subseteq {}^{\omega}\omega$. We denote by **0** the identically 0 function from ω to ω .

DEFINITION. Let \mathcal{L} be a lattice with relations $\leq_{\mathcal{L}}, \forall_{\mathcal{L}}, \text{ and } \wedge^{\mathcal{L}}$. For $a, b \in \mathcal{L}(\omega\omega)$ and $l \in \mathcal{L}$, we define $a \equiv_l b$ by a(l) = b(l). $\Theta \subseteq \mathcal{L}(\omega\omega)$ is called an upper semilattice table of \mathcal{L} iff Θ satisfies:

- (R.0) If there is the least element $0_{\mathcal{L}}$ of \mathcal{L} , then for all $a \in \Theta$, $a(0_{\mathcal{L}}) = \mathbf{0}$.
- (R.1) (Ordering) For all $a, b \in \Theta$ and $i, j \in \mathcal{L}$, if $i \leq_{\mathcal{L}} j$ and $a \equiv_j b$, then $a \equiv_i b$.
- (R.2) (Non-ordering) For all $i, j \in \mathcal{L}$, if $i \not\leq_{\mathcal{L}} j$, then there are $a, b \in \Theta$ such that $a \equiv_j b$ and $a \not\equiv_i b$.
- (R.3) (Join) For all $a, b \in \Theta$ and $i, j, k \in \mathcal{L}$, if $i \vee_{\mathcal{L}} j = k$, $a \equiv_i b$, and $a \equiv_j b$, then $a \equiv_k b$.

In addition, if Θ satisfies (R.4) below, then Θ is called a *lattice table* of \mathcal{L} :

(R.4) (Meet) For all $a, b \in \Theta$ and $i, j, k \in \mathcal{L}$, if $i \wedge^{\mathcal{L}} j = k$ and $a \equiv_k b$, then there are $c_0, c_1, c_2 \in \Theta$ such that $a \equiv_i c_0 \equiv_j c_1 \equiv_i c_2 \equiv_j b$.

For every lattice \mathcal{L} with relations $\leq_{\mathcal{L}}, \vee_{\mathcal{L}}, \wedge^{\mathcal{L}}$, and $\mathcal{L} \subseteq {}^{\omega}\omega$, we say that $(\mathcal{L}, \leq_{\mathcal{L}}, \vee_{\mathcal{L}}, \wedge^{\mathcal{L}})$ is *Kleene recursive* in $X \subseteq {}^{\omega}\omega$ iff $\mathcal{L} \oplus \{\langle i, j \rangle \mid i \leq_{\mathcal{L}} j\}$ $\oplus \{\langle i, j, k \rangle \mid i \vee_{\mathcal{L}} j = k\} \oplus \{\langle i, j, k \rangle \mid i \wedge^{\mathcal{L}} j = k\} \leq_{\mathcal{K}} X.$

In this paper, we need suitable restrictions in (R.2) and (R.4).

PROPOSITION 1.1. Let \mathcal{L} be a lattice with relations $\leq_{\mathcal{L}}, \forall_{\mathcal{L}}, \wedge^{\mathcal{L}}$, and $\mathcal{L} \subseteq {}^{\omega}\omega$. Let $X \subseteq {}^{\omega}\omega$. If $(\mathcal{L}, \leq_{\mathcal{L}}, \forall_{\mathcal{L}}, \wedge^{\mathcal{L}})$ is Kleene recursive in X, then there are a lattice table Θ of \mathcal{L} and $F \subseteq {}^{\omega}\omega \times \mathcal{L} \times {}^{\omega}\omega$ such that $\Theta = \{F^{[x]} \mid x \in {}^{\omega}\omega\}, F \leq_{\mathcal{K}} X$, and F satisfies:

(R.2*) For all $i, j \in \mathcal{L}$, if $i \not\leq_{\mathcal{L}} j$, then there are $a, b \in {}^{\omega}\omega \cap L_{\omega_1^{i,j}}[i, j]$ such that $F^{[a]} \equiv_i F^{[b]}$ and $F^{[a]} \not\equiv_i F^{[b]}$.

- (R.4*) For all $a, b \in {}^{\omega}\omega$ and $i, j, k \in \mathcal{L}$, if $i \wedge {}^{\mathcal{L}} j = k$ and $F^{[a]} \equiv_k F^{[b]}$, then there are $c_0, c_1, c_2 \in {}^{\omega}\omega \cap L_{\omega_1^{a,b,i,j,k}}[a, b, i, j, k]$ such that $F^{[a]} \equiv_i F^{[c_0]} \equiv_j F^{[c_1]} \equiv_i F^{[c_2]} \equiv_j F^{[b]}$.
- (R.5) For all $a \in {}^{\omega}\omega$, $\operatorname{Rng}(F^{[a]}) \subseteq L_{\omega_1^a}[a]$.

Here, for $x \in {}^{\omega}\omega$, we set $F^{[x]} = \{ \langle l, y \rangle \mid \langle x, l, y \rangle \in F \}$ and regard $F^{[x]} : \mathcal{L} \to {}^{\omega}\omega$.

Proof. We fix X and \mathcal{L} as in the proposition. We assume that there is the least element $0_{\mathcal{L}}$ of \mathcal{L} . We will construct Θ and F with the required properties.

For $x \in {}^{\omega}\omega$ and $m \in \omega$, we define the function $f^{\langle 0,m \rangle *x} : \mathcal{L} \to {}^{\omega}\omega$ as follows: If $x \notin \mathcal{L}$ or $m \neq 2$, then

$$f^{\langle 0,m\rangle*x}(l) = \begin{cases} \mathbf{0} & \text{if } l = 0_{\mathcal{L}}, \\ \langle 0,m\rangle*x & \text{otherwise.} \end{cases}$$

If $x \in \mathcal{L}$ and m = 2, then

$$f^{\langle 0,2\rangle*x}(l) = \begin{cases} \mathbf{0} & \text{if } l = 0_{\mathcal{L}}, \\ \langle 0,1\rangle*x & \text{if } 0_{\mathcal{L}} \neq l \leq_{\mathcal{L}} x, \\ \langle 0,2\rangle*x & \text{otherwise.} \end{cases}$$

For $x \in {}^{\omega}\omega$ and $n, m \in \omega$, we define the function $f^{\langle n+1,m \rangle *x} : \mathcal{L} \to {}^{\omega}\omega$ inductively as follows: If $x = \langle a, b, i, j, k \rangle$, $a \neq b$, $\max\{a(0), b(0)\} = n$, $i, j, k \in \mathcal{L}$, $i \wedge {}^{\mathcal{L}} j = k$, $i \not\leq_{\mathcal{L}} j$, $j \not\leq_{\mathcal{L}} i$, $f^{a}(k) = f^{b}(k)$, and $m \leq 2$, then

$$\begin{split} f^{\langle n+1,0\rangle*x}(l) &= \begin{cases} f^a(l) & \text{if } l \leq_{\mathcal{L}} i, \\ \langle n+1,0\rangle*x & \text{otherwise,} \end{cases} \\ f^{\langle n+1,1\rangle*x}(l) &= \begin{cases} f^{\langle n+1,0\rangle*x}(l) & \text{if } l \leq_{\mathcal{L}} j, \\ \langle n+1,1\rangle*x & \text{if } l \leq_{\mathcal{L}} i \text{ and } l \not\leq_{\mathcal{L}} j \\ \langle n+1,2\rangle*x & \text{otherwise,} \end{cases} \\ f^{\langle n+1,2\rangle*x}(l) &= \begin{cases} f^b(l) & \text{if } l \leq_{\mathcal{L}} j, \\ \langle n+1,1\rangle*x & \text{if } l \leq_{\mathcal{L}} j, \\ \langle n+1,3\rangle*x & \text{otherwise.} \end{cases} \end{split}$$

In the other case,

$$f^{\langle n+1,m\rangle*x}(l) = \begin{cases} \mathbf{0} & \text{if } l = 0_{\mathcal{L}}, \\ \langle n+1,m+1\rangle*x & \text{otherwise} \end{cases}$$

We set $\Theta = \{f^x \mid x \in {}^{\omega}\omega\}$ and $F = \{\langle x, l, y \rangle \in {}^{\omega}\omega \times \mathcal{L} \times {}^{\omega}\omega \mid f^x(l) = y\}$. Then $F^{[x]} = f^x$ for $x \in {}^{\omega}\omega$. (To define f^x for all $x \in {}^{\omega}\omega$, we make Θ contain some excess elements.)

We prove that Θ and F have the required properties. By definition, $\Theta = \{F^{[x]} \mid x \in {}^{\omega}\omega\}, F \leq_{\mathcal{K}} X, \text{ and } F \text{ satisfies (R.5).}$

For $n \in \omega$, we set $\Theta_n = \{ f^x \mid x \in {}^{\omega}\omega \land x(0) \le n \}.$

LEMMA 1.2. (1) Θ_0 is an upper semilattice table of \mathcal{L} . (2) F satisfies (R.2^{*}).

Proof. (1) We check that Θ_0 satisfies (R.0)–(R.3).

(R.0) By definition, for all $f^x \in \Theta_0$, $f^x(0_{\mathcal{L}}) = \mathbf{0}$.

(R.1) Suppose $f^{\langle 0,m\rangle*x}$, $f^{\langle 0,m'\rangle*x'} \in \Theta_0$ and $i, j \in \mathcal{L}$ satisfy $i \leq_{\mathcal{L}} j$ and $f^{\langle 0,m\rangle*x}(j) = f^{\langle 0,m'\rangle*x'}(j)$. If $f^{\langle 0,m\rangle*x} = f^{\langle 0,m'\rangle*x'}$ or $i = 0_{\mathcal{L}}$, then clearly $f^{\langle 0,m\rangle*x}(i) = f^{\langle 0,m'\rangle*x'}(i)$. Suppose $f^{\langle 0,m\rangle*x} \neq f^{\langle 0,m'\rangle*x'}$ and $i \neq 0_{\mathcal{L}}$. Clearly $j \neq 0_{\mathcal{L}}$. By definition and $f^{\langle 0,m\rangle*x}(j) = f^{\langle 0,m'\rangle*x'}(j)$, we have $\{m,m'\} = \{1,2\}, x = x' \in \mathcal{L}$, and $j \leq_{\mathcal{L}} x$ (moreover, $f^{\langle 0,m\rangle*x}(j) = f^{\langle 0,m'\rangle*x'}(j) = q^{\langle 0,m'\rangle*x'}(j)$

(R.2) Let $i, j \in \mathcal{L}$ and $i \not\leq_{\mathcal{L}} j$. We choose $f^{\langle 0,1 \rangle * j}$ and $f^{\langle 0,2 \rangle * j}$ in Θ_0 . Since $i \not\leq_{\mathcal{L}} j$, we have $f^{\langle 0,1 \rangle * j}(i) = \langle 0,1 \rangle * j \neq \langle 0,2 \rangle * j = f^{\langle 0,2 \rangle * j}(i)$. If $j = 0_{\mathcal{L}}$, then $f^{\langle 0,1 \rangle * j}(j) = \mathbf{0} = f^{\langle 0,2 \rangle * j}(j)$, and if $j \neq 0_{\mathcal{L}}$, then $f^{\langle 0,1 \rangle * j}(j) = \langle 0,1 \rangle * j = f^{\langle 0,2 \rangle * j}(j)$.

(R.3) Suppose $f^{\langle 0,m\rangle*x}$, $f^{\langle 0,m'\rangle*x'} \in \Theta_0$ and $i, j, k \in \mathcal{L}$ satisfy $i \vee_{\mathcal{L}} j = k$, $f^{\langle 0,m\rangle*x}(i) = f^{\langle 0,m'\rangle*x'}(i)$, and $f^{\langle 0,m\rangle*x}(j) = f^{\langle 0,m'\rangle*x'}(j)$. We may suppose $f^{\langle 0,m\rangle*x} \neq f^{\langle 0,m'\rangle*x'}$ and $k \neq 0_{\mathcal{L}}$. By definition, we have $\{m,m'\} = \{1,2\}$, $x = x' \in \mathcal{L}$, and $i, j \leq_{\mathcal{L}} x$. Hence, $k \leq_{\mathcal{L}} x$ and so $f^{\langle 0,m\rangle*x}(k) = \langle 0,1\rangle*x = f^{\langle 0,m'\rangle*x'}(k)$ by definition.

(2) Since $\langle 0,1 \rangle * j, \langle 0,2 \rangle * j \in L_{\omega_1^{i,j}}[i,j]$, (2) is clear from the proof of (R.2) in (1).

LEMMA 1.3. For all $n \in \omega$, if Θ_n is an upper semilattice table of \mathcal{L} , then Θ_{n+1} is an upper semilattice table of \mathcal{L} .

Proof. By definition, Θ_{n+1} satisfies (R.0). Since $\Theta_n \subseteq \Theta_{n+1}$, Θ_{n+1} satisfies (R.2). It is routine to check that Θ_{n+1} satisfies (R.1) and (R.3). Below, we check (R.1) in a few cases, and leave the check of (R.1) in the other cases and of (R.3) to the reader.

Suppose $f^{\langle m_0, m_1 \rangle *x'}$, $f^{\langle m'_0, m'_1 \rangle *x'} \in \Theta_{n+1}$ and $l, l' \in \mathcal{L}$ satisfy $l \leq_{\mathcal{L}} l'$ and $f^{\langle m_0, m_1 \rangle *x}(l') = f^{\langle m'_0, m'_1 \rangle *x'}(l')$. We may assume $f^{\langle m_0, m_1 \rangle *x} \neq f^{\langle m'_0, m'_1 \rangle *x'}$ and $l \neq 0_{\mathcal{L}}$. Since Θ_n is an upper semilattice table of \mathcal{L} , we may also assume that $f^{\langle m_0, m_1 \rangle *x} \notin \Theta_n$ or $f^{\langle m'_0, m'_1 \rangle *x'} \notin \Theta_n$. We notice that if $f^{\langle m_0, m_1 \rangle *x}$ or $f^{\langle m'_0, m'_1 \rangle *x'}$ is defined by "In the other case" in the construction of Θ_{n+1} , then $f^{\langle m_0, m_1 \rangle *x}(l') = f^{\langle m'_0, m'_1 \rangle *x'}(l')$ does not occur.

CASE 1: $f^{\langle m'_0, m'_1 \rangle * x'} \in \Theta_n$ and there are $a, b \in {}^{\omega}\omega$ and $i, j, k \in \mathcal{L}$ such that $m_0 = n + 1, m_1 = 1, x = \langle a, b, i, j, k \rangle, a \neq b, \max\{a(0), b(0)\} = n, i \wedge^{\mathcal{L}} j = k, i \not\leq_{\mathcal{L}} j, j \not\leq_{\mathcal{L}} i$, and $f^a(k) = f^b(k)$.

Since $f^{\langle m'_0, m'_1 \rangle * x'} \in \Theta_n$, it follows that $f^{\langle m'_0, m'_1 \rangle * x'}(l')(0) \leq n$ and so $f^{\langle n+1,1 \rangle * x}(l')(0) \leq n$. Then, by definition, $l' \leq_{\mathcal{L}} j, l' \leq_{\mathcal{L}} i$, and $f^{\langle n+1,1 \rangle * x}(l')$ = $f^{\langle n+1,0 \rangle * x}(l') = f^a(l')$. Hence $f^a(l') = f^{\langle m'_0, m'_1 \rangle * x'}(l')$. Since $f^a \in \Theta_n$ and Θ_n satisfies (R.1), $f^a(l) = f^{\langle m'_0, m'_1 \rangle * x'}(l)$. Clearly, $l \leq_{\mathcal{L}} i \wedge^{\mathcal{L}} j$, hence $f^{\langle n+1,1 \rangle * x}(l) = f^{\langle n+1,0 \rangle * x}(l) = f^a(l) = f^{\langle m'_0, m'_1 \rangle * x'}(l)$.

CASE 2: There are $a, b, a', b' \in {}^{\omega}\omega$ and $i, j, k, i', j', k' \in \mathcal{L}$ such that $m_0 = m'_0 = n + 1, m_1 = 1, m'_1 = 2, x = \langle a, b, i, j, k \rangle, x' = \langle a', b', i', j', k' \rangle, a \neq b,$ $a' \neq b', \max\{a(0), b(0)\} = \max\{a'(0), b'(0)\} = n, i \wedge^{\mathcal{L}} j = k, i' \wedge^{\mathcal{L}} j' = k',$ $i \not\leq_{\mathcal{L}} j, j \not\leq_{\mathcal{L}} i, i' \not\leq_{\mathcal{L}} j', j' \not\leq_{\mathcal{L}} i', f^a(k) = f^b(k), \text{ and } f^{a'}(k') = f^{b'}(k').$

By definition, we have two subcases.

SUBCASE 2.1: $l' \leq_{\mathcal{L}} i \wedge^{\mathcal{L}} j \wedge^{\mathcal{L}} j'$ and $f^{\langle n+1,1 \rangle * x}(l') = f^{\langle n+1,0 \rangle * x}(l') = f^{a}(l') = f^{b'}(l') = f^{\langle n+1,2 \rangle * x'}(l')$. Then, similarly to Case 1, we obtain $f^{\langle n+1,1 \rangle * x}(l) = f^{a}(l) = f^{b'}(l) = f^{\langle n+1,2 \rangle * x'}(l)$.

SUBCASE 2.2: $l' \leq_{\mathcal{L}} i, l' \not\leq_{\mathcal{L}} j, x = x'$, and $f^{\langle n+1,1 \rangle * x}(l') = \langle n+1,1 \rangle * x = f^{\langle n+1,2 \rangle * x'}(l')$. Then i = i', j = j', k = k', a = a', and b = b' clearly. If $l \not\leq_{\mathcal{L}} j$, then $f^{\langle n+1,1 \rangle * x}(l) = \langle n+1,1 \rangle * x = f^{\langle n+1,2 \rangle * x'}(l)$. Suppose $l \leq_{\mathcal{L}} j$. Since $l \leq_{\mathcal{L}} i \wedge^{\mathcal{L}} j, f^{\langle n+1,1 \rangle * x}(l) = f^a(l)$ and $f^{\langle n+1,2 \rangle * x'}(l) = f^b(l)$. Since $i \wedge^{\mathcal{L}} j = k, f^a(k) = f^b(k)$, and Θ_n satisfies (R.1), we have $f^a(l) = f^b(l)$. Hence, $f^{\langle n+1,1 \rangle * x}(l) = f^{\langle n+1,2 \rangle * x'}(l)$.

By Lemmas 1.2 and 1.3, Θ is an upper semilattice table of \mathcal{L} .

LEMMA 1.4. F satisfies (R.4*). Hence, Θ is a lattice table of \mathcal{L} .

Proof. Suppose $a, b \in {}^{\omega}\omega$ and $i, j, k \in \mathcal{L}$ satisfy $i \wedge^{\mathcal{L}} j = k$ and $f^{a}(k) = f^{b}(k)$. In the case of $i \leq_{\mathcal{L}} j$ or $j \leq_{\mathcal{L}} i$, we set $c_{0} = c_{1} = c_{2} = b$ or $c_{0} = c_{1} = c_{2} = a$, and then c_{0}, c_{1}, c_{2} have the required properties. Suppose $i \not\leq_{\mathcal{L}} j$, $j \not\leq_{\mathcal{L}} i$, and $a \neq b$. We set $n = \max\{a(0), b(0)\}$ and $c_{m} = \langle n+1, m \rangle * \langle a, b, i, j, k \rangle$ for $m \leq 2$. Then $c_{0}, c_{1}, c_{2} \in L_{\omega_{1}^{a,b,i,j,k}}[a, b, i, j, k]$. By definition, $f^{a} \equiv_{i} f^{c_{0}} \equiv_{j} f^{c_{1}}$ and $f^{c_{2}} \equiv_{j} f^{b}$. Since $i \not\leq_{\mathcal{L}} j$, we have $f^{c_{1}} \equiv_{i} f^{c_{2}}$.

This completes the proof of Proposition 1.1. \blacksquare

2. We start this section with

LEMMA 2.1 (ZFC+CH). There is $S \subseteq \aleph_1$ such that $\omega \omega \subseteq L_{\aleph_1}[S]$.

Proof. We take a bijection $f: \aleph_1 \to {}^{\omega}\omega$ and set

$$S = \{\xi \in \aleph_1 \mid \exists \gamma \le \xi \exists m, n \in \omega (\xi = \omega \cdot \gamma + 2^m \cdot 3^n \wedge f(\gamma)(m) = n) \}.$$

Notice that for all $\xi < \aleph_1$, there are unique $\gamma \leq \xi$ and unique $k \in \omega$ such that $\xi = \omega \cdot \gamma + k$. Let $x \in {}^{\omega}\omega$ be arbitrary. We choose $\gamma \in \aleph_1$ such that $f(\gamma) = x$; then $x(m) = n \Leftrightarrow \omega \cdot \gamma + 2^m \cdot 3^n \in S$ for all $m, n \in \omega$. Hence, $x \in L_{\aleph_1}[S]$.

We fix $S \subseteq \aleph_1$ such that ${}^{\omega}\omega \subseteq L_{\aleph_1}[S]$. We define the function rk : ${}^{\omega}\omega \to \aleph_1$ by $\operatorname{rk}(x) = \min\{\alpha \in \aleph_1 \mid x \in L_{\alpha+1}[S]\}$ for $x \in {}^{\omega}\omega$. We set $K_0 = \{x \in \operatorname{WO} \mid \operatorname{o.t.}(x) \in S\}$ and H. Muraki

$$K_1 = \{ \langle m, n \rangle * x \in {}^{\omega}\omega \mid \exists w \in WO(\operatorname{rk}(x) = \operatorname{o.t.}(w) \land \forall w' \in WO(w' <_{L[S]} w \Rightarrow \operatorname{o.t.}(w') \neq \operatorname{rk}(x)) \land w(m) = n) \}.$$

Here, WO denotes the set of all $x \in {}^{\omega}\omega$ which code a well-ordering relation on ω , and o.t.(w) denotes the order type of w.

If e.g. $\mathbf{\Delta}_n^1$ -determinacy $(2 \leq n \in \omega)$ is assumed, then by the localization of the theorem of Solovay [7], for any $\mathbf{\Delta}_n^1$ set $K \subseteq {}^{\omega}\omega, \mathcal{K}[K, K^{\mathrm{SJ}}] = \{ \deg(K), \deg(K^{\mathrm{SJ}}) \}$. Under ZFC+CH (even if some determinacy axiom is assumed), if $K_0 \leq_{\mathcal{K}} K \subseteq {}^{\omega}\omega$, then $\mathcal{K}[K, K^{\mathrm{SJ}}] \neq \{ \deg(K), \deg(K^{\mathrm{SJ}}) \}$ ([5]; in fact we can prove that $\mathcal{K}[K, K^{\mathrm{SJ}}]$ contains many elements). To prove the Theorem in §3, we use K_1 in addition to K_0 . We note that under ZFC+CH, $\{ \mathbf{d} \in \mathcal{K} \mid \deg(K_0 \oplus K_1) \leq_{\mathcal{K}} \mathbf{d} \}$ is dense, which can be proved similarly to [2] and [4].

LEMMA 2.2 (ZFC+CH). Let $K_0 \oplus K_1 \leq_{\mathcal{K}} K \subseteq {}^{\omega}\omega$ and $T = S \cup K$.

(1) For all $x \in {}^{\omega}\omega$, $L_{\omega}{}^{K;x}[K;x]$ is S-admissible, and so T-admissible.

- (2) If M is K-admissible, then for all $x \in {}^{\omega}\omega \cap M$, $\operatorname{rk}(x) \in M$.
- (3) For all $x \in {}^{\omega}\omega, x \in L_{\omega_1^{T;x}}[T]$, hence $L_{\omega_1^{T;x}}[T;x] = L_{\omega_1^{T;x}}[T]$.

(4) If M is T-admissible and $On \cap M = \alpha$, then ${}^{\omega}\omega \cap M = \{x \in {}^{\omega}\omega \mid rk(x) < \alpha\}.$

Proof. (1) It is sufficient to prove that S is Δ_1 over $L_{\omega_1^{K;x}}[K;x]$. For all $\xi \in \omega_1^{K;x}$, since there is an injection from ξ to ω in $L_{\omega_1^{K;x}}[K;x]$, there is $w \in WO \cap L_{\omega_1^{K;x}}[K;x]$ which codes a well-ordering of order type ξ . Hence, for all $\xi \in \omega_1^{K;x}$,

$$\begin{split} \xi \in S \Leftrightarrow L_{\omega_1^{K;x}}[K;x] \models ``\exists w \in K_0(\text{o.t.}(w) = \xi)" \\ \Leftrightarrow L_{\omega_1^{K;x}}[K;x] \models ``\forall w \in \text{WO}(\text{o.t.}(w) = \xi \Rightarrow w \in K_0)". \end{split}$$

Therefore, S is Σ_1 and Π_1 over $L_{\omega_1^{K;x}}[K;x]$.

(2) Let w be the $\leq_{L[S]}$ -least element of WO such that o.t.(w) = rk(x). By definition, for all $m, n \in \omega$, $w(m) = n \Leftrightarrow \langle m, n \rangle * x \in K_1$. Since M is K_1 -admissible, $w \in M$ and hence $rk(x) = o.t.(w) \in M$.

(3) Since $x \in L_{\omega_1^{T;x}}[T;x]$ and $L_{\omega_1^{T;x}}[T;x]$ is *K*-admissible, $\operatorname{rk}(x) < \omega_1^{T;x}$ by (2). Since $L_{\omega_1^{T;x}}[T]$ is *S*-admissible, $L_{\operatorname{rk}(x)+1}[S] \subseteq L_{\omega_1^{T;x}}[T]$. By definition, $x \in L_{\operatorname{rk}(x)+1}[S]$, hence $x \in L_{\omega_1^{T;x}}[T]$.

(4) Suppose $x \in {}^{\omega}\omega$ and $\operatorname{rk}(x) < \alpha$. Since M is S-admissible, $L_{\operatorname{rk}(x)+1}[S] \subseteq M$, hence $x \in M$. Conversely, if $x \in {}^{\omega}\omega \cap M$, then since M is K-admissible, $\operatorname{rk}(x) < \alpha$ by (2).

3. Let S, rk, K_0 , and K_1 be as in §2.

THEOREM (ZFC+CH). Let $K_0 \oplus K_1 \leq_{\mathcal{K}} K \subseteq {}^{\omega}\omega$. For any lattice \mathcal{L} , if $\mathcal{L} \subseteq {}^{\omega}\omega$ and $(\mathcal{L}, \leq_{\mathcal{L}}, \vee_{\mathcal{L}}, \wedge^{\mathcal{L}})$ is Kleene recursive in K^{SJ} , then \mathcal{L} can be embedded in $\mathcal{K}[K, K^{SJ}]$.

This section is entirely devoted to proving the Theorem. We use AC and CH without notice in the proof.

We fix $K \subseteq {}^{\omega}\omega$ such that $K_0 \oplus K_1 \leq_{\mathcal{K}} K$, and a lattice \mathcal{L} such that $\mathcal{L} \subseteq {}^{\omega}\omega$ and $(\mathcal{L}, \leq_{\mathcal{L}}, \vee_{\mathcal{L}}, \wedge^{\mathcal{L}})$ is Kleene recursive in K^{SJ} . We set $T = S \cup K$. Then every *T*-admissible set is *S*-admissible and *K*-admissible, and ${}^{\omega}\omega \subseteq L_{\aleph_1}[T]$. We fix a lattice table Θ of \mathcal{L} and $F \subseteq {}^{\omega}\omega \times \mathcal{L} \times {}^{\omega}\omega$ which are obtained by Proposition 1.1. For simplicity, we assume that $(\mathcal{L}, \leq_{\mathcal{L}}, \vee_{\mathcal{L}}, \wedge^{\mathcal{L}})$ is Kleene recursive in K^{SJ} with no additional real parameter and $F \leq_{\mathcal{K}} K^{\mathrm{SJ}}$ with no additional real parameter. For $x \in {}^{\omega}\omega$, we denote $F^{[x]}$ by f^x as in the proof of Proposition 1.1. We may assume that f^0 is identically **0** on \mathcal{L} and **0** is the $\leq_{L[T]}$ -least real.

For every total or partial function p from ${}^{\omega}\omega$ to ${}^{\omega}\omega$, we define the projections of p by

$$P_l = \{ \langle x, f^{p(x)}(l) \rangle \mid x \in \text{Dom}(p) \} \text{ for } l \in \mathcal{L}.$$

We will construct a total function $g : {}^{\omega}\omega \to {}^{\omega}\omega$ such that $l \in \mathcal{L} \mapsto \deg(K \oplus G_l) \in \mathcal{K}[K, K^{SJ}]$ is a lattice embedding. Recall that G_l denotes the projection of g on the coordinate l.

By recursion, we define a strictly increasing sequence $\langle \tau_{\alpha} \mid \alpha \in \aleph_1 \rangle$ of countable ordinals which satisfies:

- (T.1) $\tau_{\alpha+1}$ is the least *T*-admissible ordinal such that ${}^{\omega}\omega \cap (L_{\tau_{\alpha+1}}[T] L_{\tau_{\alpha}}[T])$ is not empty.
- (T.2) If α is a limit ordinal, then $\tau_{\alpha} = \bigcup_{\beta \in \alpha} \tau_{\beta}$.

The following is proved by routine work.

LEMMA 3.1. (1) The graph of $\langle \tau_{\alpha} \mid \alpha \in \aleph_1 \rangle$ is uniformly $\Sigma_1(T)$ -definable over all T-admissible sets.

(2) For any *T*-admissible set M, if $\alpha \in \aleph_1 \cap M$ and $\langle \tau_\beta \mid \beta \in \alpha \rangle \subseteq M$, then $\langle \tau_\beta \mid \beta \in \alpha \rangle \in M$.

LEMMA 3.2. For all $\alpha \in \aleph_1$ and $x \in {}^{\omega}\omega \cap (L_{\tau_{\alpha+1}}[T] - L_{\tau_{\alpha}}[T])$, we have $L_{\tau_{\alpha+1}}[T] = L_{\omega_{\tau_{\alpha+1}}^{K;x}}[K;x].$

Proof. By Lemma 2.2, $x \in L_{\omega_1^{T;x}}[T]$, hence it follows by the definition of $\tau_{\alpha+1}$ that $\tau_{\alpha+1} \leq \omega_1^{T;x}$. Since $L_{\omega_1^{K;x}}[K;x]$ is *T*-admissible by Lemma 2.2, $L_{\tau_{\alpha+1}}[T] \subseteq L_{\omega_1^{T;x}}[T] \subseteq L_{\omega_1^{K;x}}[K;x]$. Conversely, since $L_{\tau_{\alpha+1}}[T]$ is (K;x)admissible, we have $L_{\omega_1^{K;x}}[K;x] \subseteq L_{\tau_{\alpha+1}}[T]$. Remember that for any K-admissible set N, N is closed under $\lambda x.\omega_1^{K;x}$ iff N is K^{SJ} -admissible, and moreover N is closed under $\lambda x.\omega_1^{K;x}$ iff $\forall x \in {}^{\omega}\omega \cap N \exists \alpha \in \text{On} \cap N(L_{\alpha}[K;x] \text{ is } (K;x)\text{-admissible})^N$. Hence the quantifiers in the statement "N is K^{SJ} -admissible" are bounded by N. Moreover, note that F is uniformly Δ_1 over all K^{SJ} -admissible sets, since $F \leq_{\mathcal{K}} K^{\text{SJ}}$.

LEMMA 3.3. Let p be a partial function from $\omega \omega$ to $\omega \omega$, M be a Tadmissible set, $p \in M$ and $l \in \mathcal{L} \cap M$. If for all $x \in \text{Dom}(p)$, there is $\sigma \in \text{On} \cap M$ such that $L_{\sigma}[T]$ is K^{SJ} -admissible and $p(x), l \in L_{\sigma}[T]$, then $P_l \in M$.

Proof. By Σ_1 -collection, there exists $\gamma \in On \cap M$ such that for all $x \in Dom(p)$ there is $\sigma < \gamma$ such that $L_{\sigma}[T]$ is K^{SJ} -admissible and $p(x), l \in L_{\sigma}[T]$ (moreover $f^{p(x)}(l) \in L_{\sigma}[T]$ by (R.5)). Then for all $x, y \in {}^{\omega}\omega$ we have

$$\begin{aligned} \langle x, y \rangle \in P_l \Leftrightarrow M &\models ``x \in \operatorname{Dom}(p) \land y \in L_{\gamma}[T] \\ &\land \exists \sigma < \gamma \exists z \in L_{\sigma}[T](L_{\sigma}[T] \text{ is } K^{\operatorname{SJ}}\text{-admissible} \\ &\land l, y \in L_{\sigma}[T] \land z = p(x) \land (\langle z, l, y \rangle \in F)^{L_{\sigma}[T]})". \end{aligned}$$

Hence, $P_l \in M$ by Δ_1 -separation.

We construct g^{α} ($\alpha \in \aleph_1$) of the parts of g as follows:

STAGE 0. We set $g^0 = \emptyset$.

STAGE α LIMIT. We set $g^{\alpha} = \bigcup_{\beta \in \alpha} g^{\beta}$.

Stage $\alpha + 1$.

CASE 1: There is $t \in {}^{\omega}\omega \cap L_{\tau_{\alpha}}[T]$ which satisfies (G.1) or (G.2) below:

- (G.1) There are $e \in \omega$, $v \in {}^{\omega}\omega$, $i, j \in \mathcal{L}$, and $\sigma \leq \tau_{\alpha}$ such that $t = \langle 0, e \rangle * \langle v, i, j \rangle$, $i \not\leq_{\mathcal{L}} j$, $L_{\sigma}[T]$ is K^{SJ} -admissible, $t \in L_{\sigma}[T]$, and $\forall x \in {}^{\omega}\omega \cap L_{\tau_{\alpha}}[T](\chi_{G_{i}^{\alpha}}(x) \cong \{e\}(x, v, \chi_{K \oplus G_{i}^{\alpha}}, {}^{2}E)).$
- (G.2) There are $e_0, e_1 \in \omega, v_0, v_1 \in {}^{\omega}\omega, i, j, k \in \mathcal{L}$, and $\sigma \leq \tau_{\alpha}$ such that $t = \langle 1, e_0, e_1 \rangle * \langle v_0, v_1, i, j, k \rangle, i \wedge^{\mathcal{L}} j = k, L_{\sigma}[T]$ is K^{SJ} -admissible, $t \in L_{\sigma}[T], \forall x \in {}^{\omega}\omega \cap L_{\tau_{\alpha}}[T](\{e_0\}(x, v_0, \chi_{K \oplus G_i^{\alpha}}, {}^{2}E)) \cong \{e_1\}(x, v_1, \chi_{K \oplus G_j^{\alpha}}, {}^{2}E))$, and there is a partial function $p \in L_{\tau_{\alpha+1}}[T]$ from ${}^{\omega}\omega$ to ${}^{\omega}\omega$ such that $g^{\alpha} \subseteq p$, $\operatorname{Rng}(p g^{\alpha}) \subseteq L_{\sigma}[T]$, and $\exists x \in {}^{\omega}\omega \cap L_{\tau_{\alpha+1}}[T](\{e_0\}(x, v_0, \chi_{K \oplus P_i * \mathbf{0}}, {}^{2}E)) \cong \{e_1\}(x, v_1, \chi_{K \oplus P_j * \mathbf{0}}, {}^{2}E))$. Here, $P_l * \mathbf{0} = P_l \cup \{\langle y, \mathbf{0} \rangle \mid y \in {}^{\omega}\omega \operatorname{Dom}(p)\}$ for $l \in \mathcal{L}$.

We choose the $\leq_{L[T]}$ -least $t \in {}^{\omega}\omega \cap L_{\tau_{\alpha}}[T]$ which satisfies (G.1) or (G.2) and distinguish two subcases.

SUBCASE 1.1: t satisfies (G.1). We choose the $\leq_{L[T]}$ -least $z \in {}^{\omega}\omega \cap (L_{\tau_{\alpha+1}}[T] - L_{\tau_{\alpha}}[T])$ and the $\leq_{L[T]}$ -least $\langle a, b \rangle \in {}^{\omega}\omega \times {}^{\omega}\omega$ such that $f^{a}(j) = f^{b}(j)$ and $f^{a}(i) \neq f^{b}(i)$ by (R.2). Notice that if σ is as in (G.1), then

 $a, b, f^a(i) \in L_{\sigma}[T]$ by (R.2^{*}) and (R.5). We set $z' = \langle z, f^a(i) \rangle$ and define partial functions p^a, p^b by

$$p^{a}(x) \ (p^{b}(x) \text{ resp.}) = \begin{cases} g^{\alpha}(x) & \text{if } x \in \text{Dom}(g^{\alpha}), \\ a \ (b \text{ resp.}) & \text{if } x = z. \end{cases}$$

Then $P_j^a = P_j^b$, $z' \in P_i^a$, and $z' \notin P_i^b$. If $\{e\}(z', v, \chi_{K \oplus P_j^a * \mathbf{0}}, {}^2\!E) \cong 0$, then we define

$$g^{\alpha+1}(x) = \begin{cases} p^a(x) & \text{if } x \in \text{Dom}(p^a), \\ \mathbf{0} & \text{if } x \in {}^{\omega}\omega \cap L_{\tau_{\alpha+1}}[T] - \text{Dom}(p^a), \end{cases}$$

and if $\{e\}(z', v, \chi_{K \oplus P_i^a * \mathbf{0}}, {}^2E) \not\cong 0$, then we define

$$g^{\alpha+1}(x) = \begin{cases} p^b(x) & \text{if } x \in \text{Dom}(p^b), \\ \mathbf{0} & \text{if } x \in {}^{\omega}\omega \cap L_{\tau_{\alpha+1}}[T] - \text{Dom}(p^b). \end{cases}$$

SUBCASE 1.2: t satisfies (G.2). We choose the $\leq_{L[T]}$ -least partial function $p \in L_{\tau_{\alpha+1}}[T]$ as in (G.2) and define

$$g^{\alpha+1}(x) = \begin{cases} p(x) & \text{if } x \in \text{Dom}(p), \\ \mathbf{0} & \text{if } x \in {}^{\omega}\omega \cap L_{\tau_{\alpha+1}}[T] - \text{Dom}(p) \end{cases}$$

CASE 2: Otherwise. We define

$$g^{\alpha+1}(x) = \begin{cases} g^{\alpha}(x) & \text{if } x \in \text{Dom}(g^{\alpha}), \\ \mathbf{0} & \text{if } x \in {}^{\omega}\omega \cap L_{\tau_{\alpha+1}}[T] - \text{Dom}(g^{\alpha}). \end{cases}$$

In the construction at Stage $\alpha + 1$ above, notice that for $l \in \mathcal{L}$, $G_l^{\alpha+1} = P_l^a * \mathbf{0} \cap L_{\tau_{\alpha+1}}[T]$ or $= P_l^b * \mathbf{0} \cap L_{\tau_{\alpha+1}}[T]$ (Subcase 1.1), or $= P_l * \mathbf{0} \cap L_{\tau_{\alpha+1}}[T]$ (Subcase 1.2), or $= G_l^\alpha * \mathbf{0} \cap L_{\tau_{\alpha+1}}[T]$ (Case 2) respectively.

We define $g = \bigcup_{\alpha \in \aleph_1} g^{\alpha}$. Then, for all $\alpha \in \aleph_1$, $g[{}^{\omega}\omega \cap L_{\tau_{\alpha}}[T] = g^{\alpha}$ and $g^{\alpha} : {}^{\omega}\omega \cap L_{\tau_{\alpha}}[T] \to {}^{\omega}\omega \cap L_{\tau_{\alpha}}[T]$. Moreover $g^{\alpha+1} : {}^{\omega}\omega \cap L_{\tau_{\alpha+1}}[T] \to {}^{\omega}\omega \cap L_{\tau_{\alpha}}[T]$ by definition. If there is no $\sigma \leq \tau_{\alpha}$ such that $L_{\sigma}[T]$ is K^{SJ} -admissible, then $\text{Rng}(g^{\alpha+1}) = \{\mathbf{0}\}$. As for projections, for all $\alpha \in \aleph_1$ and $l \in \mathcal{L} \cap L_{\tau_{\alpha}}[T]$, we have $G_l \cap L_{\tau_{\alpha}}[T] = G_l^{\alpha}$.

LEMMA 3.4. Let $\rho \in \aleph_1$ and $L_{\rho}[T]$ be K^{SJ} -admissible.

(1) For all $\alpha < \aleph_1$, if $\varrho \leq \tau_\alpha$, then there is $\sigma \leq \tau_\alpha$ such that $L_{\sigma}[T]$ is K^{SJ} -admissible and $\text{Rng}(g^{\alpha+1} - g^{\alpha}) \subseteq L_{\sigma}[T]$.

(2) For all $x \in {}^{\omega}\omega$, there is $\sigma \leq \max\{\operatorname{rk}(x), \varrho\}$ such that $L_{\sigma}[T]$ is K^{SJ} -admissible and $g(x) \in L_{\sigma}[T]$.

Proof. (1) We distinguish three cases at Stage $\alpha + 1$.

CASE 1: $g^{\alpha+1}$ is constructed in Subcase 1.1 at Stage $\alpha + 1$. We choose σ as in (G.1). By definition, there is $c \in {}^{\omega}\omega \cap L_{\sigma}[T]$ (c = a or = b in Subcase

1.1) such that $\operatorname{Rng}(g^{\alpha+1}-g^{\alpha}) = \{c, \mathbf{0}\}$. Since $\mathbf{0} \in L_{\sigma}[T]$, $\operatorname{Rng}(g^{\alpha+1}-g^{\alpha}) \subseteq L_{\sigma}[T]$.

CASE 2: $g^{\alpha+1}$ is constructed in Subcase 1.2 at Stage $\alpha+1$. We choose the $\leq_{L[T]}$ -least partial function p and σ as in (G.2). By (G.2), $\operatorname{Rng}(p-g^{\alpha}) \subseteq L_{\sigma}[T]$, hence $\operatorname{Rng}(g^{\alpha+1}-g^{\alpha}) \subseteq L_{\sigma}[T]$.

CASE 3: $g^{\alpha+1}$ is constructed in Case 2 at Stage $\alpha + 1$. By definition, $\operatorname{Rng}(g^{\alpha+1} - g^{\alpha}) = \{\mathbf{0}\} \subseteq L_{\varrho}[T].$

(2) We choose $\alpha < \aleph_1$ such that $x \in L_{\tau_{\alpha+1}}[T] - L_{\tau_{\alpha}}[T]$. By Lemma 2.2, $\tau_{\alpha} \leq \operatorname{rk}(x)$. If $\varrho \leq \tau_{\alpha}$, then by (1) there is $\sigma \leq \operatorname{rk}(x)$ such that $L_{\sigma}[T]$ is K^{SJ} admissible and $g(x) = g^{\alpha+1}(x) \in L_{\sigma}[T]$. If $\tau_{\alpha} < \varrho$, then since $\operatorname{Rng}(g^{\alpha+1}) \subseteq L_{\tau_{\alpha}}[T]$, we have $g(x) \in L_{\varrho}[T]$.

Since $L_{\aleph_1}[T]$ is K^{SJ} -admissible and ${}^{\omega}\omega \subseteq L_{\aleph_1}[T]$, for all $x \in {}^{\omega}\omega$ there exists $\varrho < \aleph_1$ such that $L_{\varrho}[T]$ is K^{SJ} -admissible and $x \in L_{\varrho}[T]$ (using the Löwenheim–Skolem Theorem). For $x \in {}^{\omega}\omega$, we set $\varrho(x) = \min\{\sigma < \aleph_1 \mid L_{\sigma}[T] \text{ is } K^{\text{SJ}}$ -admissible and $x \in L_{\sigma}[T]\}$.

LEMMA 3.5. Let $\alpha \in \aleph_1$ and $l \in \mathcal{L}$.

- (1) For any T-admissible set M, if $\tau_{\alpha} \in M$, then $g^{\alpha} \in M$.
- (2) For any *T*-admissible set M, if $\tau_{\alpha}, \varrho(l) \in M$, then $G_l^{\alpha} \in M$.
- (3) If $\varrho(l) < \tau_{\alpha+1}$, then $L_{\tau_{\alpha+1}}[T]$ is G_l -admissible.

Proof. (1) We prove

$$\forall \alpha \in \aleph_1 \forall M : T\text{-admissible set } (\tau_\alpha \in M \Rightarrow \langle g^\beta \mid \beta \leq \alpha \rangle \in M)$$

by induction.

If $\alpha = 0$, then this is clear.

Let $0 < \alpha \in \aleph_1$. We assume that for all $\beta \in \alpha$ and every *T*-admissible set *M* we have $(\tau_\beta \in M \Rightarrow \langle g^\gamma | \gamma \leq \beta \rangle \in M)$. Let *M* be a *T*-admissible set and $\tau_\alpha \in M$.

Let $\alpha = \beta + 1$ for some β . By assumption, $g^{\beta} \in L_{\tau_{\alpha}}[T]$. In the construction at Stage $\beta + 1$, p^a , p^b in Subcase 1.1 and p in Subcase 1.2 are elements of $L_{\tau_{\alpha}}[T]$. Since $L_{\tau_{\alpha}}[T] \in M$, by definition $g^{\beta+1} \in M$. Hence $\langle g^{\beta} \mid \beta \leq \alpha \rangle \in M$.

Let α be a limit ordinal. For every limit ordinal $\beta \in \alpha$, since $\langle g^{\gamma} | \gamma \leq \beta \rangle \in L_{\tau_{\beta+1}}[T]$, the construction at Stage β can be expressed over $L_{\tau_{\beta+1}}[T]$. And for every $\beta + 1 \in \alpha$, since the conditions of every case at Stage $\beta + 1$ can be expressed over $L_{\tau_{\beta+1}}[T]$ (notice that if $t = \langle \ldots \rangle * \langle \ldots, i, j, \ldots \rangle$ and $\varrho(t) \leq \tau_{\beta}$, then $G_i^{\beta}, G_j^{\beta} \in L_{\tau_{\beta+1}}[T]$ by Lemmas 3.4 and 3.3, hence we can express (G.1) (G.2); otherwise, we proceed to Case 2 immediately), the construction at Stage $\beta + 1$ can be expressed over $L_{\tau_{\beta+2}}[T]$. Thus, $\langle g^{\beta} | \beta \in \alpha \rangle$ is Δ_1 -definable over M with parameter $\langle \tau_{\beta} | \beta \leq \alpha \rangle$, hence $\langle g^{\beta} | \beta \in \alpha \rangle \in M$. (By

Lemma 3.1, $\langle \tau_{\beta} \mid \beta \leq \alpha \rangle \in M$.) Therefore, by definition, $g^{\alpha} \in M$, and so $\langle g^{\beta} \mid \beta \leq \alpha \rangle \in M$.

(2) By (1), $g^{\alpha} \in M$. For all $x \in \text{Dom}(g^{\alpha})$, since $\text{rk}(x) \in M$, there is $\sigma \in \text{On} \cap M$ such that $L_{\sigma}[T]$ is K^{SJ} -admissible and $g^{\alpha}(x), l \in L_{\sigma}[T]$ by Lemma 3.4. Hence, $G_{l}^{\alpha} \in M$ by Lemma 3.3.

(3) By (2), $G_l^{\alpha} \in L_{\tau_{\alpha+1}}[T]$. In the construction at Stage $\alpha + 1$, p^a, p^b in Subcase 1.1 and p in Subcase 1.2 are elements of $L_{\tau_{\alpha+1}}[T]$, hence similarly to (2), $P_l^a, P_l^b, P_l \in L_{\tau_{\alpha+1}}[T]$ by Lemma 3.3. Since $G_l^{\alpha+1} = P_l^a * \mathbf{0} \cap L_{\tau_{\alpha+1}}[T]$ or $= P_l^b * \mathbf{0} \cap L_{\tau_{\alpha+1}}[T]$ or $= P_l * \mathbf{0} \cap L_{\tau_{\alpha+1}}[T]$ or $= G_l^{\alpha} * \mathbf{0} \cap L_{\tau_{\alpha+1}}[T]$, we see that $L_{\tau_{\alpha+1}}[T]$ is $G_l^{\alpha+1}$ -admissible and so G_l -admissible.

LEMMA 3.6. For all $l \in \mathcal{L}, G_l \leq_{\mathcal{K}} K^{SJ}$, hence $\deg(K \oplus G_l) \in \mathcal{K}[K, K^{SJ}]$.

Proof. For $\alpha \in \aleph_1$, similarly to Lemma 3.5, the construction of g^{α} (i.e. constructions till Stage α) and the conditions of every case at Stage $\alpha + 1$ can be expressed over $L_{\tau_{\alpha+1}}[T]$. Hence, there are formulas ψ_1 and ψ_2 such that:

 $L_{\tau_{\alpha+1}}[T] \models \psi_1(p,\alpha)$

 \Leftrightarrow There is $t \in {}^{\omega}\omega \cap L_{\tau_{\alpha}}[T]$ which satisfies (G.1) or (G.2) at

Stage $\alpha + 1$ and let t be the $\leq_{L[T]}$ -least such real,

if
$$t = \langle 0, e \rangle * \langle v, i, j \rangle$$
 satisfies (G.1) and z, a, b, p^a, p^b are

as in Subcase 1.1

then
$$\{e\}(\langle z, f^a(i) \rangle, v, \chi_{K \oplus P^a_j}, {}^2E) \cong 0 \land p = p^a$$

or $\{e\}(\langle z, f^a(i) \rangle, v, \chi_{K \oplus P^a_j}, {}^2E) \ncong 0 \land p = p^b$

and if $t = \langle 1, e_0, e_1 \rangle * \langle v_0, v_1, i, j, k \rangle$ satisfies (G.2),

then p is the $\leq_{L[T]}$ -least partial function as in (G.2).

$$L_{\tau_{\alpha+1}}[T] \models \psi_2(p,\alpha)$$

 \Leftrightarrow There is no $t \in {}^{\omega}\omega \cap L_{\tau_{\alpha}}[T]$ which satisfies (G.1) or (G.2)

at Stage $\alpha + 1$ and $p = g^{\alpha}$.

Here, ψ_1 and ψ_2 correspond to Case 1 and Case 2 respectively.

We choose $r \in WO$ such that o.t. $(r) = \varrho(l)$. We prove $G_l \leq_{\mathcal{K}} K^{SJ}$ via rusing (2) of §0. Let $x, y \in {}^{\omega}\omega$ be arbitrary and $M = L_{\omega_1^{K^{SJ};x,y,r}}[K^{SJ};x,y,r]$. Notice that if $x \in L_{\tau_{\alpha+1}}[T] - L_{\tau_{\alpha}}[T]$, then by Lemma 3.2 and K^{SJ} -admissibility of M, we have $L_{\tau_{\alpha+1}}[T] = L_{\omega_1^{K;x}}[K;x] \in M$. By Lemma 3.4, there is $\sigma \leq \max\{\operatorname{rk}(x), \varrho(l)\}$ such that $L_{\sigma}[T]$ is K^{SJ} -admissible and $g(x), l \in L_{\sigma}[T]$; moreover, $f^{g(x)}(l) \in L_{\sigma}[T]$. Hence,

$$\langle x, y \rangle \in G_l \Leftrightarrow M \models ``\exists \alpha \in \omega_1^{K;x} \exists p \in L_{\omega_1^{K;x}}[K;x] (L_{\omega_1^{K;x}}[K;x] = L_{\tau_{\alpha+1}}[T] \land x \notin L_{\tau_{\alpha}}[T] \land L_{\tau_{\alpha+1}}[T] \models \psi_1(p,\alpha) \lor \psi_2(p,\alpha) \land (\exists \sigma \leq \max\{\operatorname{rk}(x), \varrho(l)\}(x \in \operatorname{Dom}(p) \land p(x), \ l \in L_{\sigma}[T] \land L_{\sigma}[T] \text{ is } K^{\operatorname{SJ}}\text{-admissible} \land (y = f^{p(x)}(l))^{L_{\sigma}[T]}) \lor (x \notin \operatorname{Dom}(p) \land y = \mathbf{0})))".$$

Notice that the quantifiers in the statement " $\omega_1^{K;x} = \tau_{\alpha+1}$ " are bounded by $L_{\omega_1^{K;x}}[K;x]$, since $\omega_1^{K;x} = \tau_{\alpha+1}$ iff $\neg \exists \tau \in \omega_1^{K;x}(\tau_{\alpha} < \tau \land \tau \text{ satisfies} (T.1))^{L_{\omega_1^{K;x}}[K;x]}$. Hence " $\langle x, y \rangle \in G_l$ " is Δ_1 over M. Therefore, $G_l \leq_{\mathcal{K}} K^{\text{SJ}}$.

LEMMA 3.7. (1) $G_{0_{\mathcal{L}}} \equiv_{\mathcal{K}} \emptyset$.

- (2) For all $i, j \in \mathcal{L}$, if $i \leq_{\mathcal{L}} j$, then $K \oplus G_i \leq_{\mathcal{K}} K \oplus G_j$.
- (3) For all $i, j, k \in \mathcal{L}$, if $i \vee_{\mathcal{L}} j = k$, then $(K \oplus G_i) \oplus (K \oplus G_j) \equiv_{\mathcal{K}} K \oplus G_k$.

Proof. (1) By definition, $G_{0_{\mathcal{L}}} = \{ \langle x, f^{g(x)}(0_{\mathcal{L}}) \rangle \mid x \in {}^{\omega}\omega \} = \{ \langle x, \mathbf{0} \rangle \mid x \in {}^{\omega}\omega \} \equiv_{\mathcal{K}} \emptyset.$

(2) We choose $r \in WO$ such that $o.t.(r) = \varrho(i, j)$. To prove $K \oplus G_i \leq_{\mathcal{K}} K \oplus G_j$, it is sufficient to prove that for all $x, y \in {}^{\omega}\omega$,

$$\langle x, y \rangle \in G_i \Leftrightarrow M \models \text{``}\exists \sigma \leq \max\{ \operatorname{rk}(x), \varrho(i, j) \} \exists a, z \in L_{\sigma}[T]$$
$$(L_{\sigma}[T] \text{ is } K^{\operatorname{SJ}}\text{-admissible} \land i, j \in L_{\sigma}[T]$$
$$\land \langle x, z \rangle \in G_j \land (f^a(j) = z \land f^a(i) = y)^{L_{\sigma}[T]}),$$

where $M = L_{(j,x,y,r)} K \oplus G_{j}; i, j, x, y, r [K \oplus G_{j}; i, j, x, y, r].$

Suppose $\langle x, y \rangle \in G_i$. By Lemma 2.2, $\operatorname{rk}(x) \in M$. By Lemma 3.4, there is $\sigma \leq \max\{\operatorname{rk}(x), \varrho(i, j)\}$ such that $L_{\sigma}[T]$ is K^{SJ} -admissible and $g(x), i, j \in L_{\sigma}[T]$. By (R.5), we have $f^{g(x)}(i), f^{g(x)}(j) \in L_{\sigma}[T]$. Thus, if we set a = g(x) and $z = f^a(j)$, then since $y = f^a(i)$ and $F \leq_{\mathcal{K}} K^{\operatorname{SJ}}$, the right-hand side holds. Conversely, suppose that $x, y \in {}^{\omega}\omega$ satisfy the right-hand side. Let a, z be as in the right-hand side. By $\langle x, z \rangle \in G_j, f^{g(x)}(j) = z = f^a(j)$. Then, by (R.1), $f^{g(x)}(i) = f^a(i)$. Hence, $y = f^{g(x)}(i)$, and so $\langle x, y \rangle \in G_i$.

(3) By (2), $K \oplus G_i \oplus G_j \leq_{\mathcal{K}} K \oplus G_k$. We choose $r \in WO$ such that o.t. $(r) = \varrho(i, j, k)$. To prove $K \oplus G_k \leq_{\mathcal{K}} K \oplus G_i \oplus G_j$, it is sufficient to prove that for all $x, y \in {}^{\omega}\omega$,

$$\langle x, y \rangle \in G_k \Leftrightarrow M \models \text{``}\exists \sigma \leq \max\{ \operatorname{rk}(x), \varrho(i, j, k) \} \exists a, z, z' \in L_{\sigma}[T]$$

$$(L_{\sigma}[T] \text{ is } K^{\operatorname{SJ}}\text{-admissible} \land i, j, k \in L_{\sigma}[T]$$

$$\land \langle x, z \rangle \in G_i \land \langle x, z' \rangle \in G_j$$

$$\land (f^a(i) = z \land f^a(j) = z' \land f^a(k) = y)^{L_{\sigma}[T]}),$$
where $M = L_{\omega_i} \oplus G_i \oplus G_j; i, j, k, x, y, r[K \oplus G_i \oplus G_j; i, j, k, x, y, r].$

Suppose $\langle x, y \rangle \in G_k$. Similarly to (2), we set a = g(x), $z = f^a(i)$, $z' = f^a(j)$ and choose $\sigma \leq \max\{\operatorname{rk}(x), \varrho(i, j, k)\}$ such that $L_{\sigma}[T]$ is K^{SJ} admissible and $g(x), i, j, k \in L_{\sigma}[T]$. Then the right-hand side holds. Conversely, suppose that $x, y \in {}^{\omega}\omega$ satisfy the right-hand side. Let a, z, z' be as
in the right-hand side. Similarly to (2), we have $f^{g(x)}(k) = f^a(k) = y$ by
(R.3), and so $\langle x, y \rangle \in G_k$.

LEMMA 3.8. Let $\alpha \in \aleph_1$ and $t \in {}^{\omega}\omega \cap L_{\tau_{\alpha}}[T]$ be the $\leq_{L[T]}$ -least real which satisfies (G.1) or (G.2) at Stage $\alpha + 1$.

(1) If $t = \langle 0, e \rangle * \langle v, i, j \rangle$ satisfies (G.1), then there is $x \in {}^{\omega}\omega \cap L_{\tau_{\alpha+1}}[T]$ such that

$$\chi_{G_i^{\alpha+1}}(x) \not\cong \{e\}(x, v, \chi_{K \oplus G_i^{\alpha+1}}, {}^2E)$$

and so $\chi_{G_i}(x) \not\cong \{e\}(x, v, \chi_{K \oplus G_j}, {}^2E).$

(2) If $t = \langle 1, e_0, e_1 \rangle * \langle v_0, v_1, i, j, k \rangle$ satisfies (G.2), then there is $x \in {}^{\omega}\omega \cap L_{\tau_{\alpha+1}}[T]$ such that

$$\{e_0\}(x, v_0, \chi_{K \oplus G_i^{\alpha+1}}, {}^{2}E) \not\cong \{e_1\}(x, v_1, \chi_{K \oplus G_i^{\alpha+1}}, {}^{2}E)$$

and so $\{e_0\}(x, v_0, \chi_{K \oplus G_i}, {}^2E) \not\cong \{e_1\}(x, v_1, \chi_{K \oplus G_i}, {}^2E).$

Proof. Both in (1) and in (2) (i.e. in (G.1) and in (G.2)), since $\rho(t) \leq \tau_{\alpha}$, $L_{\tau_{\alpha+1}}[T]$ is G_i -admissible and G_j -admissible by Lemma 3.5.

(1) We choose the $\leq_{L[T]}$ -least $z \in {}^{\omega}\omega \cap (L_{\tau_{\alpha+1}}[T] - L_{\tau_{\alpha}}[T])$ and the $\leq_{L[T]}$ -least $\langle a, b \rangle \in {}^{\omega}\omega \times {}^{\omega}\omega$ such that $f^{a}(j) = f^{b}(j) \wedge f^{a}(i) \neq f^{b}(i)$. We set $z' = \langle z, f^{a}(i) \rangle$. Then $z' \in L_{\tau_{\alpha+1}}[T]$. Let p^{a} and p^{b} be as in Subcase 1.1 at Stage $\alpha + 1$.

CASE 1: $\{e\}(z', v, \chi_{K\oplus P_j^a * \mathbf{0}}, {}^2E) \cong 0$. Then, for $l \in \{i, j\}, G_l \cap L_{\tau_{\alpha+1}}[T] = G_l^{\alpha+1} = P_l^a * \mathbf{0} \cap L_{\tau_{\alpha+1}}[T]$ by definition. Since $L_{\tau_{\alpha+1}}[T]$ is $(G_j; v, z')$ -admissible, $\{e\}(z', v, \chi_{K\oplus G_j}, {}^2E) \cong \{e\}(z', v, \chi_{K\oplus G_j^{\alpha+1}}, {}^2E) \cong 0$. By definition, $z' \in G_i^{\alpha+1} \subseteq G_i$. Hence,

$$\{e\}(z',v,\chi_{K\oplus G_i^{\alpha+1}},{}^2E) \not\cong 1 \cong \chi_{G_i^{\alpha+1}}(z')$$

and $\{e\}(z', v, \chi_{K \oplus G_j}, {}^2E) \not\cong \chi_{G_i}(z').$

CASE 2: $\{e\}(z', v, \chi_{K \oplus P_i^a * \mathbf{0}}, {}^2E) \not\cong 0$. Similarly to Case 1,

$$\{e\}(z', v, \chi_{K \oplus G_j}, {}^{2}E) \cong \{e\}(z', v, \chi_{K \oplus G_i^{\alpha+1}}, {}^{2}E) \not\cong 0.$$

Since $g(z) = g^{\alpha+1}(z) = b$ and $f^b(i) \neq f^a(i)$, we have $z' \notin G_i^{\alpha+1}$ and $z' \notin G_i$. Hence,

$$\{e\}(z',v,\chi_{K\oplus G_i^{\alpha+1}},{}^2E) \not\cong 0 \cong \chi_{G_i^{\alpha+1}}(z')$$

and $\{e\}(z', v, \chi_{K \oplus G_i}, {}^2E) \not\cong \chi_{G_i}(z').$

(2) We choose the $\leq_{L[T]}$ -least partial function $p \in L_{\tau_{\alpha+1}}[T]$ from ${}^{\omega}\omega$ to ${}^{\omega}\omega$ as in (G.2). Then, for $l \in \{i, j\}, G_l \cap L_{\tau_{\alpha+1}}[T] = G_l^{\alpha+1} = P_l * \mathbf{0} \cap L_{\tau_{\alpha+1}}[T]$. Hence, by (G.2), there is $x \in {}^{\omega}\omega \cap L_{\tau_{\alpha+1}}[T]$ such that

$$\{e_0\}(x, v_0, \chi_{K \oplus G_i^{\alpha+1}}, {}^2E) \not\cong \{e_1\}(x, v_1, \chi_{K \oplus G_i^{\alpha+1}}, {}^2E)$$

and hence $\{e_0\}(x, v_0, \chi_{K \oplus G_i}, {}^2\!E) \not\cong \{e_1\}(x, v_1, \chi_{K \oplus G_i}, {}^2\!E)$.

LEMMA 3.9. For all $t \in {}^{\omega}\omega$, $\{\alpha \in \aleph_1 \mid t \text{ satisfies (G.1) or (G.2) at Stage } \alpha + 1\}$ is countable. Hence $\bigcup_{t < L[T]s} \{\alpha \in \aleph_1 \mid t \text{ satisfies (G.1) or (G.2) at Stage } \alpha + 1\}$ is countable and so bounded for all $s \in {}^{\omega}\omega$ (since $\{t \in {}^{\omega}\omega \mid t <_{L[T]}s\}$ is countable).

Proof. We set $X_t = \{ \alpha \in \aleph_1 \mid t \text{ satisfies (G.1) or (G.2) at Stage } \alpha + 1 \}$ for $t \in {}^{\omega}\omega$. We prove that for all $t \in {}^{\omega}\omega$, X_t is countable by induction on t.

Let $t \in {}^{\omega}\omega$ and assume that for all $u \in {}^{\omega}\omega$, if $u <_{L[T]} t$ then X_u is countable. Suppose that, on the contrary, X_t is uncountable. By the inductive assumption $\bigcup_{u <_{L[T]}t} X_u$ is countable, hence we can take $\beta \in X_t - \bigcup_{u <_{L[T]}t} X_u$. Then t is the $<_{L[T]}$ -least real which satisfies (G.1) or (G.2) at Stage $\beta + 1$. Since X_t is uncountable, there is $\alpha \in X_t$ such that $\beta + 1 \leq \alpha$.

CASE 1: t satisfies (G.1) at Stage $\beta+1$. There are $e \in \omega, v \in {}^{\omega}\omega$, and $i, j \in \mathcal{L}$ such that $t = \langle 0, e \rangle * \langle v, i, j \rangle$. By Lemma 3.8, there is $x \in {}^{\omega}\omega \cap L_{\tau_{\beta+1}}[T]$ ($\subseteq L_{\tau_{\alpha}}[T]$) such that $\chi_{G_i^{\beta+1}}(x) \not\cong \{e\}(x, v, \chi_{K \oplus G_j^{\beta+1}}, {}^2E)$. Then, similarly to the proof of Lemma 3.8, since $G_l^{\alpha} \cap L_{\tau_{\beta+1}}[T] = G_l^{\beta+1}$ for $l \in \{i, j\}$ and $L_{\tau_{\beta+1}}[T]$ is G_j -admissible, we have $\chi_{G_i^{\alpha}}(x) \not\cong \{e\}(x, v, \chi_{K \oplus G_j^{\alpha}}, {}^2E)$. Hence, t does not satisfy (G.1) at Stage $\alpha + 1$. Moreover, since t(0) = 0, t does not satisfy (G.2) at Stage $\alpha + 1$. This contradicts $\alpha \in X_t$.

CASE 2: t satisfies (G.2) at Stage $\beta + 1$. There are $e_0, e_1 \in \omega, v_0, v_1 \in \omega, \omega$, and $i, j, k \in \mathcal{L}$ such that $t = \langle 1, e_0, e_1 \rangle * \langle v_0, v_1, i, j, k \rangle$. Similarly to Case 1, there is $x \in \omega \cup \cap L_{\tau_{\beta+1}}[T]$ such that $\{e_0\}(x, v_0, \chi_{K \oplus G_i^{\alpha}}, {}^2E) \not\cong \{e_1\}(x, v_1, \chi_{K \oplus G_j^{\alpha}}, {}^2E)$. Hence, t does not satisfy (G.2) at Stage $\alpha + 1$. Moreover, since t(0) = 1, t does not satisfy (G.1) at Stage $\alpha + 1$. This contradicts $\alpha \in X_t$.

LEMMA 3.10. For all $i, j \in \mathcal{L}$, if $i \not\leq_{\mathcal{L}} j$, then $K \oplus G_i \not\leq_{\mathcal{K}} K \oplus G_j$.

Proof. Assume $i \not\leq_{\mathcal{L}} j$ and $G_i \leq_{\mathcal{K}} K \oplus G_j$. We choose $e \in \omega$ and $v \in {}^{\omega}\omega$ such that for all $x \in {}^{\omega}\omega, \chi_{G_i}(x) \cong \{e\}(x, v, \chi_{K\oplus G_j}, {}^{2}E)$. We set $t = \langle 0, e \rangle * \langle v, i, j \rangle$. By Lemma 3.9, we can choose $\alpha \in \aleph_1$ such that for all $u <_{L[T]} t$, u does not satisfy (G.1) or (G.2) (taking u in place of t) at Stage $\alpha + 1$. Choosing α sufficiently large, we may assume that there is $\alpha' < \alpha$ such that $\alpha = \alpha' + 1$ and $\varrho(t) \leq \tau_{\alpha'}$. Then, by Lemma 3.5, $L_{\tau_{\alpha}}[T]$

is G_j -admissible, and so by the choice of e, v, for all $x \in {}^{\omega}\omega \cap L_{\tau_{\alpha}}[T]$, we have $\chi_{G_i^{\alpha}}(x) \cong \{e\}(x, v, \chi_{K \oplus G_j^{\alpha}}, {}^2E)$. Hence, t satisfies (G.1) at Stage $\alpha + 1$. Moreover, t is the $\leq_{L[T]}$ -least real which satisfies (G.1) or (G.2) at Stage $\alpha + 1$. Therefore, by Lemma 3.8, there is $x \in {}^{\omega}\omega \cap L_{\tau_{\alpha+1}}[T]$ such that $\chi_{G_i}(x) \not\cong \{e\}(x, v, \chi_{K \oplus G_j}, {}^2E)$. This is a contradiction.

LEMMA 3.11. Let $i, j, k \in \mathcal{L}$, $i \wedge^{\mathcal{L}} j = k$, $\alpha \in \aleph_1$, $e_0, e_1 \in \omega$, and $v_0, v_1 \in \omega$. ω . Assume that there are partial functions $p, p' \in L_{\tau_{\alpha+1}}[T]$ from $\omega \omega$ to ω_{ω} , $\sigma \leq \tau_{\alpha}$, and $x \in \omega_{\omega}$ such that $g^{\alpha} \subseteq p, p'$, $\operatorname{Dom}(p) = \operatorname{Dom}(p')$, $P_k = P'_k$, $L_{\sigma}[T]$ is K^{SJ} -admissible, $i, j, k \in L_{\sigma}[T]$, $\operatorname{Rng}(p - g^{\alpha})$, $\operatorname{Rng}(p' - g^{\alpha}) \subseteq L_{\sigma}[T]$, and $\{e_0\}(x, v_0, \chi_{K \oplus P_i * \mathbf{0}}, {}^{2}E) \ncong \{e_1\}(x, v_1, \chi_{K \oplus P'_j * \mathbf{0}}, {}^{2}E)$. Then there is a partial function $p'' \in L_{\tau_{\alpha+1}}[T]$ from $\omega \omega$ to $\omega \omega$ such that $g^{\alpha} \subseteq p''$, $\operatorname{Rng}(p'' - g^{\alpha}) \subseteq L_{\sigma}[T]$, $L_{\sigma}[T]$, and $\{e_0\}(x, v_0, \chi_{K \oplus P''_i * \mathbf{0}}, {}^{2}E) \ncong \{e_1\}(x, v_1, \chi_{K \oplus P'_j * \mathbf{0}}, {}^{2}E)$.

Proof. We set $D = \text{Dom}(p) - \text{Dom}(g^{\alpha})$. Since $P_k = P'_k$, for all $y \in D$, $f^{p(y)}(k) = f^{p'(y)}(k)$. By (R.4*), for all $y \in D$ there are $c_0^y, c_1^y, c_2^y \in {}^{\omega}\omega \cap L_{\sigma}[T]$ such that $f^{p(y)} \equiv_i f^{c_0^y} \equiv_j f^{c_1^y} \equiv_i f^{c_2^y} \equiv_j f^{p'(y)}$. Since $p, p', D, L_{\sigma}[T] \in L_{\tau_{\alpha+1}}[T]$ and $F \leq_{\mathcal{K}} K^{\text{SJ}}$, there exists $\langle \langle c_0^y, c_1^y, c_2^y \rangle \mid y \in D \rangle \in L_{\tau_{\alpha+1}}[T]$ such that for all $y \in D, c_0^y, c_1^y, c_2^y \in {}^{\omega}\omega \cap L_{\sigma}[T]$ and $f^{p(y)} \equiv_i f^{c_0^y} \equiv_j f^{c_1^y} \equiv_i f^{c_2^y} \equiv_j f^{p'(y)}$ by Δ_1 -separation. We define $p^n : \text{Dom}(p) \to {}^{\omega}\omega (n \in 3)$ by

$$p^{n}(y) = \begin{cases} g^{\alpha}(y) & \text{if } y \in \text{Dom}(g^{\alpha}) \\ c_{n}^{y} & \text{if } y \in D. \end{cases}$$

Then $p^n \in L_{\tau_{\alpha+1}}[T]$ and $\operatorname{Rng}(p^n - g^{\alpha}) \subseteq L_{\sigma}[T]$ for $n \in 3$. By definition, $P_i = P_i^0, P_j^0 = P_j^1, P_i^1 = P_i^2$, and $P_j^2 = P_j'$. If we assume that for all $n \in 3$, $\{e_0\}(x, v_0, \chi_{K \oplus P_i^n * \mathbf{0}}, {}^2E) \cong \{e_1\}(x, v_1, \chi_{K \oplus P_j^n * \mathbf{0}}, {}^2E)$, then we obtain $\{e_0\}(x, v_0, \chi_{K \oplus P_i * \mathbf{0}}, {}^2E) \cong \{e_1\}(x, v_1, \chi_{K \oplus P_j' * \mathbf{0}}, {}^2E)$, a contradiction. So there is $n \in 3$ such that $\{e_0\}(x, v_0, \chi_{K \oplus P_i^n}, {}^2E) \cong \{e_1\}(x, v_1, \chi_{K \oplus P_j' * \mathbf{0}}, {}^2E)$.

LEMMA 3.12. For all $i, j, k \in \mathcal{L}$, if $i \wedge^{\mathcal{L}} j = k$, then $\deg(K \oplus G_k)$ is the $\leq_{\mathcal{K}}$ -infimum of $\deg(K \oplus G_i)$ and $\deg(K \oplus G_j)$.

Proof. It is sufficient to prove that for all $X \subseteq {}^{\omega}\omega$, if $X \leq_{\mathcal{K}} K \oplus G_i$ and $X \leq_{\mathcal{K}} K \oplus G_j$, then $X \leq_{\mathcal{K}} K \oplus G_k$. We fix $X \subseteq {}^{\omega}\omega$ such that $X \leq_{\mathcal{K}} K \oplus G_i$ and $X \leq_{\mathcal{K}} K \oplus G_j$, and choose $e_0, e_1 \in \omega$ and $v_0, v_1 \in {}^{\omega}\omega$ such that for all $x \in {}^{\omega}\omega, \chi_X(x) \cong \{e_0\}(x, v_0, \chi_{K \oplus G_i}, {}^2E) \cong \{e_1\}(x, v_1, \chi_{K \oplus G_j}, {}^2E)$. We set $t = \langle 1, e_0, e_1 \rangle * \langle v_0, v_1, i, j, k \rangle$. By Lemma 3.9, we choose $\gamma \in \aleph_1$ such that $\sup(\bigcup_{u <_{L[T]}t} \{\alpha \in \aleph_1 \mid u \text{ satisfies (G.1) or (G.2) at Stage } \alpha + 1\}) < \gamma$ and $\varrho(t) \leq \tau_{\gamma}$.

CLAIM 1. For all $\alpha \in \aleph_1$, if $\gamma \leq \alpha$, then there is no partial function $p \in L_{\tau_{\alpha+1}}[T]$ from ${}^{\omega}\omega$ to ${}^{\omega}\omega$ as in (G.2) at Stage $\alpha + 1$.

Proof. Assume $\gamma \leq \alpha \in \aleph_1$ and there is a partial function $p \in L_{\tau_{\alpha+1}}[T]$ from ${}^{\omega}\omega$ to ${}^{\omega}\omega$ as in (G.2) at Stage $\alpha + 1$. Then t satisfies (G.2) at Stage $\alpha + 1$ by the choice of e_0, e_1, v_0, v_1 . Since $\gamma \leq \alpha, t$ is the $\leq_{L[T]}$ -least real which satisfies (G.1) or (G.2) at Stage $\alpha + 1$. Thus, by Lemma 3.8, there is $x \in {}^{\omega}\omega$ such that $\{e_0\}(x, v_0, \chi_{K\oplus G_i}, {}^2E) \not\cong \{e_1\}(x, v_1, \chi_{K\oplus G_j}, {}^2E)$. This is a contradiction and completes the proof of Claim 1.

CLAIM 2. For all $\alpha \in \aleph_1$ with $\gamma \leq \alpha$ and for all partial functions $p, p' \in L_{\tau_{\alpha+1}}[T]$ from ${}^{\omega}\omega$ to ${}^{\omega}\omega$, if $g_{\alpha} \subseteq p, p'$, $\operatorname{Dom}(p) = \operatorname{Dom}(p')$, $P_k = P'_k$, and there is $\sigma \leq \tau_{\alpha}$ such that $L_{\sigma}[T]$ is K^{SJ} -admissible, $t \in L_{\sigma}[T]$, and $\operatorname{Rng}(p - g^{\alpha})$, $\operatorname{Rng}(p' - g^{\alpha}) \subseteq L_{\sigma}[T]$, then for all $x \in {}^{\omega}\omega \cap L_{\tau_{\alpha+1}}[T]$, $\{e_0\}(x, v_0, \chi_{K \oplus P_i * \mathbf{0}}, {}^{2}E) \cong \{e_0\}(x, v_0, \chi_{K \oplus P_i * \mathbf{0}}, {}^{2}E)$.

Proof. Assume $\gamma \leq \alpha < \aleph_1$ and Claim 2 does not hold for some partial functions p, p'. Then there is $x \in {}^{\omega}\omega \cap L_{\tau_{\alpha+1}}[T]$ such that

$$\{e_0\}(x, v_0, \chi_{K \oplus P_i * \mathbf{0}}, {}^2E) \not\cong \{e_0\}(x, v_0, \chi_{K \oplus P'_i * \mathbf{0}}, {}^2E)$$

Since Claim 1 implies that p' is not as in (G.2) at Stage $\alpha + 1$,

$$\{e_0\}(x, v_0, \chi_{K \oplus P'_i * \mathbf{0}}, {}^{2}E) \cong \{e_1\}(x, v_1, \chi_{K \oplus P'_i * \mathbf{0}}, {}^{2}E).$$

Hence

$$\{e_0\}(x, v_0, \chi_{K \oplus P_i * \mathbf{0}}, {}^{2}E) \not\cong \{e_1\}(x, v_1, \chi_{K \oplus P'_i * \mathbf{0}}, {}^{2}E)$$

Thus, by Lemma 3.11, there is a partial function $p'' \in L_{\tau_{\alpha+1}}[T]$ as in (G.2) at Stage $\alpha + 1$. This contradicts Claim 1 and completes the proof of Claim 2.

CLAIM 3. For all $\alpha \in \aleph_1$ with $\gamma \leq \alpha$, set $H_{\alpha} = G_i^{\alpha} \cup \{\langle x, y \rangle \in {}^{\omega}\omega \mid x \notin L_{\tau_{\alpha}}[T] \land \exists a \in {}^{\omega}\omega(y = f^a(i) \land a \text{ is the } \leq_{L[T]}\text{-least real such that } \langle x, f^a(k) \rangle \in G_k)\}.$ Then:

(1) H_{α} is uniformly Δ_1 -definable over all T, G_k -admissible sets of which τ_{α} is an element.

(2) For all $x \in {}^{\omega}\omega \cap L_{\tau_{\alpha+1}}[T]$,

$$\{e_0\}(x, v_0, \chi_{K \oplus G_i}, {}^2E) \cong \{e_0\}(x, v_0, \chi_{K \oplus H_\alpha}, {}^2E)$$

Proof. (1) It is sufficient to prove that $H_{\alpha} - G_i^{\alpha}$ is uniformly Δ_1 definable over all T, G_k -admissible sets of which τ_{α} is an element. By Lemma 3.4, for all $x \in {}^{\omega}\omega - L_{\tau_{\alpha}}[T]$ (notice $\varrho(t) \leq \tau_{\gamma} \leq \tau_{\alpha} \leq \operatorname{rk}(x)$), there is $\sigma \leq \operatorname{rk}(x)$ such that $L_{\sigma}[T]$ is K^{SJ} -admissible and $g(x), i, k \in L_{\sigma}[T]$, and moreover if a is the $\leq_{L[T]}$ -least real such that $\langle x, f^a(k) \rangle \in G_k$, then since $a \leq_{L[T]} g(x)$, we have $a \in L_{\sigma}[T]$ and so $f^a(k), f^a(i) \in L_{\sigma}[T]$. Hence, for any T, G_k -admissible set M with $\tau_{\alpha} \in M$ and for all $x, y \in {}^{\omega}\omega \cap M$,

$$\begin{aligned} \langle x, y \rangle &\in H_{\alpha} - G_{i}^{\alpha} \\ \Leftrightarrow M \models ``x \notin L_{\tau_{\alpha}}[T] \land \exists \sigma \leq \operatorname{rk}(x) \exists a \in ``\omega \cap L_{\sigma}[T] \\ & (L_{\sigma}[T] \text{ is } K^{\operatorname{SJ}}\text{-admissible} \land i, k \in L_{\sigma}[T] \\ & \land \exists z \in L_{\sigma}[T]((z = f^{a}(k))^{L_{\sigma}[T]} \land \langle x, z \rangle \in G_{k}) \\ & \land \forall b, z \in ``\omega \cap L_{\sigma}[T]((b <_{L[T]} a \land z = f^{b}(k))^{L_{\sigma}[T]} \Rightarrow \langle x, z \rangle \notin G_{k}) \\ & \land (y = f^{a}(i))^{L_{\sigma}[T]})", \end{aligned}$$

i.e. the quantifiers in the formula which states " $\langle x, y \rangle \in H_{\alpha} - G_i^{\alpha}$ " are bounded by $L_{\sigma}[T]$ and $\operatorname{rk}(x)$.

(2) By definition, there is a partial function $p \in L_{\tau_{\alpha+1}}[T]$ such that $g^{\alpha} \subseteq p$ and

$$g^{\alpha+1}(x) = \begin{cases} p(x) & \text{if } x \in \text{Dom}(p), \\ \mathbf{0} & \text{if } x \in {}^{\omega}\omega \cap L_{\tau_{\alpha+1}}[T] - \text{Dom}(p). \end{cases}$$

Then $P_i * \mathbf{0} \cap L_{\tau_{\alpha+1}}[T] = G_i^{\alpha+1} = G_i \cap L_{\tau_{\alpha+1}}[T]$. By Lemma 3.4, there is $\sigma \leq \tau_{\alpha}$ such that $L_{\sigma}[T]$ is K^{SJ} -admissible, $t \in L_{\sigma}[T]$, and $\text{Rng}(p - g^{\alpha}) \subseteq L_{\sigma}[T]$. We define $p' : \text{Dom}(p) \to {}^{\omega}\omega$ by

$$p'(x) = \begin{cases} g^{\alpha}(x) & \text{if } x \in \text{Dom}(g^{\alpha}), \\ \text{the } \leq_{L[T]} \text{-least } a \in {}^{\omega}\omega \\ \text{such that } \langle x, f^{a}(k) \rangle \in G_{k} & \text{if } x \in \text{Dom}(p) - \text{Dom}(g^{\alpha}). \end{cases}$$

Then for all $x \in \text{Dom}(p)$ we have $f^{p'(x)}(k) = f^{g(x)}(k) = f^{p(x)}(k)$, and so $P'_k = P_k$. Since $p'(x) \leq_{L[T]} g(x)$ for all $x \in \text{Dom}(p)$, it follows that $\text{Rng}(p' - g^{\alpha}) \subseteq L_{\sigma}[T]$. Since $L_{\tau_{\alpha+1}}[T]$ is G_k -admissible, similarly to (1), p' is Δ_1 over $L_{\tau_{\alpha+1}}[T]$ and so $p' \in L_{\tau_{\alpha+1}}[T]$ by Δ_1 -separation. Moreover, $P'_i * \mathbf{0} \cap L_{\tau_{\alpha+1}}[T] = H_{\alpha} \cap L_{\tau_{\alpha+1}}[T]$ by definition (notice the assumption that $\mathbf{0}$ is the $\leq_{L[T]}$ -least real). Thus, by Claim 2, for all $x \in {}^{\omega}\omega \cap L_{\tau_{\alpha+1}}[T]$, $\{e_0\}(x, v_0, \chi_{K \oplus P_i * \mathbf{0}}, {}^2E) \cong \{e_0\}(x, v_0, \chi_{K \oplus P'_i * \mathbf{0}}, {}^2E)$ and hence

$$\{e_0\}(x, v_0, \chi_{K \oplus G_i}, {}^{2}E) \cong \{e_0\}(x, v_0, \chi_{K \oplus H_{\alpha}}, {}^{2}E)$$

This completes the proof of Claim 3.

Let $x \in {}^{\omega}\omega - L_{\tau_{\gamma}}[T]$ and $n \in 2$, and $M = L_{\omega_{1}^{K \oplus G_{k};x}}[K \oplus G_{k};x]$. By Lemma 2.2, M is T-admissible, and if $x \in L_{\tau_{\alpha+1}}[T] - L_{\tau_{\alpha}}[T]$, then $\gamma \leq \alpha$ and $\tau_{\alpha} \leq \operatorname{rk}(x) \in \tau_{\alpha+1} \cap M$. Hence by Claim 3,

$$\chi_X(x) \cong n$$

$$\Leftrightarrow \exists \alpha \in \aleph_1(x \in L_{\tau_{\alpha+1}}[T] - L_{\tau_{\alpha}}[T] \land \{e_0\}(x, v_0, \chi_{K \oplus H_{\alpha}}, {}^2E) \cong n)$$

$$\Leftrightarrow M \models ``\exists \alpha \leq \operatorname{rk}(x)(\tau_{\alpha} \leq \operatorname{rk}(x)$$

$$\land \neg \exists \tau \leq \operatorname{rk}(x)(\tau_{\alpha} < \tau \land \tau \text{ satisfies (T.1)})$$

$$\land \{e_0\}(x, v_0, \chi_{K \oplus H_{\alpha}}, {}^2E) \cong n)".$$

Therefore, $X - L_{\tau_{\gamma}}[T]$ and $({}^{\omega}\omega - X) - L_{\tau_{\gamma}}[T]$ are uniformly Σ_1 -definable over all $(K \oplus G_k; w)$ -admissible sets, where w is a real in WO such that o.t. $(w) = \tau_{\gamma}$. Since $L_{\tau_{\gamma}}[T]$ is countable, $X \leq_{\mathcal{K}} K \oplus G_k$.

This completes the proof of the Theorem.

REMARK. In the Theorem, we may replace " $(\mathcal{L}, \leq_{\mathcal{L}}, \lor_{\mathcal{L}}, \wedge^{\mathcal{L}})$ is Kleene recursive in K^{SJ} " by " $(\mathcal{L}, \leq_{\mathcal{L}}, \lor_{\mathcal{L}}, \wedge^{\mathcal{L}})$ is Kleene recursive in the finite times superjump of K".

Concerning, for example, $(K^{\text{SJ}})^{\text{SJ}}$, for any *K*-admissible set *N*, *N* is closed under $\lambda x.\omega_1^{K;x}$ and $\lambda x.\omega_1^{K^{\text{SJ}};x}$ iff *N* is $(K^{\text{SJ}})^{\text{SJ}}$ -admissible, and the quantifiers in the statement "*N* is closed under $\lambda x.\omega_1^{K^{\text{SJ}};x}$ " are bounded by *N* as " $\forall x \in {}^{\omega}\omega \cap N \exists \alpha \in \text{On} \cap N(L_{\alpha}[K;x] \text{ is } (K;x)\text{-admissible} \land \forall y \in {}^{\omega}\omega \cap L_{\alpha}[K;x] \exists \beta < \alpha(L_{\beta}[K;y] \text{ is } (K;y)\text{-admissible}))^{N}$ ". Replacing " $L_{\sigma}[T]$ is K^{SJ} -admissible" by " $L_{\sigma}[T]$ is $(K^{\text{SJ}})^{\text{SJ}}$ -admissible" in the proof of the Theorem, we can prove the following:

THEOREM' (ZFC+CH). Let $K_0 \oplus K_1 \leq_{\mathcal{K}} K \subseteq {}^{\omega}\omega$. For any lattice \mathcal{L} , if $\mathcal{L} \subseteq {}^{\omega}\omega$ and $(\mathcal{L}, \leq_{\mathcal{L}}, \vee_{\mathcal{L}}, \wedge^{\mathcal{L}})$ is Kleene recursive in $(K^{SJ})^{SJ}$, then \mathcal{L} can be embedded in $\mathcal{K}[K, K^{SJ}]$.

References

- [1] K. J. Devlin, *Constructibility*, Springer, 1984.
- [2] K. Hrbáček, On the complexity of analytic sets, Z. Math. Logik Grundlag. Math. 24 (1978), 419–425.
- [3] M. Lerman, Degrees of Unsolvability, Springer, 1983.
- [4] H. Muraki, Local density of Kleene degrees, Math. Logic Quart. 43 (1995), 183-189.
- [5] —, Non-distributive upper semilattice of Kleene degrees, J. Symbolic Logic 64 (1999), 147–158.
- [6] R. A. Shore and T. A. Slaman, The p-T degrees of the recursive sets: lattice embeddings, extensions of embeddings and the two-quantifier theory, Theoret. Comput. Sci. 97 (1992), 263-284.
- [7] R. Solovay, Determinacy and type 2 recursion (abstract), J. Symbolic Logic 36 (1971), 374.
- [8] G. Weitkamp, *Kleene recursion over the continuum*, Ph.D. Thesis, Pennsylvania State Univ., 1980.

Department of Mathematics Nagoya University Chikusa-ku, Nagoya 464-8602, Japan E-mail: muraki@math.nagoya-u.ac.jp

> Received 2 May 1998; in revised form 18 May 1999