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On finite sum theorems for
transfinite inductive dimensions

by

Vitalij A. C h a t y r k o (Linkeping)

Abstract. We discuss the exactness of estimates in the finite sum theorems for trans-
finite inductive dimensions trind and trInd. The technique obtained gives an opportu-
nity to repeat and sometimes strengthen some well known results about compacta with
trind 6= trInd. In particular we improve an estimate of the small transfinite inductive
dimension of Smirnov’s compacta Sα, α < ω1, given by Luxemburg [Lu2].

1. Introduction. All our spaces will be metrizable separable. By trind
(resp. trInd) we denote Hurewicz’s (resp. Smirnov’s) transfinite extension of
ind (resp. Ind).

It is well known that for any space X one has indX = IndX and if
X =

⋃∞
i=1Xi, where each Xi is closed in X, then indX = sup{indXi}.

In the transfinite case there exist a compact space X with trindX 6=
trIndX and a compact space Y which can be represented as the union of
two closed subspaces Y1 and Y2 such that trindY > max{trIndY1, trIndY2}.
At the same time there exist estimates of trindX (resp. trIndX) for X
being the union of two closed subspaces X1 and X2 in terms of trindX1 and
trindX2 (resp. trIndX1 and trIndX2), which are called finite sum theorems
for trind (resp. trInd) (cf. [E]).

In this paper we show that the estimates for trInd are exact in any class
of metrizable compacta containing all Smirnov compacta and their closed
subspaces. We improve one of the estimates for trind. The technique ob-
tained gives an opportunity to repeat and sometimes strengthen some well
known results of Luxemburg [Lu1, Lu2] about compacta with trind dif-
ferent from trInd. In particular we obtain an estimate of trindSα, where
Sα, α < ω1, are Smirnov’s compacta [S], better than the estimates given
before.
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2. Decompositions of spaces

Definition 2.1. Let X be a metric space. A decomposition

X = F ∪
∞⋃

i=1

Ei

of X into disjoint sets is called A-special (resp. B-special) if Ei is clopen
in X (resp. Ei is clopen in X and limn→∞ δ(Ei) = 0, where δ(A) is the
diameter of A).

Observe that the product of two spaces admits an A-special decompo-
sition into disjoint nonempty sets if one of the factors does. The one-point
compactification of the free union of countably many nonempty compacta
admits a B-special decomposition into disjoint nonempty sets.

Lemma 2.2. Let X be a compact space and X = F ∪ ⋃∞i=1Ei be an
A-special decomposition. If dimF = n ≥ 1, then X =

⋃n+1
k=1 Zk, where each

Zk is closed in X and admits a B-special decomposition Zk = F ∪⋃∞j=1E
k
j

with Ekj ⊂ Ei for a finite number of indices j for every i.

P r o o f. Observe that

(∗) for any open nbd OF of F there exists a natural number N such that
Ei ⊂ OF for i ≥ N.

Let ε > 0. Choose finite systems Bεk, k = 1, . . . , n + 1, consisting of
disjoint compact sets with diameter < ε such that

⋃n+1
k=1 B

ε
k contains a nbd

OF of F open in X. By (∗) there exists a number N(ε) such that Ei ⊂
OF ⊂ ⋃n+1

k=1 B
ε
k for i ≥ N(ε).

For every natural number p ≥ 1 choose finite systems B(p)
k = B

1/p
k , k =

1, . . . , n+ 1, and a number Np = N(1/p) such that Nq > Np if q > p. Define

Z1 = F ∪
N1−1⋃

i=1

Ei ∪
∞⋃
p=1

Np+1−1⋃

i=Np

{B ∩ Ei : B ∈ B(p)
1 },

Zk = F ∪
∞⋃
p=1

Np+1−1⋃

i=Np

{B ∩ Ei : B ∈ B(p)
k }, k = 2, . . . , n+ 1.

Lemma 2.3. Let X = F ∪ ⋃∞i=1Ei be a B-special decomposition of the
metric space X and A,B be disjoint closed subsets of X such that A ∩ F
6= ∅, B ∩F 6= ∅ and A is compact. If CF is a partition in F between A∩F
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and B ∩ F then there exist a partition C between A and B in X and a
natural number m such that

(a) C = (C ∩ F ) ∪ ⋃mi=1 Ci, where Ci is an arbitrary partition in Ei
between A ∩ Ei and B ∩ Ei (Ci is empty if A ∩ Ei or B ∩ Ei is empty);

(b) C ∩ F ⊂ CF .

P r o o f. Let f : F ∪A∪B → [−1, 1] be such that f−1(−1) = A, f−1(0) =
CF , f

−1(1) = B. Consider an extension g : X → [−1, 1] of f . Put ε =
δ(A, g−1[0, 1]) > 0 and choose a natural number m such that δ(Ei) < ε/2
for all i > m. In the clopen subset Y = X \⋃mi=1Ei of X take an open set
U = (g−1(0, 1] ∩ Y ) ∪⋃{Ei : Ei ∩ g−1[0, 1] 6= ∅ and i > m}. Observe that
BdU ⊂ CF . In every set Ei, i ≤ m, consider a partition Ci between A∩Ei
and B ∩Ei (let Ci be empty if at least one of the sets is empty). It is clear
that the set C = BdU ∪⋃mi=1 Ci satisfies the required conditions.

3. Finite sum theorems. Recall the definitions of the transfinite in-
ductive dimensions trind and trInd.

Definition. Let X be a space. Then

(i) trIndX = −1⇔ X = ∅;
(ii) trIndX ≤ α, where α is an ordinal number, if for every closed set

A ⊂ X and each open set V ⊂ X which contains A there exists an open set
U ⊂ X such that A ⊂ U ⊂ V and trInd BdU < α;

(iii) trIndX = α ⇔ trIndX ≤ α and the inequality trIndX ≤ β holds
for no β < α;

(iv) trIndX =∞⇔ trIndX ≤ α holds for no ordinal α.

The definition of trind is obtained by replacing the set A in (ii) with a
point of X.

In the sequel, α = λ(α)+n(α) is the natural decomposition of the ordinal
α into the sum of a limit ordinal λ(α) and a nonnegative integer n(α).

The following two finite sum theorems for trind and trInd are due to
Toulmin, Levshenko, Landau and Pears (cf. [E]).

Theorem 3.1. Let d be trind or trInd. If a space X is the union of two
closed subspaces F1 and F2 such that dFi ≤ αi, i = 1, 2, and α2 ≥ α1, then

dX ≤
{
α2 if λ(α1) < λ(α2),
α2 + n(α1) + 1 if λ(α1) = λ(α2).

Theorem 3.2. Let d be trind or trInd. If a space X is the union of two
closed subspaces F1 and F2 such that dF1 ≤ dF2 ≤ α2 and d(F1 ∩ F2) ≤
α1 ≤ α2, then

dX ≤
{
α2 if λ(α1) < λ(α2),
α2 + n(α1) + 1 if λ(α1) = λ(α2).
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One can ask

Question. Are these estimates exact?

In order to answer this question we need some statements.

Lemma 3.3. Let X be a space with trIndX = α, n(α) ≥ 1. Then

(a) X 6= ⋃n(α)
i=1 Pi for any Pi closed , and trIndPi ≤ λ(α).

If , in addition, X =
⋃n(α)+1
i=1 Zi, where each Zi is closed and trIndZi ≤

λ(α), then

(b) trInd(Z1 ∪ . . . ∪ Zk+1) = λ(α) + k for any k with 0 ≤ k ≤ n(α);
(c) trInd((Z1 ∪ . . . ∪ Zi+1) ∩ (Zi+2 ∪ . . . ∪ Zi+j+2)) = λ(α) + min{i, j}

for any nonnegative integers i, j such that i+ j + 1 ≤ n(α).

P r o o f. (a) If X =
⋃n(α)
i=1 Pi apply Theorem 3.1 consecutively n(α) − 1

times to get trInd
⋃n(α)
i=1 Pi ≤ α− 1, a contradiction.

(b) By Theorem 3.1 we have trInd(Z1 ∪ . . . ∪ Zk+1) ≤ λ(α) + k. If
trInd(Z1 ∪ . . . ∪ Zk+1) < λ(α) + k apply Theorem 3.1 to the union (Z1 ∪
. . .∪Zk+1)∪ (Zk+2 ∪ . . .∪Zn(α)+1). We again get trInd

⋃n(α)+1
i=1 Zi ≤ α− 1.

(c) Apply (b) and Theorem 3.2.

Applying Lemmas 2.2, 2.3 and Theorem 3.2 one easily shows the follow-
ing lemma.

Lemma 3.4. (a) Let X = F ∪⋃∞i=1Ei be a B-special decomposition and
α be an ordinal. If sup{trindF, trindEi} ≤ α then trindX ≤ α, and if X
is compact and sup{trIndF, trIndEi} ≤ α then trIndX ≤ α.

(b) Let X = F ∪⋃∞i=1Ei be an A-special decomposition of the compact
space X, α be a limit ordinal and d be trind or trInd. If dimF ≤ n and
sup{dEi} ≤ α then X =

⋃n+1
k=1 Zk, where Zk is closed in X and dZk ≤ α.

Observe that in the case of trind the statement of Lemma 3.4(a) is almost
the same as Lemma 3.4 from [Lu2] for k = 1 (cf. also [E], Problem 7.1.G(c)).

Recall that Smirnov’s compacta S0, S1, . . . , Sα, . . . , α < ω1, are defined
by transfinite induction (see [S]): S0 is a one-point space, Sα = Sβ × I for
α = β+ 1, and if α is a limit ordinal, then Sα = {∗α}∪

⋃
β<α S

β is the one-
point compactification of the free union of all the previously defined Sβ ’s,
where ∗α is the compactification point. It is well known that trIndSα = α
for every α < ω1.

In [Le] Levshenko proved that Sω0+1 = Z1 ∪ Z2, where Zi is closed in
Sω0+1 and trIndZi = ω0. Now we prove a generalization of this fact.
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Lemma 3.5. Let α be an ordinal < ω1. Then

(a) Sα =
⋃n(α)+1
i=1 Zi, where each Zi is closed in Sα,

trInd(Z1 ∪ . . . ∪ Zk+1) = λ(α) + k

for any k with 0 ≤ k ≤ n(α), and

trInd((Z1 ∪ . . . ∪ Zi+1) ∩ (Zi+2 ∪ . . . ∪ Zi+j+2)) = λ(α) + min{i, j}
for any nonnegative integers i, j such that i+ j + 1 ≤ n(α);

(b) Sα 6= ⋃n(α)
i=1 Pi for any Pi closed in Sα with trIndPi ≤ λ(α).

P r o o f. Observe that

Sα = {∗λ(α)} × In(α) ∪
⋃
{Sβ × In(α) : β < λ(α)}

= {∗λ(α)} × In(α) ∪
⋃
{Sβ+n(α) : β < λ(α)}

is an A-special decomposition with dim({∗λ(α)} × In(α)) = n(α) and with
sup{trIndSβ+n(α)} ≤ λ(α). Now apply Lemmas 3.3 and 3.4.

From Lemma 3.5 we obtain a complement to Theorems 3.1 and 3.2 (the
case of trInd) showing the exactness of the estimates:

Theorem 3.6. For any infinite countable ordinal α with n(α) ≥ 1 there
exists a compact space Xα with trIndXα = α such that for any nonnegative
integers p, q with p+ q = n(α)− 1 there exist closed subsets Xp and Xq of
X such that Xα = Xp ∪Xq, trIndXp = λ(α) + p, trIndXq = λ(α) + q and
trInd(Xq ∩Xp) = λ(α) + min{p, q}.

In order to improve Theorem 3.1 (the case of trind) we need the following
two statements. The first one is evident, the proof of the second is left to
the reader.

Lemma 3.7. Let X = X1 ∪X2. If IntX1 ∪ IntX2 = X and trindXi ≤
αi, i = 1, 2, then trindX ≤ max{α1, α2}.

Lemma 3.8. Let X = F1 ∪ F2, where Fi is closed in X. Let A and B be
two disjoint closed subsets of X, and Ci be a partition in Fi between A∩ Fi
and B ∩ Fi. Then there exists a partition C in X between A and B such
that C ⊂ C1 ∪ C2 ∪ (F1 ∩ F2).

Observe that Lemma 3.8 is a particular case of a more general result (see
Lemma 2 of [Ch]) which was communicated to me by Pasynkov some years
ago.

Now we are ready to consider a revision of Theorem 3.1 (the case of
trind):

Theorem 3.9. Let X = X1∪X2, where Xi is closed in X and trindXi =
αi, i = 1, 2. Then
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(a) for any two closed subsets A and B of X there exists a partition C
between A and B such that trindC ≤ max{α1, α2};

(b) max{α1, α2} ≤ trindX ≤ max{α1, α2}+ 1.

P r o o f. (a) If A or B is disjoint from Xi for some i = 1, 2, then one
can find a partition C in X between A and B such that C ∩ Xi = ∅. So
we have trindC ≤ max{trindX1, trindX2}. Assume now that A ∩ Xi 6= ∅
and B ∩ Xi 6= ∅ for each i = 1, 2. Choose a partition C1 in X1 between
A ∩X1 and B ∩X1. Let X1 \ C1 = U1 ∪ V1, where U1, V1 are open in X1

and disjoint, and A∩X1 ⊂ U1. Choose a partition C2 in X2 between A∩X2

and ((C1 ∪ V1) ∪B) ∩X2. Observe that

Y = C1 ∪ C2 ∪ (X1 ∩X2) = Y1 ∪ Y2,

where Yi = Ci ∪ (X1 ∩ X2). Moreover IntY1 ∪ IntY2 = Y , trindYi ≤ αi
(recall that Yi ⊂ Xi). So trindY ≤ max{α1, α2} by Lemma 3.7. Observe
that by Lemma 3.8 there exists a partition C between A and B such that
C ⊂ Y . Consequently, trindC ≤ max{α1, α2}.

(b) The statement follows from (a).

Corollary 3.10. Let X be a space and α be an ordinal.

(a) If X =
⋃n+1
k=1 Xk, where each Xk is closed in X, 0 ≤ n ≤ 2m− 1 for

some integer m and max{trindXk} ≤ α then trindX ≤ α+m.
(b) If trindX = α+n, n ≥ 1 then X 6= ⋃ki=1 Pi, where each Pi is closed

in X, trindPi ≤ α and k ≤ 2n−1.
(c) If X = X1∪X2, where each Xi is closed in X, trIndX = α, n(α) ≥ 2

and max{trindXk} ≤ α− 2 then trindX < trIndX.

P r o o f. (a) Let n = 2m − 1. For every integer j such that 1 ≤ j ≤ 2m−1

put X(1)
j = X2j−1 ∪X2j . Theorem 3.9 yields trindX(1)

j ≤ α + 1. For every

integer p such that 1 ≤ p ≤ 2m−2 put X(2)
p = X

(1)
2p−1 ∪ X(1)

2p . Theorem 3.9

shows trindX(2)
p ≤ α + 2, and so on. Observe that X = X

(m)
1 . It is clear

that trindX ≤ α+m.
(b) Apply the proof of (a).

Corollary 3.11. Let X be a compact space and λ be a limit ordinal.

(a) If X = F ∪⋃∞i=1Ei is an A-special decomposition such that dimF =
n ≥ 1, sup{trindEi} ≤ λ and n ≤ 2m−1 for some integer m then trindX ≤
λ+m.

(b) If F is a closed subset of X such that dimF = n ≥ 1, sup{trindxX :
x ∈ X\F} ≤ λ and n ≤ 2m−1 for some integer m then trindX ≤ λ+m+1.

P r o o f. (a) By Lemma 3.4(b) we have X =
⋃n+1
k=1 Zk, where each Zk

is closed in X and trindZk ≤ λ for every k = 1, . . . , n + 1. Now apply
Corollary 3.10(a).
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(b) It is clear that the compactum X can be written as the union of two
closed subsets X1, X2 such that each Xi has a decomposition as in (a). So
trindXi ≤ λ+m, i = 1, 2. Now apply Theorem 3.9.

Remark 3.12. Recall that sup{trindSα : α < ω1} = ω1 (see [Le]). So the
estimates from Theorem 3.9 are exact in any class of metrizable compacta
containing all Smirnov compacta and their closed subspaces.

Remark 3.13. Observe that the estimates of trind from Theorem 3.9(a)
and Corollary 3.10(a), (b) are also valid for regular T1-spaces [Ch-K].

4. Estimates of trindSα, α < ω1. In [Lu1] Luxemburg proved that
trindSω0+2 = trindSω0+3 = ω0 + 2. It was the first example of a metriz-
able compact space with noncoinciding transfinite trind and trInd. Observe
that four years earlier Filippov [F] constructed the first example of a non-
metrizable compact space with noncoinciding finite ind and Ind. Recall that
Sω0+3 = Sω0+2 × [0, 1]. So it was also an example where trind(X × [0, 1]) <
trindX + 1 (recall that in the finite-dimensional case for any metrizable
compact space X we always have equality). Later on Luxemburg [Lu2] also
obtained an estimate of trind for all Smirnov compacta. Namely, trindSα ≤
λ(α) + [(n(α) + 2)/2] for every infinite ordinal α < ω1.

We now have the following estimate of trindSα, α < ω1.

Theorem 4.1. If α is an infinite ordinal and n(α) ≤ 2m − 1 for some
integer m then trindSα ≤ λ(α) +m. In particular trindSω0+3 ≤ ω0 + 2.

P r o o f. Apply Corollary 3.11(a).

Remark 4.2. One can easily prove that trindSω0+2 ≥ ω0 + 2 (trindY ≤
ω0 implies trIndY ≤ ω0 for any compact space Y ). So trindSω0+2 = ω0 +2.
Now recall that Sω0+2 ⊂ Sω0+3, which gives trindSω0+3 = ω0 + 2.

Theorem 4.3. (a) Let n be a natural number and m = min{k : n + 3
≤ 2k}. Then n+ 2 > m.

(b) trind(Sω0+2 ×X) < trindSω0+2 + dimX for any finite-dimensional
space X such that dimX ≥ 1 (Theorem 7.2 of [Lu2]).

P r o o f. (a) Apply induction.
(b) Let dimX = n ≥ 1 and Y be a compactification of X such that

dimY = n (cf. [E]). Observe that

Sω0+2 × Y = ({∗ω0} × I2 × Y ) ∪
⋃
{Ik × I2 × Y : k < ω0}

= ({∗ω0} × I2 × Y ) ∪
⋃
{Ik+2 × Y : k < ω0}

is an A-special decomposition with dim({∗ω0} × I2 × Y ) = n + 2 and
sup{trind(Ik+2×Y )} ≤ ω0. By Corollary 3.11(a) we have trind(Sω0+2×Y ) ≤
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ω0 +m, where m = min{k : n+ 2 ≤ 2k − 1}. By (a) we get

trind(Sω0+2 × Y ) ≤ ω0 +m < ω0 + (n+ 2) = (ω0 + 2) + n

= trindSω0+2 + dimY.

Observe that Sω0+2 ×X ⊂ Sω0+2 × Y . This yields the assertion.

Conjecture. If α is an infinite ordinal and n(α) = 2m−1 for some
integer m ≥ 1 then trindSα = λ(α) +m.

Observe that by Theorem 4.1 the proof of the conjecture would solve a
long standing problem of computing the small transfinite dimension of every
Smirnov space.
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