Open maps between Knaster continua

by
Carl Eberhart, J. B. Fugate and Shannon Schumann (Lexington, KY)

Abstract

We investigate the set of open maps from one Knaster continuum to another. A structure theorem for the semigroup of open induced maps on a Knaster continuum is obtained. Homeomorphisms which are not induced are constructed, and it is shown that the induced open maps are dense in the space of open maps between two Knaster continua. Results about the structure of the semigroup of open maps on a Knaster continuum are obtained and two questions about the structure are posed.

1. Introduction. Following the notation of J. W. Rogers [10], for each positive integer n let $w_{n}: I=[0,1] \rightarrow I$ denote the mapping which is 0 at i / n for i even, 1 at i / n for i odd, and linear in between, that is,

$$
w_{n}(x)= \begin{cases}n x-i & \text { if } i \text { is even and } 0 \leq i / n \leq x \leq(i+1) / n \leq 1, \\ i+1-n x & \text { if } i \text { is odd and } 0<i / n \leq x \leq(i+1) / n \leq 1\end{cases}
$$

The map w_{n} is called the standard map of degree n, and the set of all the maps w_{n} is denoted by \mathcal{W}. As noted in [6], the composition $w_{n} w_{m}$ of two standard maps is the standard map $w_{m n}$, and so \mathcal{W} is a semigroup of mappings on I which is naturally isomorphic to the multiplicative semigroup of positive integers under the function $w_{n} \mapsto \operatorname{deg}\left(w_{n}\right)=n$.

If π is any sequence of positive integers and K_{π} denotes the inverse limit $\varliminf_{\leftrightarrows}\left\{I_{k}, \pi_{k}^{k+1}\right\}$, where $I_{k}=I$ and $\pi_{k}^{k+1}=w_{\pi(k)}$, then K_{π} is an indecomposable continuum (compact connected metric space) except in the case when $\pi(i)=1$ for all but finitely many i (cf. [9]).

If the sequence π is a constant sequence $\pi(k)=n$, then we denote K_{π} by K_{n}. The continuum K_{2} is the well-known "bucket handle" described in the 1920's by B. Knaster as an intersection of disks in the plane. We refer

[^0]to K_{π} as a Knaster continuum and denote the set of all homeomorphism classes of Knaster continua by \mathbb{K}.

Knaster continua have been studied by many authors, including Rogers [10] and W. Debski [6].

In [10], Rogers shows that each indecomposable metric continuum can be mapped continuously onto any Knaster continuum, and that any inverse limit $\lim \left\{I_{i}, f_{i}^{i+1}\right\}$ is (homeomorphic to) a Knaster continuum if each map f_{i}^{i+1} is a limit of open maps in the sup metric.

In [6], Debski provides a complete classification of Knaster continua and shows that there are uncountably many topologically different Knaster continua.

In the present paper, we investigate the structure of the open mappings between Knaster continua. If π and ϱ are sequences of primes, then $\mathcal{O}_{\varrho}^{\pi}$ denotes the set, possibly empty, of all open mappings $f: K_{\pi} \rightarrow K_{\varrho}$. In case $\pi=\varrho, \mathcal{O}_{\pi}^{\pi}$ will be written \mathcal{O}_{π}. This last set forms a semigroup under composition of functions, since the composition of open maps is open.

Let \mathbb{P} be the set of primes and $\omega=\{0,1, \ldots, \infty\}$ the set of countable cardinals.

Every sequence π of primes has associated with it an occurrence function

$$
\mathrm{occ}_{\pi}: \mathbb{P} \rightarrow \omega
$$

whose value at a prime p is the number of occurrences of p in the sequence π.
Since π is an infinite sequence of primes, either $\operatorname{occ}_{\pi}(p)$ must be ∞ for at least one prime p or occ $\boldsymbol{c}_{\pi}(p)$ must be nonzero for infinitely many primes p. Conversely, given a function $\tau: \mathbb{P} \rightarrow \omega$ such that $\tau(p)=\infty$ for some prime p or $\tau(p)>0$ for infinitely many primes p, we can arrange a sequence π of primes such that occ ${ }_{\pi}=\tau$.

The semigroup of open mappings on the interval is described in Section 2. The structure we find in this semigroup is a key to unlocking the structure of the open induced maps between Knaster continua, which we describe in Section 3.

A map $f: K_{\pi} \rightarrow K_{\varrho}$ is said to be an induced map provided that there is an increasing sequence of subscripts i_{k} and maps $f_{k}: I_{i_{k}} \rightarrow I_{k}$ so that $\varrho_{k} f=f_{k} \pi_{i_{k}}$ for each $k=1,2, \ldots$ The sequence is called a defining sequence of coordinate maps for f. The set of open induced maps from K_{π} to K_{ϱ} is denoted by $\mathcal{O} \mathcal{I}_{\varrho}^{\pi}$. In the case $\pi=\varrho$, write $\mathcal{O} \mathcal{I}_{\varrho}^{\pi}=\mathcal{O} \mathcal{I}_{\pi}$.

We show that the composition of open induced maps is an open induced map whenever the composition is defined. So the set $\mathcal{O} \mathcal{I}_{\pi}$ is a subsemigroup of the semigroup \mathcal{O}_{π}.

We show that an open induced map is determined by any one of its coordinate maps. We obtain a structure theorem for the semigroup $\mathcal{O} \mathcal{I}_{\pi}$ which expresses it as a semidirect product of some of its subsemigroups.

In Section 4, we show how to construct homeomorphisms of Knaster continua which are not induced, and prove that each open mapping between Knaster continua is the uniform limit of open induced mappings.

Before the open maps between K_{π} and K_{ϱ} can be analyzed, we need to look carefully at the open self-maps on I.
2. The semigroup of open maps on I. Let \mathcal{O} denote the semigroup of open maps from I to I under composition. We call an element f of \mathcal{O} order preserving provided that $f(0)=0$ and denote the set of all these by \mathcal{O}^{+}. Then \mathcal{O}^{+}is clearly a subsemigroup of the semigroup \mathcal{O}.

The following theorem is proved in [10].
2.1. Theorem. For each $f \in \mathcal{O}, f: I \rightarrow I$ is a surjection. Further, there is a uniquely determined strictly increasing sequence $a_{i}, i=0, \ldots, n$, with $a_{0}=0, a_{n}=1$, such that the restriction of f to $\left[a_{i}, a_{i+1}\right]$ is a homeomorphism into I, for each $i=0, \ldots, n-1$.

The degree $\operatorname{deg}(f)$ of an open mapping f is defined to be the n that satisfies the above theorem.

Let \mathcal{H} (resp. \mathcal{H}^{+}) denote the group of homeomorphisms (resp. order preserving homeomorphisms) of I. Then \mathcal{H} is the group of units of \mathcal{O} and $\mathcal{H}^{+}=\mathcal{H} \cap \mathcal{O}^{+}$is the group of units of \mathcal{O}^{+}.

Denote by α the homeomorphism $x \mapsto 1-x$ on I. Then $\alpha^{2}=w_{1}$, the identity map on I.
2.2. Lemma. Let 1 denote the constant function $x \mapsto 1$ on I. Then for any positive integer n,
(i) $1-w_{n}=\alpha w_{n} \neq w_{n} \alpha=w_{n}$ when n is even, and
(ii) $1-w_{n}=\alpha w_{n}=w_{n} \alpha \neq w_{n}$ when n is odd.

The next lemma is found in [10].
2.3. Lemma. If $f: I \rightarrow I$ is a continuous function and $a_{i}, i=0, \ldots, n$, is an increasing sequence in I on which the values of f alternate between 0 and 1 , then there is a continuous function g such that $w_{n} g=f$. Furthermore, if $a_{0}=0=f\left(a_{0}\right), a_{n}=1$, and the restriction of f to each interval $\left[a_{i}, a_{i+1}\right]$ is 1-1, then g is an order preserving homeomorphism of I.

If $h \in \mathcal{H}^{+}$and $w_{n} \in \mathcal{W}$, then $f=h w_{n} \in \mathcal{O}^{+}$and $\operatorname{deg}(f)=n$, so the graph of the map g defined in Rogers' Lemma 2.3 to satisfy $h w_{n}=w_{n} g$ is seen to be the union of n scaled copies of the graph of h (see Figure 1).

So it is reasonable to call g a multiple of h by n and to denote g by $n h$. Also, we will denote h by $\frac{1}{n} g$. Note that while $n h$ always exists, $\frac{1}{n} h$ only does when there is a homeomorphism k such that $n k=h$. This notation is

Fig. 1
useful for stating the rule for multiplication in \mathcal{O}, in the Structure Theorem below.
2.4. Structure Theorem for \mathcal{O}. Each $f \in \mathcal{O}$ can be written uniquely as a product $f=\alpha^{i} w_{n} h$, where $i=f(0) \in \mathbb{Z}_{2}, \operatorname{deg}(f)=n$, and h is in \mathcal{H}^{+}. Furthermore, the rule for multiplication in \mathcal{O} is given by

$$
\left(\alpha^{i} w_{n} h\right)\left(\alpha^{j} w_{m} g\right)=\alpha^{i+n j} w_{n m} m\left(\alpha^{j} h \alpha^{j}\right) g .
$$

Proof. Case 1: f is order-preserving. Since $f(0)=0, f$ is open, and $\operatorname{deg}(f)=n$, we know by Theorem 2.1 that there are numbers a_{i} with $a_{0}=0<a_{1}<\ldots<a_{n}=1$ such that $f\left(a_{i}\right)=0$ if i is even, $f\left(a_{i}\right)=1$ if i is odd, and f is a homeomorphism on each subinterval $\left[a_{i}, a_{i+1}\right]$. In particular, if $x \notin\left\{a_{0}, a_{1}, \ldots, a_{n}\right\}$, then $f(x) \in(0,1)$. By Lemma 2.3, at least one map h exists.

To show that h is unique, suppose $h^{\prime} \neq h$ is also such a map. Then, since $f\left(a_{i}\right)=w_{n}\left(h\left(a_{i}\right)\right)=w_{n}\left(h^{\prime}\left(a_{i}\right)\right)$ and $f\left(a_{i}\right) \in\{0,1\}$ for each i, we conclude that h and h^{\prime} map $\left\{a_{0}, \ldots, a_{n}\right\}$ into $w_{n}^{-1}(\{0,1\})=\{0,1 / n, \ldots, 1\}$. Furthermore, since h and h^{\prime} are one-to-one and order preserving, we know that $h\left(a_{i}\right)=i / n=h^{\prime}\left(a_{i}\right)$ for each i. Since $h \neq h^{\prime}$, there exist i and x such that $a_{i}<x<a_{i+1}$ and $h(x) \neq h^{\prime}(x)$. Then, since $w_{n}(h(x))=w_{n}\left(h^{\prime}(x)\right)$, it follows that there is a turning point p of w_{n} between $h(x)$ and $h^{\prime}(x)$. Without loss of generality, we may assume that $h(x)<p<h^{\prime}(x)$. But h and h^{\prime} are order preserving, so $i / n=h\left(a_{i}\right)<h(x)<p<h^{\prime}(x)<h^{\prime}\left(a_{i+1}\right)=$ $(i+1) / n$. Hence p cannot be a turning point of w_{n}, since i / n and $(i+1) / n$ are consecutive turning points of w_{n}.

Case 2: f is order reversing. Since $f(0)=1$, note that $\alpha(f(0))=0$, so Case 1 applies to αf to factor $\alpha f=w_{n} h$ uniquely. This yields $f=\alpha \alpha f=$ $\alpha^{f(0)} w_{n} h$.

To prove that the factorization is unique, suppose that $f=\alpha^{j} w_{m} g$, with $g \in \mathcal{H}^{+}$. Then $i=f(0)=\alpha^{j}\left(w_{m}(g(0))\right)=\alpha^{j}\left(w_{m}(0)\right)=\alpha^{j}(0)=j$. Hence $w_{m} g=w_{n} h$, so $m=\operatorname{deg}\left(w_{m} g\right)=\operatorname{deg}\left(w_{n} h\right)=n$. Finally, by Case $1, h=g$.

To verify the rule for multiplication, note that

$$
\left(\alpha^{i} w_{n} h\right)\left(\alpha^{j} w_{m} g\right)=\alpha^{i} w_{n}\left(\alpha^{j} \alpha^{j}\right) h \alpha^{j} w_{m} g=\left(\alpha^{i} w_{n} \alpha^{j}\right)\left(\alpha^{j} h \alpha^{j} w_{m}\right) g
$$

Now in the second factor $\alpha^{j} h \alpha^{j} w_{m}$ of the last expression, $\alpha^{j} h \alpha^{j}$ is in \mathcal{H}^{+}, so by Case 1,

$$
\left(\alpha^{i} w_{n} \alpha^{j}\right)\left(\alpha^{j} h \alpha^{j} w_{m}\right) g=\left(\alpha^{i} w_{n} \alpha^{j}\right) w_{m}\left(m\left(\alpha^{j} h \alpha^{j}\right)\right) g .
$$

Each of the last two factors above, $m\left(\alpha^{j} h \alpha^{j}\right)$ and g, is in \mathcal{H}^{+}so their composition is in \mathcal{H}^{+}. Further, using Lemma 2.2, and taking the cases $j=0,1$ and n even or odd, we can write $\alpha^{i} w_{n} \alpha^{j}=\alpha^{i+n j} w_{n}$. Hence

$$
\left(\alpha^{i} w_{n} \alpha^{j}\right) w_{m}\left(m\left(\alpha^{j} h \alpha^{j}\right)\right) g=\alpha^{(i+n j)} w_{n m} m\left(\alpha^{j} h \alpha^{j}\right) g .
$$

This establishes the rule for multiplication.
The following corollary is immediate.
2.5. Corollary. The function $\operatorname{deg}: \mathcal{O} \rightarrow \mathbb{Z}^{+}$is a homomorphism of the semigroup of open self-maps of I to the semigroup of positive integers under multiplication.

The next result establishes cancellation properties for \mathcal{O}.
2.6. Lemma. Suppose that f, g, and g^{\prime} are in \mathcal{O}. Then:
(1) If $\operatorname{deg}(f)$ is odd and $f g=f g^{\prime}$, then $g=g^{\prime}$.
(2) If $\operatorname{deg}(f)$ is even, $f g=f g^{\prime}$, and both g and g^{\prime} are order preserving or both are order reversing, then $g=g^{\prime}$.
(3) If $g f=g^{\prime} f$, then $g=g^{\prime}$.

Proof. Whether the assumption is $f g=f g^{\prime}$ or $g f=g^{\prime} f$, it follows by Corollary 2.5 that $\operatorname{deg}(g)=\operatorname{deg}\left(g^{\prime}\right)$. By the Structure Theorem 2.4, there are nonnegative integers m, n, i, j, l and homeomorphisms h, k, and k^{\prime} in \mathcal{H}^{+} so that $f=w_{m} \alpha^{i} h, g=w_{n} \alpha^{j} k$, and $g^{\prime}=w_{n} \alpha^{l} k^{\prime}$.

Invoking the multiplication rule from Theorem 2.4, we have

$$
\begin{equation*}
\alpha^{i+m j} w_{m n} n\left(\alpha^{j} h \alpha^{j}\right) k=f g=f g^{\prime}=\alpha^{i+m l} w_{m n} n\left(\alpha^{l} h \alpha^{l}\right) k^{\prime} . \tag{**}
\end{equation*}
$$

Thus, by the uniqueness, $(i+m j) \bmod 2=(i+m l) \bmod 2$, hence $m j \bmod 2$ $=m l \bmod 2$.
(1) If m is odd, then $j=l$ and ($* *$) becomes

$$
\begin{equation*}
\alpha^{i+m j} w_{m n} n\left(\alpha^{j} h \alpha^{j}\right) k=f g=f g^{\prime}=\alpha^{i+m j} w_{m n} n\left(\alpha^{j} h \alpha^{j}\right) k^{\prime} . \tag{**}
\end{equation*}
$$

Now we conclude from uniqueness that $n\left(\alpha^{j} h \alpha^{j}\right) k=n\left(\alpha^{j} h \alpha^{j}\right) k^{\prime}$. Since $n\left(\alpha^{j} h \alpha^{j}\right)$ is a homeomorphism, $k=k^{\prime}$. So $g=\alpha^{j} w_{n} k=\alpha^{k} w_{n} k^{\prime}=g^{\prime}$.
(2) If m is even, and g and g^{\prime} are both order preserving or both order reversing, then $j=l=0$ or $j=l=1$. In either case $j=l$ and so we see from $(* *)$ that $w_{m n} n\left(\alpha^{j} h \alpha^{j}\right) k=w_{m n} n\left(\alpha^{j} h \alpha^{j}\right) k^{\prime}$. As before, we get $g=g^{\prime}$.
(3) The argument proceeds similarly to the above, except that no cases are needed.

A semigroup S is left cancellative provided that for all $x, y, z \in S, x y=$ $x z$ implies $y=z$. Right cancellative semigroups are defined similarly. S is cancellative if it is both left and right cancellative.
2.7. Corollary. The semigroup \mathcal{O}^{+}is cancellative. The semigroup \mathcal{O} is right cancellative, but not left cancellative.

Proof. Lemma 2.6 shows that \mathcal{O}^{+}is cancellative, and \mathcal{O} is right cancellative. To see that \mathcal{O} is not cancellative, note that $w_{2} \alpha=w_{2}$, but α is not the identity.

Generally speaking, a cancellative semigroup need not be embeddable into a group [4]. However, we show in Corollary 3.12 that there is a Knaster continuum whose group of homeomorphisms contains a naturally embedded copy of \mathcal{O}^{+}.

The semigroup \mathcal{O} is also noncommutative, although the subsemigroup of standard maps \mathcal{W} is commutative. In fact, we have the following theorem.
2.8. TheOrem. An open mapping $f: I \rightarrow I$ is a standard open mapping if and only if it commutes with w_{2}.

Proof. Suppose $f w_{2}=w_{2} f$. Then $f(0)=f\left(w_{2}(0)\right)=w_{2}(f(0))=0$, since $f(0) \in\{0,1\}$. Thus by Theorem $2.4, f=w_{m} h$, where $\operatorname{deg}(f)=m$ and $h \in \mathcal{H}^{+}$. Using the rule for multiplication in Theorem 2.4, we see that $w_{2 m} h=w_{2} f=f w_{2}=w_{2 m}(2 h)$. So by the uniqueness, we have $h=2 h$. But then $h=\lim _{n \rightarrow \infty} 2^{n} h=w_{1}$.
2.9. Corollary. The semigroup \mathcal{W} is a maximal commutative subsemigroup of \mathcal{O}.

Proof. Any $f \in \mathcal{O}$ which commutes with each standard map must be a standard map by the above theorem.
3. Open induced maps between Knaster continua. Recall that a map $f: K_{\pi} \rightarrow K_{\varrho}$ is induced by the sequence of indices i_{k} and maps $f_{k}: I_{i_{k}} \rightarrow I_{k}$ if $\varrho_{k} f=f_{k} \pi_{k}$ for all positive integers k. This means that in Figure 2 , the trapezoid with sides f_{k} and f commutes and the trapezoid with sides f_{l} and f commutes. It follows from this definition that for each k, l with
$k<l$, the trapezoid with sides f_{k} and f_{l} commutes, that is, $\varrho_{k}^{l} f_{l}=f_{k} \pi_{i_{k}}^{i_{l}}$. To see this, note first that

$$
f_{k} \pi_{i_{k}}^{i_{l}} \pi_{i_{l}}=f_{k} \pi_{i_{l}}=\varrho_{k} f=\varrho_{k}^{l} \varrho_{l} f=\varrho_{k}^{l} f_{l} \pi_{i_{l}} .
$$

But $\pi_{i_{l}}$ is a surjection and so can be cancelled on the right to establish the claim.

Fig. 2. f is induced by the sequences i_{k} and f_{k}
3.1. Lemma. A map $f: K_{\pi} \rightarrow K_{\varrho}$, induced by sequences i_{k} and f_{k}, is open if and only if all of the maps f_{k} are open.

Proof. Suppose f is open. Since all of the bonding maps ϱ_{j}^{i} are open, the projections ϱ_{k} are open. So $\varrho_{k} f$ is open for each k. But $\varrho_{k} f=f_{k} \pi_{i_{k}}$ and since $\pi_{i_{k}}$ is open, it follows that f_{k} is open for all k.

Now suppose all of the maps f_{k} are open. Let U be a basic open set in K_{π}. Then there is a natural number i_{j} and an open set $V \subset I_{i_{j}}$ such that $U=\pi_{i_{j}}^{-1}(V)$. We claim that $f(U)=\varrho_{j}^{-1} f_{j} \pi_{i_{j}}(U)=\varrho_{j}^{-1} f_{j}(V)$, which is clearly open in K_{ϱ}.

Indeed suppose that $y \in f(U)$, i.e. there is a point $x \in U$ such that $f(x)=y$. Then $\varrho_{j} f(x)=f_{j} \pi_{i_{j}}(x)$, by the definition of f, so $y=f(x) \in$ $\varrho_{j}^{-1} f_{j} \pi_{i_{j}}(U)$. Now suppose that $y \in \varrho_{j}^{-1} f_{j} \pi_{i_{j}}(U)$. We construct a point $x \in U$ such that $f(x)=y$. For each k, let $y_{k}=\varrho_{k}(y)$. Now for each $k>j$, we claim the following two statements are true:
(1) $\pi_{i_{k}}^{-1} f_{k}^{-1}\left(y_{k}\right)$ is closed in K_{π}.
(2) If $k>n$, then $\pi_{i_{k}}^{-1} f_{k}^{-1}\left(y_{k}\right) \subset \pi_{i_{n}}^{-1} f_{n}^{-1}\left(y_{n}\right)$.

The first one is easy to see, since the set in question is the continuous preimage of a singleton, which is closed in I_{k}.

To see the second one, suppose that $p \in \pi_{i_{k}}^{-1} f_{k}^{-1}\left(y_{k}\right)$. Then $f_{k} \pi_{i_{k}}(p)=$ y_{k}. Next, $f_{n} \pi_{i_{k}}^{i_{n}} \pi_{i_{k}}(p)=\varrho_{k}^{n} f_{k} \pi_{i_{k}}(p)$. But this yields $f_{n} \pi_{i_{n}}(p)=\varrho_{k}^{n}\left(y_{k}\right)=y_{n}$, so $p \in \pi_{i_{n}}^{-1} f_{n}^{-1}\left(y_{n}\right)$.

Since (1) and (2) hold, we know that the set $\bigcap_{k>j} \pi_{i_{k}}^{-1} f_{k}^{-1}\left(y_{k}\right)$ is nonempty and contains some point x. For each $k>j$, $\varrho_{k} f(x)=f_{k} \pi_{i k}(x)$.

Since $x \in \pi_{i_{k}}^{-1} f_{k}^{-1}\left(y_{k}\right)$, we know that $f_{k} \pi_{i_{k}}(x)=y_{k}$. Also, for each $k<j$, $\varrho_{k} f(x)=f_{k} \pi_{i_{k}}(x)=\varrho_{j}^{k} f_{j} \pi_{i_{j}}(x)=\varrho_{j}^{k}\left(y_{j}\right)=y_{k}$, so $f(x)=y$.
K_{π} is said to be an even Knaster continuum if $\operatorname{occ}_{\pi}(2)=\infty$, otherwise it is an odd Knaster continuum.

In order to simplify matters we will require that, when choosing a representative K_{ϱ} of an odd Knaster continuum, the sequence ϱ contains no 2's at all, i.e., $\operatorname{occ}_{\pi}(2)=0$.
3.2. Lemma. If a sequence i_{k} of indices and maps $f_{k}: I_{i_{k}} \rightarrow I_{k}$ induces an open map $f: K_{\pi} \rightarrow K_{\varrho}$, then $f_{k} \in \mathcal{O}^{+}$for all k or $f_{k} \in \alpha \mathcal{O}^{+}$for all k.

Proof. If K_{ϱ} is an even Knaster continuum, it follows from part (i) of Lemma 2.2 that all the maps f_{k} are order preserving. For if f_{k} is order reversing for some k, then choosing $l>k$ so large that ϱ_{k}^{l} has even degree, we obtain $\varrho_{k}^{l} f_{l}=f_{k} \pi_{i_{k}}^{i_{l}}$. But $\varrho_{k}^{l} f_{l}(0)=\varrho_{k}^{l}(1)=0$ while $f_{k} \pi_{i_{k}}^{i_{l}}(0)=f_{k}(0)=1$, a contradiction.

If K_{ϱ} is an odd Knaster continuum (with no 2's in ϱ), then it follows from part (ii) of Lemma 2.2 that $f_{k}(0)=f_{1}(0)$ for all k, so all the maps f_{k} are order preserving or all maps are order reversing.
3.3. Lemma. If a sequence i_{k} of indices and maps $f_{k}: I_{i_{k}} \rightarrow I_{k}$ induces an open map $f: K_{\pi} \rightarrow K_{\varrho}$, then the map f is completely determined by any map in the defining sequence.

Proof. Fix a map $f_{n}: I_{i_{n}} \rightarrow I_{n}$ in the defining sequence for f and suppose that $g: K_{\pi} \rightarrow K_{\varrho}$ is an induced open map with a defining sequence j_{k} of indices and maps $g_{k}: I_{j_{k}} \rightarrow I_{k}$ in which $j_{n}=i_{n}$ and $g_{n}=f_{n}$. It is required to show that $g=f$. Let $x=\left(x_{1}, x_{2}, \ldots\right) \in K_{\pi}$. Then $f(x)=\left(y_{1}, y_{2}, \ldots\right) \in K_{\varrho}$ and $g(x)=\left(z_{1}, z_{2}, \ldots\right) \in K_{\varrho}$ where we know that $y_{n}=f_{n}\left(x_{i_{n}}\right)=g_{n}\left(x_{i_{n}}\right)=z_{n}$. Hence $y_{k}=z_{k}$ for $k=1, \ldots, n$. Let $k>n$, and assume without loss of generality that $j_{k} \geq i_{k}$. Then we have

$$
f_{n} \pi_{i_{n}}^{j_{k}}=g_{n} \pi_{i_{n}}^{j_{k}}=\varrho_{n}^{k} g_{k}
$$

since $f_{n}=g_{n}$ and g is an induced map. But also we have

$$
f_{n} \pi_{i_{n}}^{j_{k}}=f_{n} \pi_{i_{n}}^{i_{k}} \pi_{i_{k}}^{j_{k}}=\varrho_{n}^{k} f_{k} \pi_{i_{k}}^{j_{k}}
$$

since f is an induced map. Hence $\varrho_{n}^{k} g_{k}=\varrho_{n}^{k} f_{k} \pi_{i_{k}}^{j_{k}}$. Now by Lemma 3.2, all the maps in the defining sequence for f are order preserving or all the maps are order reversing. The same is true for g, and since $g_{n}=f_{n}$ we can apply parts (1) and (2) of Lemma 2.6 to cancel ϱ_{n}^{k} on the left and get $g_{k}=f_{k} \pi_{i_{k}}^{j_{k}}$. Hence

$$
y_{k}=f_{k}\left(x_{i_{k}}\right)=f_{k} \pi_{i_{k}}^{j_{k}}\left(x_{j_{k}}\right)=g_{k}\left(x_{j_{k}}\right)=z_{k}
$$

This shows that $f(x)=g(x)$ for all $x \in K_{\pi}$ and completes the proof that $f=g$.

Given an $f \in \mathcal{O}^{+}$and an integer k, let $(f)_{1}^{k}$ be the map f considered as a map from I_{k} to I_{1}. Now $(f)_{1}^{k}$ may or may not be the first term in a defining sequence of maps for some induced open map from K_{π} to K_{ϱ}. If it is, we use the symbol $\overline{(f)_{1}^{k}}(\pi, \varrho)$ to stand for the induced map. If it is clear from the context, we will drop the reference to π and ϱ. Also, \bar{f} is used as an abbreviation of $\overline{(f)_{1}^{1}}(\pi, \pi)$.

Note. It will shorten some statements if we agree that $\pi_{1}^{1}=w_{1}$, the identity map on I.
3.4. Lemma. Let K_{π} and K_{ϱ} be Knaster continua.
(1) If $f_{k}: I_{i_{k}} \rightarrow I_{k}$ is a defining sequence for an open induced map $f \in \mathcal{O} \mathcal{I}_{\varrho}^{\pi}$, then for each $n \geq 1, f=\overline{\left(\varrho_{1}^{n} f_{n}\right)_{1}^{i_{n}}}(\pi, \varrho)$.
(2) For each $f \in \mathcal{O}^{+}$and each integer $n \geq 1, \overline{\left(\pi_{1}^{n} f\right)_{1}^{n}}=\overline{\left(\pi_{1}^{n} f\right)_{1}^{n}}(\pi, \pi)$ exists. In particular, $\overline{\left(\pi_{1}^{n}\right)_{1}^{n}}$ is the identity map on K_{π}. In addition, if $g \in \mathcal{O}^{+}$, then $\overline{\left(\pi_{1}^{n} g\right)_{1}^{n}} \overline{\overline{\left(\pi_{1}^{n} f\right)_{1}^{n}}}=\overline{\left(\pi_{1}^{n} g f\right)_{1}^{n}}$. Further, if f is a homeomorphism then $\overline{\left(\pi_{1}^{n} f\right)_{1}^{n}}$ is a homeomorphism.
(3) If π is an odd sequence with $\operatorname{occ}_{\pi}(2)=0$, then $\bar{\alpha}$ exists. If π is even, then $\bar{\alpha}$ does not exist.

Proof. (1) This identity is established by applying both maps to an arbitrary point $x=\left(x_{1}, x_{2}, \ldots\right) \in K_{\pi}$:

$$
f(x)=\left(f_{1}\left(x_{i_{1}}\right), f_{2}\left(x_{i_{2}}\right), \ldots\right)=\left(\varrho_{1}^{n} f_{n}\left(x_{i_{n}}\right), \ldots\right)=\overline{\left(\varrho_{1}^{n} f_{n}\right)_{1}^{i_{n}}}(x) .
$$

(2) Let $p_{1}=f$ and apply 2.4 repeatedly to construct a sequence of open maps $p_{k}: I_{n+k-1} \rightarrow I_{n+k-1}$ so that $\pi_{n+k-1}^{n+k} p_{k+1}=p_{k} \pi_{n+k-1}^{n+k}$ for $k \geq 1$. Define

$$
f_{k}=\pi_{k}^{n+k-1} p_{k}: I_{n+k-1} \rightarrow I_{k} \quad \text { for each } k .
$$

This sequence induces a map $F: K_{\pi} \rightarrow K_{\pi}$ which is open because all its coordinate maps are open (3.1). Further, by part (1), $F=\overline{\left(\pi_{1}^{n} f\right)_{1}^{n}}$ and so $\overline{\left(\pi_{1}^{n} f\right)_{1}^{n}}$ exists. To see that $\overline{\left(\pi_{1}^{n}\right)_{1}^{n}}$ is the identity map on K_{π}, apply the map to a point $\left(x_{1}, x_{2}, \ldots\right) \in K_{\pi}$:

$$
\overline{\left(\pi_{1}^{n}\right)_{1}^{n}}\left(x_{1}, x_{2}, \ldots\right)=\left(\pi_{1}^{n}\left(x_{n}\right), \ldots\right)=\left(x_{1}, \ldots\right)
$$

If $g \in \mathcal{O}^{+}$, then after constructing the defining sequences $g_{k}=\pi_{k}^{n+k-1} q_{k}$ and $(g f)_{k}=\pi_{k}^{n+k-1} s_{k}$ (with q_{k} and s_{k} defined analogously to p_{k}) for the maps $\overline{\left(\pi_{1}^{n} g\right)_{1}^{n}}$ and $\overline{\left(\pi_{1}^{n} g f\right)_{1}^{n}}$, note that

$$
\begin{aligned}
& \overline{\left(\pi_{1}^{n} g\right)_{1}^{n}} \overline{\left(\pi_{1}^{n} f\right)_{1}^{n}}\left(x_{1}, \ldots, x_{2 n-1}, \ldots\right) \\
&=\overline{\left(\pi_{1}^{n} g\right)_{1}^{n}}\left(\pi_{1}^{n} f\left(x_{n}\right), \ldots, \pi_{n}^{2 n-1} p_{2 n-1}\left(x_{2 n-1}\right), \ldots\right) \\
&=\left(\pi_{1}^{n} g \pi_{n}^{2 n-1} p_{2 n-1}\left(x_{2 n-1}\right), \ldots\right)=\left(\pi_{1}^{n} g f \pi_{n}^{2 n-1}\left(x_{2 n-1}\right), \ldots\right) \\
&=\left(\pi_{1}^{n} g f\left(x_{n}\right), \ldots\right)=\overline{\left(\pi_{1}^{n} g f\right)_{1}^{n}}\left(x_{1}, \ldots\right)
\end{aligned}
$$

Finally, if f is a homeomorphism of I, then by what has just been shown,

$$
\overline{\left(\pi_{1}^{n} f\right)_{1}^{n}} \overline{\left(\pi_{1}^{n} f^{-1}\right)_{1}^{n}}=\overline{\left(\pi_{1}^{n} f^{-1}\right)_{1}^{n}} \overline{\left(\pi_{1}^{n} f\right)_{1}^{n}}=\overline{\left(\pi_{1}^{n}\right)_{1}^{n}}
$$

and $\overline{\left(\pi_{1}^{n}\right)_{1}^{n}}$ is the identity map on K_{π}.
(3) In case π has no 2's, the sequence $f_{k}=\alpha$ induces an open map $\bar{\alpha}$ on K_{π} by Lemma 2.2. If π is an even sequence, then no order reversing map can induce an open map on K_{π}, again by Lemma 2.2 .

Let n be a positive integer. An induced map $g \in \mathcal{O} \mathcal{I}_{\pi}$ is said to be vertically induced with order at most n provided $g=\overline{\left(\pi_{1}^{n} f\right)_{1}^{n}}$ for some $f \in \mathcal{O}$. The order of a vertically induced map is the smallest n for which it is vertically induced with order at most n. The next theorem shows that there are lots of isomorphisms of \mathcal{O}^{+}into \mathcal{O}_{π}.
3.5. THEOREM. For each positive integer n, define $F_{n}: \mathcal{O}^{+} \rightarrow \mathcal{O}_{\pi}$ by $F_{n}(f)=\overline{\left(\pi_{1}^{n} f\right)_{1}^{n}}$. Then F_{n} is an isomorphism from \mathcal{O}^{+}onto the set of vertically induced open maps with order at most n. The set of images $F_{n}\left(\mathcal{O}^{+}\right)$is an increasing tower; that is, $F_{n}\left(\mathcal{O}^{+}\right) \subset F_{n+1}\left(\mathcal{O}^{+}\right)$. Finally, if $\operatorname{occ}_{\pi}(2)=0$, then F_{n} extends to all of \mathcal{O}.

Proof. That F_{n} is a well-defined homomorphism follows from parts (1) and (2) of Lemma 3.4. To see that F_{n} is $1-1$, suppose $F_{n}(f)=F_{n}(g)$. Then the first terms of the defining sequences for these maps are equal, i.e., $\pi_{1}^{n} f=\pi_{1}^{n} g$. But \mathcal{O}^{+}is (left) cancellative, so $f=g$. To see that $F_{n}\left(\mathcal{O}^{+}\right) \subset F_{n+1}\left(\mathcal{O}^{+}\right)$, note that

$$
\begin{aligned}
F_{n}(f) & =\overline{\left(\pi_{1}^{n} f\right)_{1}^{n}}=\overline{\left(\pi_{1}^{n} f \pi_{n}^{n+1}\right)_{1}^{n+1}} \\
& =\overline{\left(\pi_{1}^{n} \pi_{n}^{n+1} p_{2}\right)_{1}^{n+1}}=\overline{\left(\pi_{1}^{n+1} p_{2}\right)_{1}^{n+1}}=F_{n+1}\left(p_{2}\right)
\end{aligned}
$$

Finally, assume π is a sequence of odd primes. Then by Lemma 2.2, α commutes with all the bonding maps of K_{π}, and hence induces an open map $\bar{\alpha}: K_{\pi} \rightarrow K_{\pi}$. By the structure theorem for \mathcal{O}, Theorem 2.4 , each open $\operatorname{map} f \in \mathcal{O}$ which is not order preserving looks like αg where $g=\alpha f \in \mathcal{O}^{+}$, and hence maps to $\overline{\alpha g}$.

Let $\mathcal{O} \mathcal{V}_{\pi}$ be the union of the tower of subsemigroups $F_{n}\left(\mathcal{O}^{+}\right)\left(F_{n}(\mathcal{O})\right.$ if π is odd with no 2 's). Then it follows from Theorem 3.5 that $\mathcal{O} \mathcal{V}_{\pi}$ is a subsemigroup of $\mathcal{O} \mathcal{I}_{\pi}$, to which we refer as the semigroup of open vertically induced maps of K_{π}. Similarly, let $\mathcal{H} \mathcal{V}_{\pi}$ be the union of the increasing tower
of groups $F_{n}\left(\mathcal{H}^{+}\right)$. By part (2) of 3.4, the maps in $\mathcal{H} \mathcal{V}_{\pi}$ are homeomorphisms of K_{π}. Using 3.5, we can see that $\mathcal{H} \mathcal{V}_{\pi}$ is a subgroup of the group of units of \mathcal{O}_{π}. We refer to it as the group of vertically induced homeomorphisms of K_{π}.

Note that for any $m, n, F_{n}\left(w_{m}\right)=F_{1}\left(w_{m}\right)=\bar{w}_{m}$, so the image of the standard maps \mathcal{W} remains the same under the isomorphisms F_{n}. We denote this common image by \mathcal{W}_{π} and refer to it as the semigroup of standard induced maps on K_{π}.

The next lemma gives a factorization of an arbitrary open induced map from K_{π} to K_{ϱ}.
3.6. Lemma. Let $g \in \mathcal{O I}_{\varrho}^{\pi}$. Then g can be factored into $\bar{\alpha}^{i} q v$ where $i \in\{0,1\}, q=\overline{\left(w_{m}\right)_{1}^{n}}(\pi, \varrho)$, and $v \in \mathcal{H} \mathcal{V}_{\pi}$.

Proof. Let i_{k} and $g_{k}: I_{i_{k}} \rightarrow I_{k}$ be a sequence of indices and maps inducing g. First, by Theorem 2.4, factor $g_{k}=\alpha^{j_{k}} w_{m_{k}} h_{k}$, where h_{k} is an order preserving homeomorphism. By Lemma 3.2, we know that $j_{k}=0$ for all k or $j_{k}=1$ for all k. Denote this common value by j. Let $v=$ $\overline{\left(\pi_{1}^{i_{1}} h_{1}\right)_{1}^{i_{1}}}(\pi, \pi)=F_{i_{1}}\left(h_{1}\right)$. This vertically induced homeomorphism exists by Lemma 3.4. Next, note that for each k,

$$
g_{k} \pi_{i_{k}}^{i_{k+1}}=\varrho_{k}^{k+1} g_{k+1} .
$$

Substituting in the factorizations, we have

$$
\alpha^{j} w_{m_{k}} h_{k} \pi_{i_{k}}^{i_{k+1}}=\varrho_{k}^{k+1} \alpha^{j} w_{m_{k+1}} h_{k+1} .
$$

If $j=0$, we can erase the α^{j} on both sides of the equation. If $j=1$, then ϱ_{k}^{k+1} is odd and $\alpha=\alpha^{j}$ commutes with it by 2.2 , so we can multiply both sides of the equation by α and erase it. In either case, we have

$$
w_{m_{k}} h_{k} \pi_{i_{k}}^{i_{k+1}}=\varrho_{k}^{k+1} w_{m_{k+1}} h_{k+1} .
$$

Now $h_{k} \pi_{i_{k}}^{i_{k+1}}=\pi_{i_{k}}^{i_{k+1}} h_{k+1}$, and so

$$
w_{m_{k}} \pi_{i_{k}}^{i_{k+1}} h_{k+1}=\varrho_{k}^{k+1} w_{m_{k+1}} h_{k+1} .
$$

Now multiply on the right by $\left(h_{k+1}\right)^{-1}$ to obtain

$$
w_{m_{k}} \pi_{i_{k}}^{i_{k+1}}=\varrho_{k}^{k+1} w_{m_{k+1}}
$$

We have shown that $q=\overline{\left(w_{m_{1}}\right)_{1}^{i_{1}}}(\pi, \varrho)$ exists. If $j=1$, let $\bar{\alpha}^{j}=\bar{\alpha}(\varrho, \varrho)$, which we know exists because ϱ is odd with no 2 's. If $j=0$, let $\bar{\alpha}^{j}$ be $\bar{w}_{1}(\varrho, \varrho)$. In either case, we can calculate that

$$
\bar{\alpha}^{j} \overline{\left(w_{m_{1}}\right)_{1}^{i_{1}}}(\pi, \varrho) \overline{\left(\pi_{1}^{i_{1}} h_{1}\right)_{1}^{i_{1}}}(\pi, \pi)=g .
$$

One consequence of 3.6 is that there is an open induced map from K_{π} to K_{ϱ} (if and) only if there is one of the form $\overline{\left(w_{m}\right)_{1}^{k}}(\pi, \varrho)$ for some m and k.

For each positive integer n and Knaster continua K_{π} and K_{ϱ}, define a function $d_{n}(\pi, \varrho): \mathbb{P} \rightarrow \omega$ which we will call the n deficit of π over ϱ, by

$$
d_{n}(\pi, \varrho)(p)=\max \left\{0, \operatorname{occ}_{\varrho}(p)-\operatorname{occ}_{\left(\pi_{i}\right)_{i=n}^{\infty}}(p)\right\}
$$

We will say that $d_{n}(\pi, \varrho)$ is trivial if it never takes ∞ as a value and all but finitely many of its values are 0 .

The next lemma tells when $\overline{\left(w_{m}\right)_{1}^{n}}(\pi, \varrho)$ exists and gives a factorization of it which will prove useful.
3.7. Lemma. The map $\overline{\left(w_{m}\right)_{1}^{n}}(\pi, \varrho)$ exists if and only if $d_{n}(\pi, \varrho)$ is trivial and $m=d t$ for some integer t, where $d=\prod_{p \in \mathbb{P}} p^{d_{n}(\pi, \varrho)(p)}$. In this case, $\overline{\left(w_{m}\right)_{1}^{n}}(\pi, \varrho)=\overline{\left(w_{d}\right)_{1}^{n}}(\pi, \varrho) \overline{\left(w_{t}\right)_{1}^{1}}(\pi, \pi)$.

Proof. First suppose that $\overline{\left(w_{m}\right)_{1}^{n}}(\pi, \varrho)$ exists. Let $f_{k}=w_{m_{k}}: I_{n_{k}} \rightarrow I_{k}$ be a defining sequence for $\overline{\left(w_{m}\right)_{1}^{n}}(\pi, \varrho)$. Suppose d does not divide m. Then there is a prime p such that the highest power p^{j} that divides d does not divide m. Choose k so large that if $\varrho_{i}^{i+1}=w_{p}$ then $i<k$ and if $\pi_{i}^{i+1}=w_{p}$ then $i<n$. Let p^{l} and p^{s} be the highest powers of p dividing $\operatorname{deg}\left(\varrho_{1}^{k}\right)$ and $\operatorname{deg}\left(\pi_{n}^{n_{k}}\right)$ respectively. Then by the definition of d, p does not divide f_{k}, and so $p^{j} p^{s}=p^{l}$. But $m \operatorname{deg}\left(\pi_{n}^{n_{k}}\right)=\operatorname{deg}\left(\varrho_{1}^{k}\right) f_{k}$. It follows that p^{j} must divide m, a contradiction.

Now suppose that the condition holds. We will show that $\overline{\left(w_{d}\right)_{1}^{n}}$ exists. Let $f_{1}=w_{d}: I_{n} \rightarrow I_{1}$, and suppose $f_{k}: I_{n_{k}} \rightarrow I_{k}$ has been defined so that $f_{k-1} \pi_{n_{k-1}}^{n_{k}}=\varrho_{k-1}^{k} f_{k}$. Let p be the prime such that $\varrho_{k}^{k+1}=w_{p}$. Let p^{j}, p^{s} and p^{l} be the highest powers of p dividing $m, \operatorname{deg}\left(\pi_{n}^{n_{k}}\right)$ and $\operatorname{deg}\left(\varrho_{1}^{k}\right)$ respectively. If $\pi_{i}^{i+1} \neq w_{p}$ for all $i \geq n_{k}$, then $l<j+s$. Hence p divides $\operatorname{deg}\left(f_{k}\right)$ and so we can choose $n_{k+1}=n_{k}+1$ and define $f_{k+1}=w_{r}$ where $r=\operatorname{deg}\left(f_{k}\right) \operatorname{deg}\left(\pi_{n_{k}}^{n_{k+1}}\right) / p$. Otherwise, choose $i>n_{k}$ so that $\pi_{i}^{i+1}=w_{p}$, and define $n_{k+1}=i+1$ and $f_{n_{k+1}}=w_{r}$, where $r=\operatorname{deg}\left(f_{k}\right) \operatorname{deg}\left(\pi_{1}^{n_{k}}\right) / p$. Thus $\overline{\left(w_{d}\right)_{1}^{n}}(\pi, \varrho)$ exists. Now $\overline{\left(w_{d t}\right)_{1}^{n}}(\pi, \varrho)=\overline{\left(w_{d}\right)_{1}^{n}}(\pi, \varrho) \overline{\left(w_{t}\right)_{1}^{1}}(\pi, \pi)$ exists.

If $\pi=\varrho$, the result of Lemma 3.7 can be sharpened. As we shall see, the map $\overline{\left(w_{d}\right)_{1}^{n}}(\pi, \pi)$ can be factored nicely. First we need some invertibility lemmas.
3.8. Lemma. Suppose that p and q are distinct prime numbers and p is odd. Then w_{p} permutes each of $w_{q}^{-1}(0)$ and $w_{q}^{-1}(1)$.

Proof. First, when $n=2, w_{p}$ fixes each of $w_{n}^{-1}(0)$ and $w_{n}^{-1}(1)$, so the result is trivially true.

Now suppose that n is odd. Note that for each $x \in w_{n}^{-1}(0)$, we have $x=2 k / n$ for some $0 \leq k \leq(n-1) / n$, and that either

$$
w_{p}(x)=-i+\frac{p \cdot 2 k}{n}=\frac{-n i+2 p k}{n} \quad \text { for some } i \in 2 \mathbb{N}
$$

or

$$
w_{p}(x)=i+1-p \cdot \frac{2 k}{n}=\frac{n(i+1)-2 p k}{n} \quad \text { for some } i+1 \in 2 \mathbb{N}
$$

In either case, there is an integer r such that $w_{p}(x)=2(r-p k) / n \in$ $I \cup w_{n}^{-1}(0)$. Similarly, if $x \in w_{n}^{-1}(1)$ it can be shown that for some integer r, we have $w_{p}(x)=(2(r-p k)+1) / n \in I \cup w_{n}^{-1}(1)$. So $w_{p}\left(w_{n}^{-1}(0)\right) \subset w_{n}^{-1}(0)$ and $w_{p}\left(w_{n}^{-1}(1)\right) \subset w_{n}^{-1}(1)$.

We now show that w_{p} is one-to-one on $w_{n}^{-1}(0) \cup w_{n}^{-1}(1)$. Suppose that for some $0 \leq a, b \leq n$, there are points a / n and b / n such that $w_{p}(a / n)=$ $w_{p}(b / n)$. By the definition of w_{p}, there are three cases to consider:

1. w_{p} has positive slope at both a / n and b / n. Then there are natural numbers i and k so that $-i+p a / n=-b+p b / n$. This means that $p a / n-$ $p b / n=p(a-b) / n$ is an integer. Since n and p are relatively prime, we know that n divides $a-b$. Now, since $0 \leq a, b \leq n$, we know that either $a=b$ or that $a \in\{0, n\}$ and $b=n-a$. If $a=0$ and $b=n$, then $w_{p}(a / n)=w_{p}(0)=$ $0 \neq w_{p}(1)=w_{p}(b / n)$. This means that it must be the case that $a=b$.
2. w_{p} has negative slope at both a / n and b / n. This case is essentially the same as case 1 .
3. w_{p} has positive slope at one of $\{a / n, b / n\}$ and negative slope at the other. We will assume the notation is chosen so that w_{p} has positive slope at b / n. Then there are natural numbers i and j so that $i+1-p a / n=$ $-k+p b / n$. In this case, $p a / n+p b / n=p(a+b) / n$ is an integer. Since p and n are distinct primes, we know that n divides $a+b$. Now, since $0 \leq a, b \leq n$, we have one of the following cases to consider:
(a) $a+b=0$. Then $a=b=0$, so $a / n=0=b / n$.
(b) $a+b=2 n$. Then $a=b=n$, so $a / n=1=b / n$.
(c) $a+b=n$. Then $0<a<n$ and $b=n-a$. This means that $b / n=1-a / n$. Since p is odd, and therefore the graph of w_{p} is symmetric about the point $(1 / 2,1 / 2)$, it follows that w_{p} has the same slope at a / n as it does at $1-a / n=b / n$. So this case is impossible.

Now, since w_{p} takes each of $w_{n}^{-1}(1)$ and $w_{n}^{-1}(0)$ into itself, and since w_{p} is one-to-one on $w_{n}^{-1}(0) \cup w_{n}^{-1}(1)$, we know that w_{p} permutes each of these sets.

Note, in particular, that if p and n are distinct primes and p is odd, then w_{p} permutes $w_{n}^{-1}(0)$.
3.9. Lemma. If n is an odd prime, then w_{2} maps each of $w_{n}^{-1}(0)$ and $w_{n}^{-1}(1)$ one-to-one onto $w_{n}^{-1}(0)$. In particular, w_{2} permutes $w_{n}^{-1}(0)$.

Proof. Note that $1 / 2 \notin w_{n}^{-1}(0) \cup w_{n}^{-1}(1)$, because n is odd. We first show that $w_{2}\left(w_{n}^{-1}(0)\right) \subset w_{n}^{-1}(0)$. Observe that $x \in w_{n}^{-1}(0)$ if and only
if for some $0 \leq k \leq(n-1) / 2$ we have $x=2 k / n$. If $x<1 / 2$, then $w_{2}(x)=2(2 k) / n \in w_{n}^{-1}(0)$, and if $x>1 / 2$, then

$$
w_{2}(x)=2-\frac{2(2 k)}{n}=\frac{2(n-2 k)}{n} \in w_{n}^{-1}(0)
$$

We next show that w_{2} is one-to-one on $w_{n}^{-1}(0)$. To see this, first note that w_{2} is one-to-one on each of $w_{n}^{-1}(0) \cup[0,1 / 2]$ and $w_{n}^{-1}(0) \cup[1 / 2,1]$. Now if $x \in w_{n}^{-1}(0) \cup[0,1 / 2]$, then $x=2 k / n$ for some k and $w_{2}(x)=4 k / n$. Since n is odd, we know that the numerator of this expression is an even multiple of 2 . Now, if $x \in[1 / 2,1] \cup w_{n}^{-1}(0)$, we have

$$
w_{2}(x)=2-\frac{2 k}{n}=\frac{2 n-4 k}{n}=\frac{2(n-2 k)}{n}
$$

for some natural number k. Since n is odd, we see that the numerator of this expression is an odd multiple of 2 . Therefore, $w_{2}\left(w_{n}^{-1}(0) \cup[0,1 / 2]\right) \cup$ $w_{2}\left(w_{n}^{-1}(0) \cup[1 / 2,1]\right)=\emptyset$ and w_{n} permutes $w_{n}^{-1}(0)$.

Finally, since for each $x \in I, w_{2}(x)=w_{2}(1-x)$, and since the function $\alpha(x)=1-x$ is a bijection from $w_{n}^{-1}(1)$ onto $w_{n}^{-1}(0), w_{2} \operatorname{maps} w_{n}^{-1}(1)$ one-to-one onto $w_{n}^{-1}(0)$.

A standard map w_{n} on I is not invertible in \mathcal{O}. However, its image $\bar{w}_{n} \in \mathcal{O}_{\pi}$ will be invertible when the prime factors of n occur infinitely often in π, i.e., $\operatorname{occ}_{\pi}(p)=\infty$ for each prime divisor p of n.
3.10. Invertibility Theorem. The standard induced map \bar{w}_{n} is invertible in \mathcal{O}_{π} if and only if for each prime factor p of $n, \operatorname{occ}_{\pi}(p)=\infty$. Furthermore, if p is a prime such that $\operatorname{occ}_{\pi}(p)=\infty$, then $\bar{w}_{p}^{-1}=\overline{\left(\pi_{1}^{k-1}\right)_{1}^{k}}$, where k is chosen so that $\pi_{k-1}^{k}=w_{p}$.

Proof. First, suppose that the condition fails. Without loss of generality, we can assume that some prime factor p of n does not occur in π at all. We show that \bar{w}_{p} is not $1-1$. It is clear that $\bar{w}_{p}((0,0, \ldots))=(0,0, \ldots)$. By Lemmas 3.8 and 3.9, for each π_{i}^{i+1} of K_{π}, π_{i}^{i+1} permutes $w_{p}^{-1}(0)$. Thus, there is at least one point $x=\left(2 / p, x_{2}, x_{3}, \ldots\right) \neq(0,0, \ldots) \in K_{\pi}$ for which $x_{i} \in w_{p}^{-1}(0)$ for each i, and so $\bar{w}_{p}(x)=(0,0, \ldots)$. Hence \bar{w}_{p} is not 1-1 and so is not invertible. But this implies that \bar{w}_{n} is not invertible, since \bar{w}_{p} is a factor of it. This completes the proof of the only if part.

Now suppose that \bar{w}_{n} is invertible. It is enough to assume that n is a prime; since if p and q are primes with \bar{w}_{p} and \bar{w}_{q} invertible, then $\bar{w}_{p} \bar{w}_{q}=$ $\bar{w}_{p q}$ is invertible. When n is prime, we know that it occurs infinitely often in π, so there is an increasing sequence of integers $1<k_{1}<k_{2}<\ldots$ for which $\pi_{k_{i}-1}^{k_{i}}=w_{n}$. For each i, define $g_{i}: I_{k_{i}} \rightarrow I_{i}$ by $g_{i}=\pi_{i}^{k_{i}-1}$. Note that
for each i,

$$
\begin{aligned}
g_{i} \pi_{k i}^{k_{i+1}} & =\pi_{i}^{k_{i}-1} \pi_{k_{i}}^{k_{i+1}}=\pi_{i}^{k_{i}-1} \pi_{k_{i}}^{k_{i+1}-1} w_{n}=\pi_{i}^{k_{i}-1} w_{n} \pi_{k_{i}}^{k_{i+1}-1} \\
& =\pi_{i}^{k_{i}-1} \pi_{k_{i}-1}^{k_{i}} \pi_{k_{i}}^{k_{i+1}-1}=\pi_{i}^{k_{i+1}-1}=\pi_{i}^{i+1} \pi_{i+1}^{k_{i+1}-1}=\pi_{i}^{i+1} g_{i+1}
\end{aligned}
$$

so the sequence of maps g_{i} induces a map $g: K_{\pi} \rightarrow K_{\pi}$. Finally, note that for each i,

$$
\begin{aligned}
\pi_{i} g \bar{w}_{n}(x) & =g_{i} \pi_{k_{i}} \bar{w}_{n}(x)=g_{i} w_{n} \pi_{k_{i}}(x) \\
& =\pi_{i}^{k_{i}-1} \pi_{k_{i}-1}^{k_{i}} \pi_{k_{i}}(x)=\pi_{i}^{k_{i}} \pi_{k_{i}}(x)=\pi_{i}(x)
\end{aligned}
$$

and hence $g \bar{w}_{n}=\bar{w}_{1}$, the identity map on K_{π}. So \bar{w}_{n}^{-1} exists and equals $g=\overline{\left(g_{1}\right)_{1}^{k_{1}}}=\overline{\left(\pi_{1}^{k_{1}-1}\right)_{1}^{k_{1}}}$.

In particular, note that when π is the constant sequence n, then \bar{w}_{n}^{-1} is the shift map, $s: K_{\pi} \rightarrow K_{\pi}$, defined by $s\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(x_{2}, x_{3}, \ldots\right)$.

We can now state an existence and factorization theorem for maps $\overline{\left(w_{n}\right)_{1}^{k}}(\pi, \pi)$.
3.11. ThEOREM. Write $\pi_{1}^{k}=w_{s} w_{f}$, where for each prime factor p of $s, \operatorname{occ}_{\pi}(p)<\infty$ and for each prime factor p of $f, \operatorname{occ}_{\pi}(p)=\infty$. Then $\overline{\left(w_{n}\right)_{1}^{k}}(\pi, \pi)$ exists if and only if $n=$ st for some t. In that case, $\overline{\left(w_{n}\right)_{1}^{k}}(\pi, \pi)=\bar{w}_{t} \bar{w}_{f}^{-1}$.

Proof. The first statement follows from Lemma 3.7 upon noting that the d in that lemma is the s of this theorem. The second statement follows from the factorization given in Lemma 3.7 and the Invertibility Theorem 3.10.

Theorem 3.10 also enables us to answer affirmatively the question raised in the previous section about the embeddability of \mathcal{O}^{+}into a group. Let γ denote the sequence $2,3,2,3,5,2,3,5,7, \ldots$ of primes in which each prime occurs infinitely often.
3.12. Corollary. The induced open maps of K_{γ} form a group. Hence \mathcal{O}^{+}is embeddable into the group of units of K_{γ}.

Proof. Each prime occurs infinitely often in γ, and so for each positive integer $n, 3.10$ says that \bar{w}_{n} is invertible in \mathcal{O}_{γ}, hence the isomorphism F_{1} takes \mathcal{O}^{+}into the group of units of \mathcal{O}_{γ}.

In [6], D/ebski defines the degree of an arbitrary open map between Knaster continua. For the moment, we now define the degree of an induced map in a simpler fashion. Later, in the next section, we show that the two definitions agree on the induced open maps.

Suppose K_{ϱ} and K_{π} are Knaster continua with $K_{\varrho} \leq K_{\pi}$. For any map $f \in \mathcal{O} \mathcal{I}_{\varrho}^{\pi}$, define the degree of f by

$$
\operatorname{deg}(f)=\frac{\operatorname{deg}\left(f_{1}\right)}{\operatorname{deg}\left(\pi_{1}^{i_{1}}\right)}
$$

where $f_{1}: I_{i_{1}} \rightarrow I_{1}$ is the first coordinate map of f and π_{1}^{1} is by decree w_{1}.
3.13. Theorem. (1) If $f \in \mathcal{O I}_{\varrho}^{\pi}$ and $g \in \mathcal{O I}_{\delta}^{\varrho}$, then

$$
\operatorname{deg}(g f)=\operatorname{deg}(g) \operatorname{deg}(f)
$$

(2) If $\pi=\varrho=\delta$, then $\operatorname{deg}: \mathcal{O} \mathcal{I}_{\pi} \rightarrow \mathbb{Q}^{+}$is a homomorphism into the group \mathbb{Q}^{+}of positive rational numbers under multiplication.
(3) The open induced maps with degree 1 consist precisely of the vertically induced homeomorphisms \mathcal{H}_{π}, and the open induced maps of positive integer degree consist precisely of the open vertically induced maps $\mathcal{O} \mathcal{V}_{\pi}$.
(4) The image $\operatorname{deg}\left(\mathcal{O} \mathcal{I}_{\pi}\right)$ is the subsemigroup Q_{π} of \mathbb{Q}^{+}consisting of all positive rationals n / m such that for each prime divisor p of m, $\operatorname{occ}_{\pi}(p)=\infty$.

Proof. (1) Let $f_{k}: I_{i_{k}} \rightarrow I_{k}$ and $g_{l}: I_{j_{l}} \rightarrow I_{l}$ be defining sequences for f and g. Now

$$
g f=\overline{\left(g_{1}\right)_{1}^{j_{1}}} \overline{\left(f_{1}\right)_{1}^{i_{1}}}=\overline{\left(g_{1}\right)_{1}^{j_{1}}} \overline{\left(\varrho_{1}^{j_{1}} f_{j_{1}}\right)_{1}^{i_{j_{1}}}}=\overline{\left(g_{1} f_{j_{1}}\right)_{1}^{i_{j_{1}}}} .
$$

Hence, the degree of $g f$ is

$$
\operatorname{deg}(g f)=\frac{\operatorname{deg}\left(g_{1} f_{j_{1}}\right)}{\operatorname{deg}\left(\pi_{1}^{i_{j_{1}}}\right)}=\frac{\operatorname{deg}\left(g_{1}\right)}{\operatorname{deg}\left(\varrho_{1}^{j_{1}}\right)} \frac{\operatorname{deg}\left(\varrho_{1}^{j_{1}}\right) \operatorname{deg}\left(f_{j_{1}}\right)}{\operatorname{deg}\left(\pi_{1}^{i_{j_{1}}}\right)}=\operatorname{deg}(g) \operatorname{deg}(f) .
$$

(2) This follows immediately from (1).
(3) Let $f \in \mathcal{H} \mathcal{V}_{\pi}$. Then $f=\overline{\left(\pi_{1}^{i_{1}} h\right)_{1}^{i_{1}}}$, where $h \in \mathcal{H}$. So

$$
\operatorname{deg}(f)=\frac{\operatorname{deg}\left(\pi_{1}^{i_{1}} h\right)}{\operatorname{deg}\left(\pi_{1}^{i_{1}}\right)}=\operatorname{deg}(h)=1
$$

Conversely, suppose $f \in \mathcal{O} \mathcal{V}_{\pi}$ has degree 1 . Let $f_{1}=\alpha^{j} w_{m} g: I_{i_{1}} \rightarrow I_{1}$ be the first coordinate map of f, where g is a homeomorphism of I. Then

$$
1=\operatorname{deg}(f)=\frac{\operatorname{deg}\left(f_{1}\right)}{\operatorname{deg}\left(\pi_{1}^{i_{1}}\right)}=\frac{m}{\operatorname{deg}\left(\pi_{1}^{i_{1}}\right)},
$$

hence $w_{m}=\pi_{1}^{i_{1}}$, and $f \in \mathcal{H} \mathcal{V}_{\pi}$.
(4) Let $f \in \mathcal{O} \mathcal{V}_{\pi}$; then by $3.7, f=\alpha^{j} q v$ where $q=\overline{\left(w_{m}\right)_{1}^{n}}(\pi, \pi)$, and $v \in$ $\mathcal{H} \mathcal{V}_{\pi}$. Hence by the results of the above paragraphs, $\operatorname{deg}(f)=\operatorname{deg}(q)$. But now, by 3.7 again, q factors into $\overline{\left(w_{d}\right)_{1}^{m}} \overline{\left(w_{t}\right)_{1}^{1}}$, where $d=\prod_{p \in \mathbb{P}} p^{d(m, \pi, \pi)(p)}$ and $m=d t$. Hence

$$
\operatorname{deg}(q)=\operatorname{deg}\left(\overline{\left(w_{d}\right)_{1}^{m}}\right) \operatorname{deg}\left(\overline{\left(w_{t}\right)_{1}^{1}}\right)=\frac{d}{\operatorname{deg}\left(\pi_{1}^{m}\right)} t
$$

Let $\operatorname{deg}\left(\pi_{1}^{m}\right)=M$. Now, by 3.11, $d=s$ divides M and we can write $\pi_{1}^{m}=w_{M}=w_{d} w_{k}$, where for each prime factor p of $k, \operatorname{occ}_{\pi}(p)=\infty$ and for each prime factor p of $d, \operatorname{occ}_{\pi}(p)<\infty$. Hence

$$
\operatorname{deg}(q)=\frac{d}{\operatorname{deg}\left(\pi_{1}^{m}\right)} t=\frac{d}{d k} t=\frac{t}{k} \in Q_{\pi} .
$$

All that is left is to show that each $t / k \in Q_{\pi}$ is the degree of some open induced map. This follows from the easily established facts that (1) Q_{π} is generated by the primes and the reciprocals of the primes p which occur infinitely often in π, and (2) if p is a prime, then $\operatorname{deg}\left(\bar{w}_{p}\right)=p$ and if $\operatorname{occ}_{\pi}(p)=\infty$, then $\operatorname{deg}\left(\bar{w}_{p}^{-1}\right)=1 / p$.

Let $\overline{\mathcal{W}}_{\pi}^{*}$ denote the subsemigroup of $\mathcal{O} \mathcal{I}_{\pi}$ generated by the induced standard maps \bar{w}_{n} together with \bar{w}_{p}^{-1} where $\operatorname{occ}_{\pi}(p)=\infty$. The proof of the following theorem is immediate.
3.14. Theorem. The function deg takes $\overline{\mathcal{W}}_{\pi}^{*}$ isomorphically onto Q_{π}. Hence:
(1) $\overline{\mathcal{W}}_{\pi}^{*}$ is commutative.
(2) Each element f of $\overline{\mathcal{W}}_{\pi}^{*}$ can factored uniquely as $f=\bar{w}_{m} \bar{w}_{n}^{-1}$ where m and n are relatively prime. Further, if $f=\bar{w}_{m} \bar{w}_{n}^{-1}$ and $g=\bar{w}_{s} \bar{w}_{t}^{-1}$ are in $\overline{\mathcal{W}}_{\pi}^{*}$ then $f g=\left(\bar{w}_{m} \bar{w}_{n}^{-1}\right)\left(\bar{w}_{s} \bar{w}_{t}^{-1}\right)=\bar{w}_{m s} \bar{w}_{n t}^{-1}$.
(3) If \bar{w}_{n} is invertible in \mathcal{O}_{π} and $f=\bar{w}_{m} \bar{w}_{n}^{-1}$, then $\operatorname{deg}(f)=m / n$.

We now introduce some notation. Given a rational number $m / n \in Q_{\pi}$ with $\operatorname{gcd}(m, n)=1$, let $w_{m / n}$ denote $\bar{w}_{m} \bar{w}_{n}^{-1}$. Further, if $v=\overline{\left(\pi_{1}^{i_{1}} h\right)_{1}^{i_{1}}}$ is a vertically induced homeomorphism, then $m v$ is defined to be the vertically induced homeomorphism $\overline{\left(\pi_{1}^{i_{1}}(m h)\right)_{1}^{i_{1}}}$, where $m h$ is the multiple of h defined above 2.4. Now we introduce $\frac{1}{n} v$. First, we define $\frac{1}{p} v$, where occ $_{\pi}(p)=\infty$, as follows: Choose $k>1$ so large that $\pi_{i_{k}}^{i_{k+1}}=w_{p}$. Then $v=\overline{\left(\pi_{1}^{i_{k+1}} h_{k+1}\right)_{1}^{i_{k+1}}}$. By the definition above $2.4, h_{k}=\frac{1}{p} h_{k+1}$, and we let $\frac{1}{p} v=\overline{\left(\pi_{1}^{i_{k+1}} h_{k}\right)_{1}^{i_{k+1}}}$. Now $\frac{1}{n} v$ is defined by induction on the sum of the exponents of the prime factors of n.
3.15. Lemma. Let $v \in \mathcal{H} \mathcal{V}_{\pi}$ and let m and p be integers, where p is a prime with $\operatorname{occ}_{\pi}(p)=\infty$. Then
(1) $v \bar{w}_{m}=\bar{w}_{m}(m v)$,
(2) $v \bar{w}_{p}^{-1}=\bar{w}_{p}^{-1}\left(\frac{1}{p} v\right)$.

Proof. By Theorem 3.10, we can choose k so large that $\bar{w}_{p}^{-1}=\overline{\left(\pi_{1}^{k-1}\right)_{1}^{k}}$ and $v=\overline{\left(\pi_{1}^{k} h\right)_{1}^{k}}=\overline{\left(\pi_{1}^{k-1}\left(\frac{1}{p} h\right)\right)_{1}^{k-1}}$. Also choose $n>k$ so that $\pi_{n-1}^{n}=w_{p}$ and so $\bar{w}_{p}^{-1}=\overline{\left(\pi_{1}^{n-1}\right)_{1}^{n}}$.

To prove (1), note that

$$
\begin{aligned}
v \bar{w}_{m} & =\overline{\left(\pi_{1}^{k} h\right)_{1}^{k}} \overline{\left(\pi_{1}^{k} w_{m}\right)_{1}^{k}}=\overline{\left(\pi_{1}^{k} h w_{m}\right)_{1}^{k}} \\
& =\overline{\left(\pi_{1}^{k} w_{m}(m h)\right)_{1}^{k}}=\overline{\left(\pi_{1}^{k} w_{m}\right)_{1}^{k}} \overline{\left(\pi_{1}^{k}(m h)\right)_{1}^{k}}=\bar{w}_{m}(m v) .
\end{aligned}
$$

Fig. 3. $v \bar{w}_{p}^{-1}=\bar{w}_{p}^{-1}\left(\frac{1}{p} v\right)$
To prove (2), refer to the diagram in Figure 3. Choose $g: I_{n} \rightarrow I_{n}$ so that $h \pi_{k}^{n-1}=\pi_{k}^{n-1} g$. Hence $w_{p} h \pi_{k}^{n-1}=w_{p} \pi_{k}^{n-1} g$. But $w_{p} h \pi_{k}^{n-1}=\pi_{k}^{n}$ and $w_{p} h=\left(\frac{1}{p} h\right) w_{p}$, so $\pi_{k}^{n} g=\left(\frac{1}{p} h\right) w_{p} \pi_{k}^{n-1}=\left(\frac{1}{p} h\right) \pi_{k}^{n}$. Thus $\frac{1}{p} v=\overline{\left(\pi_{1}^{k}\left(\frac{1}{p} h\right)_{1}^{k}\right)}=$ $\overline{\left(\pi_{1}^{n} g\right)_{1}^{n}}$. Now we compute

$$
\begin{aligned}
\bar{w}_{p}^{-1}\left(\frac{1}{p} v\right) & =\overline{\left(\pi_{1}^{n-1}\right)_{1}^{n}} \overline{\left(\pi_{1}^{n} g\right)_{1}^{n}}=\overline{\left(\pi_{1}^{n-1} g\right)_{1}^{n}} \\
& =\overline{\left(\pi_{1}^{k} h \pi_{k}^{n-1}\right)_{1}^{n}}=\overline{\left(\pi_{1}^{k} h\right)_{1}^{k}} \overline{\left(\pi_{1}^{n-1}\right)_{1}^{n}}=v \bar{w}_{p}^{-1} .
\end{aligned}
$$

Now we can prove a structure theorem for the semigroup $\mathcal{O} \mathcal{I}_{\pi}$ of induced open maps on K_{π}.
3.16. Structure Theorem for $\mathcal{O} \mathcal{I}_{\pi}$. If K_{π} is even, then each $f \in \mathcal{O} \mathcal{I}_{\pi}$ can be factored uniquely into the product $w_{a / b} u$, with $\operatorname{deg}(f)=$ $a / b \in Q_{\pi}, w_{a / b} \in \overline{\mathcal{W}}_{\pi}^{*}$ and $u \in \mathcal{H} \mathcal{V}_{\pi}$. The rule for multiplication in $\mathcal{O} \mathcal{I}_{\pi}$ is

$$
w_{a / b} u w_{c / d} v=w_{a c /(b d)}\left(\frac{c}{d} u\right) v .
$$

If K_{π} is odd, then $\bar{\alpha}$ exists and each $f \in \mathcal{O} \mathcal{I}_{\pi}$ can be factored uniquely into the product $\bar{\alpha}^{i} w_{a / b} u$, with $i \in\{0,1\}=\mathbb{Z}_{2}, \operatorname{deg}(f)=a / b \in Q_{\pi}, w_{a / b} \in \overline{\mathcal{W}}_{\pi}^{*}$ and $u \in \mathcal{H} \mathcal{V}_{\pi}$. The rule for multiplication is

$$
\bar{\alpha}^{i} w_{a / b} u \bar{\alpha}^{j} w_{c / d} v=\bar{\alpha}^{i+n j} w_{a c /(b d)}\left(\frac{c}{d}\left(\bar{\alpha}^{j} u \bar{\alpha}^{j}\right)\right) v .
$$

Proof. Let $g \in \mathcal{O} \mathcal{I}_{\pi}$. Then by Lemma 3.6, $g=\bar{\alpha}^{i} q u$, where $i \in\{0,1\}$, $q=\overline{\left(w_{n}\right)_{1}^{k}}$ for some positive integers n and k, and $u \in \mathcal{H} \mathcal{V}_{\pi}$. By Corollary $3.11, n=s t$ for some positive integer t, where $\pi_{1}^{k}=w_{s f}$ is as defined
in 3.11, and $\overline{\left(w_{n}\right)_{1}^{k}}=\bar{w}_{t} \bar{w}_{f}^{-1}$. Let $a=t / \operatorname{gcd}(t, f)$ and $b=f / \operatorname{gcd}(t, f)$. Then $q=\overline{w_{a \operatorname{gcd}(t, f)}}{\overline{w_{b \operatorname{gcd}(t, f)}}}^{-1}=\bar{w}_{a} \bar{w}_{b}^{-1}$. By Theorem 3.13, $\operatorname{deg}(g)=$ $a / b \in Q_{\pi}$.

To prove the uniqueness of the factorization, suppose $g=\bar{\alpha}^{j} w_{a^{\prime} / b^{\prime} v}$ is also a factorization of g. We consider two cases.

CASE (i): π is an even sequence. Then $\bar{\alpha}$ does not exist by Lemma 3.4, and so $i=j=0$. Since $\operatorname{deg}(g)=a^{\prime} / b^{\prime}=a / b$, we can assume that $\operatorname{gcd}\left(a^{\prime}, b^{\prime}\right)=1$ and so $\bar{w}_{a}=\bar{w}_{a^{\prime}}$ and $\bar{w}_{b}=\bar{w}_{b^{\prime}}^{-1}$. Hence $\bar{w}_{a} u=\bar{w}_{a} v$. Now we can choose k so large that $u=\overline{\left(\pi_{1}^{k} h_{1}\right)_{1}^{k}}$ and $v=\overline{\left(\pi_{1}^{k} h_{2}\right)_{1}^{k}}$ for some $h_{1}, h_{2} \in \mathcal{H}^{+}$. But then $\bar{w}_{a} u=\overline{\left(\pi_{1}^{k} w_{a} h_{1}\right)_{1}^{k}}$ and $\bar{w}_{a} v=\overline{\left(\pi_{1}^{k} w_{a} h_{2}\right)_{1}^{k}}$. So by Lemma 3.3, $\pi_{1}^{k} w_{a} h_{1}=$ $\pi_{1}^{k} w_{a} h_{2}$ and so $h_{1}=h_{2}$ by Lemma 2.6. Thus $u=v$, and Case (i) is proved.

CASE (ii): π is an odd sequence. Then by Lemma 3.4, $\bar{\alpha}$ does exist, and all the coordinate maps of g are order preserving or all are order reversing. In the first case $i=j=0$, and in the second case $i=j=1$. If $i=0$, use the same argument as in Case (i). If $i=1$, multiply by $\bar{\alpha}$ and use the same argument as in Case (i).

This completes the proof of the uniqueness of the factorization.
The rule for multiplication for the case of π even follows from Theorem 3.14 and Lemma 3.15 (part (2) is used repeatedly). Thus,

$$
\begin{aligned}
w_{a / b} u w_{c / d} v & =w_{a / b} u \bar{w}_{c} \bar{w}_{d}^{-1} v=w_{a / b} \bar{w}_{c}(c u) \bar{w}_{d}^{-1} v \\
& =w_{a c / b} \bar{w}_{d}^{-1}\left(\frac{1}{d}(c u)\right) v=w_{a c /(b d)}\left(\frac{c}{d} u\right) v .
\end{aligned}
$$

Note that the assumption that π is even was not used in the calculations above, so we know the rule for multiplication in the case π is odd holds when $i=j=0$. The general rule for π odd is established using this and using additionally these properties of $\bar{\alpha}$, which follow from Theorem 3.5:
(1) $\bar{\alpha}^{j}=\bar{\alpha}^{-j}$,
(2) if b is odd, then $\bar{\alpha}^{j} \bar{w}_{b}=\bar{w}_{b} \bar{\alpha}^{j}$, and
(3) $\bar{\alpha}^{i} \bar{w}_{a} \bar{\alpha}^{j}=\bar{\alpha}^{(i+a j) \bmod 2} \bar{w}_{a}$.

We compute

$$
\begin{aligned}
& \bar{\alpha}^{i} w_{a / b} u \bar{\alpha}^{j} w_{c / d} v \\
& \quad=\bar{\alpha}^{i} \bar{w}_{a} \bar{w}_{b}^{-1} u \bar{\alpha}^{j} w_{c / d} v=\bar{\alpha}^{i} \bar{w}_{a} \bar{w}_{b}^{-1} \bar{\alpha}^{-j} \bar{\alpha}^{j} u \bar{\alpha}^{j} w_{c / d} v \\
& =\bar{\alpha}^{i} \bar{w}_{a}\left(\bar{\alpha}^{j} \bar{w}_{b}\right)^{-1} \bar{\alpha}^{j} u \bar{\alpha}^{j} w_{c / d} v \\
& =\bar{\alpha}^{i} \bar{w}_{a}\left(\bar{w}_{b} \bar{\alpha}^{j}\right)^{-1} \bar{\alpha}^{j} u \bar{\alpha}^{j} w_{c / d} v=\bar{\alpha}^{i} \bar{w}_{a} \bar{\alpha}^{j} \bar{w}_{b}^{-1} \bar{\alpha}^{j} u \bar{\alpha}^{j} w_{c / d} v \\
& =\bar{\alpha}^{(i+a j) \bmod 2} \bar{w}_{a} \bar{w}_{b}^{-1} \bar{\alpha}^{j} u \bar{\alpha}^{j} w_{c / d} v=\bar{\alpha}^{(i+a j) \bmod 2} w_{a c /(b d)}\left(\frac{c}{d} \bar{\alpha}^{j} u \bar{\alpha}^{j}\right) v .
\end{aligned}
$$

3.17. Corollary. Each open induced map $f: K_{\pi} \rightarrow K_{\pi}$ is no more than n-to- 1 , where n is the numerator of the degree of f reduced to lowest terms.

Proof. By Theorem 3.16, $f=\bar{\alpha}^{i} \bar{w}_{n} \bar{w}_{m}^{-1} u$. All of the factors are 1-1 maps, except \bar{w}_{n}, so for any $x \in K_{\pi}$, the cardinality of $f^{-1}(x)$ is the same as the cardinality of A_{x}, the set of points $y \in K_{\pi}$ such that $\bar{w}_{n}(y)=x$. If $\operatorname{card}\left(A_{x}\right)>n$ for some $x \in K_{\pi}$, then in some coordinate $k, \operatorname{card}\left(\pi_{k}\left(A_{x}\right)\right)>n$. But $w_{n}\left(\pi_{k}\left(A_{x}\right)\right)=x_{k}$ and w_{n} is at most n-to- 1 , a contradiction.
4. Open maps on K_{π}. In this section, we show that there are open maps on Knaster continua which are not induced, but that each open map is a uniform limit of induced open maps. Specifically, we construct an example of a homeomorphism on K_{2} that is not induced. We also show that each open map $f \in \mathcal{O}_{\varrho}^{\pi}$ is a uniform limit of induced open maps. In addition, we show that $\mathrm{D} /$ ebski's degree function $\operatorname{deg}: \mathcal{O}_{\varrho}^{\pi} \rightarrow \mathbb{Q}^{+}$is continuous.

Throughout the section, if $f, g: X \rightarrow I$ are maps on a compact space X, then $|f-g|$ denotes the distance from f to g in the sup metric, that is,

$$
|f-g|=\sup \{|f(x)-g(x)|: x \in X\}
$$

Also, if $f, g: K_{\pi} \rightarrow K_{\varrho}$, then $|f-g|$ denotes the distance from f to g in the sup metric, that is,

$$
|f-g|=\sup \left\{\sum_{i=1}^{\infty} \frac{\left|\pi_{i} f(x)-\pi_{i} g(x)\right|}{2^{i}}: x \in K_{\pi}\right\} .
$$

An example. Let B be the standard bucket handle continuum constructed as a union of semicircles (see [8], p. 205) situated in the (r, θ) plane so that the endpoint of B is the point $(1, \pi)$ and the semicircle containing the endpoint is the upper half of the unit circle, centered at the origin. Define B^{*} to be the visible composant of B. Note that B^{*} is comprised of a sequence Q_{i} of quarter-circles joined end to end. Denote the center of Q_{i} by c_{i}. We will define a continuous bijection $p:[0, \infty) \rightarrow B^{*}$. First define $p(0)$ to be the endpoint of B^{*} and $p(1 / 4)$ to be the midpoint of the first quarter circle Q_{1}. Next, $p(1 / 2)=(1, \pi / 2)$, the other endpoint Q_{1}. For $i>1$, define $p(i / 4)$ to be the first endpoint of Q_{i} in the natural ordering of B^{*}. Now extend p to all of $[0, \infty)$ as follows:
$p(t)=\left\{\begin{array}{l}\text { the point } q \in Q_{1} \text { such that } \frac{\angle\left(p(0) c_{1} q\right)}{\pi / 2}=\frac{t}{1 / 2} \text { for } 0<t<1 / 2, \\ \text { the point } q \in Q_{i} \text { such that } \frac{\angle\left(p(i / 4) c_{i} q\right)}{\pi / 2}=\frac{t-i / 4}{1 / 4} \\ \text { for } i>1 \text { and } i / 4<t<(i+1) / 4 .\end{array}\right.$
Figure 4 shows the first portion of B^{*}.

Fig. 4
Now for each k, let $J_{k}=p\left(\left[0,2^{k}\right]\right) \subset B^{*}$, and for $l<k$ define the bonding $\operatorname{map} f_{l}^{k}: J_{k} \rightarrow J_{l}$ by $f_{l}^{k}=f_{l}^{l+1} \ldots f_{k-1}^{k}$ for $l<k-1$. For $l=k-1$,

$$
f_{k-1}^{k}(p(t))= \begin{cases}p(t) & \text { if } 0 \leq t \leq 2^{k-1} \\ p\left(2^{k-1}-\left(t-2^{k-1}\right)\right) & \text { if } 2^{k-1} \leq t \leq 2^{k}-1 / 2 \\ p\left(\frac{1}{2}+\frac{1-2^{k}}{2^{k-1}}\left(t-\left(2^{k}-\frac{1}{2}\right)\right)\right) & \text { if } 2^{k}-1 / 2 \leq t \leq 2^{k}-1 / 4 \\ p\left(\frac{-1}{2^{k-1}}\left(t-2^{k}\right)\right) & \text { if } 2^{k}-1 / 4 \leq t \leq 2^{k}\end{cases}
$$

Denote the inverse limit of the arcs J_{k} and maps f_{l}^{k} by W_{2}. Note that each bonding map has degree 2, so W_{2} is homeomorphic to K_{2}.

These definitions of J_{k} and f_{l}^{k} were constructed to satisfy the conditions of the Anderson-Choquet embedding theorem (see p. 23 of [9]), and so the mapping $h: W_{2} \rightarrow B$ given by $h\left(\left(x_{i}\right)_{i=1}^{\infty}\right)=\lim _{i \rightarrow \infty} x_{i}$ is a homeomorphism.

Now define a homeomorphism $F: B \rightarrow B$ as follows:

$$
F(r, \theta)= \begin{cases}(r, r \theta) & \text { if } 0 \leq \theta \leq \pi / 2,1 / 3 \leq r \leq 1, \\ (r, r \pi / 2+(2-r)(\theta-\pi / 2)) & \text { if } \pi / 2 \leq \theta \leq \pi, 1 / 3 \leq r \leq 1, \\ (r, \theta) & \text { otherwise }\end{cases}
$$

4.1. Theorem. The homeomorphism $G=h^{-1} F h: W_{2} \rightarrow W_{2}$ is not induced.

Proof. Consider the subset $X=\pi_{1}^{-1}(p(1 / 2))$ of W_{2}. Note that X is homeomorphic to the Cantor set, and hence is uncountable. The homeomorphism h carries X to the set Y consisting of all $(r, \pi / 2) \in B$, and
applying F to Y yields the set Z of all $(r, r \pi / 2) \in B$. Now the map $\pi_{1} h^{-1}$ takes each point $(r, r \pi / 2) \in Z$ to the point $(1, r \pi / 2)$ and so we conclude that $\pi_{1}(G(X))$ is uncountable. But if G is induced by a sequence $g_{l}: J_{k_{l}} \rightarrow J_{l}$ of open maps, then $\pi_{1}(G(X))=g_{1}\left(\pi_{k_{1}}(X)\right)$ is finite, since $\pi_{k_{1}}(X)=\pi_{k_{1}}\left(\pi_{1}^{-1}(p(1 / 2))\right)=\left(f_{1}^{k_{1}}\right)^{-1}(p(1 / 2))$ is finite.

The manner in which the homeomorphism G is defined on W_{2} could be duplicated on any Knaster continuum, because they can be embedded in the plane in the same manner as W_{2} (see Watkins [11]).

The open induced approximation theorem. The next three lemmas lead to a proof of Theorem 4.7: any open map from K_{π} to K_{ϱ} can be approximated by an induced open map of the same degree.
4.2. Lemma. If $f, g \in \mathcal{O}$ and $|f-g| \leq 1 / 2$, then
(1) $\operatorname{deg}(f)=\operatorname{deg}(g)$,
(2) there is an order preserving homeomorphism h such that $f=g h$.

Proof. Since $|f-g| \leq 1 / 2$, we have $f(0)=g(0)$. By Theorem 2.1, there are numbers $0=a_{0}<a_{1}<\ldots<a_{n}=1$ for which $\left.f\right|_{\left[a_{i}, a_{i+1}\right]}$ is a homeomorphism onto I. For each i, let $a_{i+1 / 2}=\left.f\right|_{\left[a_{i}, a_{i+1}\right]} ^{-1}(1 / 2), I_{\mathrm{L}}=$ $[0,1 / 2]$, and $I_{\mathrm{U}}=[1 / 2,1]$. Note that for each $i, f\left(\left[a_{i+1 / 2}, a_{i+3 / 2}\right]\right) \subseteq I_{\mathrm{L}}$ or $f\left(\left[a_{i+1 / 2}, a_{i+3 / 2}\right]\right) \subseteq I_{\mathrm{U}}$. Since $|f-g| \leq 1 / 2$ and g is open, it follows that $\left.g\right|_{\left[a_{i}, a_{i+1}\right]} ^{-1}(\{0,1\})$ is a singleton for each i, which makes $\operatorname{deg}(g) \leq \operatorname{deg}(f)$. Similiarly, $\operatorname{deg}(f) \leq \operatorname{deg}(g)$. Next, using Theorem 2.4, write $f=\alpha^{i} w_{n} h_{1}$ and $g=\alpha^{i} w_{n} h_{2}$ for some order preserving homeomorphisms h_{1} and h_{2}. Let $h=h_{2}^{-1} h_{1}$. Then $f=g h$.
4.3. Lemma. If $f, g \in \mathcal{O}^{+}$with $f(0)=g(0)$ and $\left|w_{n} f-w_{n} g\right|<1 / 2$, then for any i and any $t \in I$, the interval between $f(t)$ and $g(t)$ cannot contain both i / n and $(i+1) / n$.

Proof. Suppose the lemma is false. Let t_{1} be the smallest t which violates the lemma and let i be the smallest such that i / n and $(i+1) / n$ both lie between $f\left(t_{1}\right)$ and $g\left(t_{1}\right)$. We may assume that $f\left(t_{1}\right)$ is less than $g\left(t_{1}\right)$. Now $t_{1}>0$, for otherwise $f\left(t_{1}\right)=g\left(t_{1}\right)$, since $f(0)=g(0)$. Further, either $f\left(t_{1}\right)=i / n$ or $g\left(t_{1}\right)=(i+1) / n$, for otherwise $f\left(t_{1}\right)<i / n<(i+1) / n<g\left(t_{1}\right)$ and by the continuity of f and g, there is a $t<t_{1}$ such that $f(t)<i / n<$ $(i+1) / n<g(t)$, a violation of the choice of t_{1}.

CASE (i): $f\left(t_{1}\right)=i / n$. In this case, $g\left(t_{1}\right)>(i+1) / n$, otherwise $g\left(t_{1}\right)=$ $(i+1) / n$ and so $\left|w_{n} g\left(t_{1}\right)-w_{n} f\left(t_{1}\right)\right|=1$, a violation of the assumption that $\left|w_{n} g-w_{n} f\right|<1 / 2$. Also, $g\left(t_{1}\right) \leq(i+2) / n$, otherwise by the continuity of f and g there is a $t<t_{1}$ such that $f(t)<(i+1) / n<(i+2) / n<g(t)$, a violation of the choice of t_{1}.

Now as t decreases from $t_{1}, f(t)$ must increase by the minimality of t_{1}. Further, since f is open, $f(t)$ must continue to increase until it reaches 1 . Let $t^{\prime}=\max \left\{t \in\left[0, t_{1}\right]: f(t)=(i+1) / n\right\}$. Likewise, since g is open, as t decreases from $t_{1}, g(t)$ must either increase from $g\left(t_{1}\right)$ to 1 or decrease from $g\left(t_{1}\right)$ to 0 .

Subcase 1: $g(t)$ increases to 1 . Let $t^{\prime \prime}=\max \left\{t \in\left[0, t_{1}\right]: g(t)=\right.$ $(i+2) / n\}$. First note that $t^{\prime}<t^{\prime \prime}$ is false, for otherwise $(i+1) / n$ and $(i+2) / n$ lie between $f\left(t^{\prime \prime}\right)$ and $g\left(t^{\prime \prime}\right)$, a violation of the choice of t_{1}. So $t^{\prime} \geq t^{\prime \prime}$. Then $(i+1) / n=f\left(t^{\prime}\right)<g\left(t_{1}\right)<g\left(t^{\prime}\right) \leq g\left(t^{\prime \prime}\right)=(i+2) / n$. Hence

$$
\begin{equation*}
\left|w_{n}\left(f\left(t^{\prime}\right)\right)-w_{n}\left(g\left(t_{1}\right)\right)\right|<\left|w_{n}\left(f\left(t^{\prime}\right)\right)-w_{n}\left(g\left(t^{\prime}\right)\right)\right| . \tag{**}
\end{equation*}
$$

But the left hand side of $(* *)$ is greater than $1 / 2$ since $\left|w_{n}\left(f\left(t_{1}\right)\right)-w_{n}\left(g\left(t_{1}\right)\right)\right|$ $<1 / 2$ and $\left|w_{n}\left(f\left(t^{\prime}\right)\right)-w_{n}\left(f\left(t_{1}\right)\right)\right|=1$. So the right hand side of $(* *)$ is greater than $1 / 2$, in contradiction to the hypothesis $\left|w_{n} f-w_{n} g\right|<1 / 2$. So Subcase 1 cannot occur.

Subcase 2: $g(t)$ decreases to 0 . Let $t^{\prime \prime}=\sup \left\{t \in\left[0, t_{1}\right]: g(t)=0\right.$ or $f(t)=1\}$. By the continuity of f and $g, f\left(t^{\prime \prime}\right)=1$ or $g\left(t^{\prime \prime}\right)=0$.

Suppose $f\left(t^{\prime \prime}\right)=1$. Then $(i+2) / n=1$ (otherwise $(i+2) / n$ and $(i+3) / n$ lie between $g\left(t^{\prime \prime}\right)$ and $f\left(t^{\prime \prime}\right)$, violating the choice of $\left.t_{1}\right)$. Also, $g\left(t^{\prime \prime}\right)>(i+1) / n$ for the same reason. Note that $g\left(t^{\prime}\right) \in\left[g\left(t^{\prime \prime}\right), f\left(t^{\prime \prime}\right)\right] \subset[i / n,(i+1) / n]$ and so

$$
\left|w_{n}\left(g\left(t^{\prime}\right)\right)-w_{n}\left(f\left(t^{\prime \prime}\right)\right)\right|<\left|w_{n}\left(g\left(t^{\prime \prime}\right)\right)-w_{n}\left(f\left(t^{\prime \prime}\right)\right)\right|<1 / 2
$$

Now $\left|w_{n}\left(f\left(t^{\prime}\right)\right)-w_{n}\left(g\left(t^{\prime}\right)\right)\right|<1 / 2$ and so, by the triangle inequality, we have $\left|w_{n}\left(f\left(t^{\prime \prime}\right)\right)-w_{n}\left(f\left(t^{\prime}\right)\right)\right|<1$, which is false since $f\left(t^{\prime \prime}\right)=(i+2) / n$ and $f\left(t^{\prime}\right)=(i+1) / n$. Thus $f\left(t^{\prime \prime}\right) \neq 1$.

Hence $f\left(t^{\prime \prime}\right)<1$ and it must be that $g\left(t^{\prime \prime}\right)=0$. Now since $f\left(t^{\prime \prime}\right) \geq i / n$, we have $i / n=0$ (otherwise $(i-1) / n$ and i / n lie between $g\left(t^{\prime \prime}\right)$ and $f\left(t^{\prime \prime}\right)$, violating the choice of t_{1}). Also, $f\left(t^{\prime \prime}\right)<(i+1) / n$ for the same reason. Now let $t^{\prime \prime \prime}=\max \left\{t \in\left[0, t_{1}\right]: g(t)=(i+1) / n\right\}$. Note that $t^{\prime \prime \prime} \in\left[t^{\prime \prime}, t_{1}\right]$ and so $\left|w_{n}\left(f\left(t^{\prime \prime \prime}\right)\right)-w_{n}\left(g\left(t^{\prime \prime}\right)\right)\right|<1 / 2$. Now $\left|w_{n}\left(f\left(t^{\prime \prime \prime}\right)\right)-w_{n}\left(g\left(t^{\prime \prime \prime}\right)\right)\right|<1 / 2$ and so, by the triangle inequality, we have $\left|w_{n}\left(g\left(t^{\prime \prime}\right)\right)-w_{n}\left(g\left(t^{\prime \prime \prime}\right)\right)\right|<1$, which is false since $g\left(t^{\prime \prime}\right)=i / n$ and $g\left(t^{\prime \prime \prime}\right)=(i+1) / n$. Hence $g\left(t^{\prime \prime}\right)>0$. So Subcase 2 cannot occur either.

So Case (i) cannot occur.
CASE (ii): $g\left(t_{1}\right)=(i+1) / n$. This case is similar to Case (i). First show that $(i-1) / n \leq f\left(t_{1}\right)<i / n$ and $g(t)$ increases as t decreases from t_{1}. Then there are two subcases:

Subcase 1: $f(t)$ increases to 1 . This subcase is eliminated in a manner similar to the manner Subcase 2 of Case (i) is eliminated.

Subcase 2: $f(t)$ decreases to 0 . This subcase is eliminated in a manner similar to the manner Subcase 1 of Case (i) is eliminated.

In this way it is shown that Case (ii) cannot occur either.
4.4. Lemma. If $n>1$ is a positive integer, $f, g \in \mathcal{O}$ with $f(0)=g(0)$, and $\left|w_{n} f-w_{n} g\right|<1 / 2$, then $|f-g|<\left|w_{n} f-w_{n} g\right|$.

Proof. Choose a t_{1} so that $|f-g|=\left|f\left(t_{1}\right)-g\left(t_{1}\right)\right|$. Without loss of generality, assume that $f\left(t_{1}\right)<g\left(t_{1}\right)$. Now $0<t_{1}$ and $t_{1}<1$. For the moment assume that $0<f\left(t_{1}\right)<1$ and $0<g\left(t_{1}\right)<1$. Then since f, g are open and $\left|f\left(t_{1}\right)-g\left(t_{1}\right)\right|$ is maximum, as t increases (or decreases) from t_{1}, $f(t)$ and $g(t)$ must both increase or both decrease. For if $f(t)$ increases and $g(t)$ decreases as t increases, say, then allowing t to decrease from t_{1} will cause $f(t)$ to decrease and $g(t)$ to increase. In one direction or the other, $|f(t)-g(t)|$ must increase, a contradiction, since $\left|f\left(t_{1}\right)-g\left(t_{1}\right)\right|$ is maximum.

By Lemma 4.3, there is at most one i / n between $f\left(t_{1}\right)$ and $g\left(t_{1}\right)$. If there is no i / n strictly between $f\left(t_{1}\right), g\left(t_{1}\right)$ then $\left|w_{n} f\left(t_{1}\right)-w_{n} g\left(t_{1}\right)\right|=$ $n|f(t)-g(t)|$. If there is one, say i / n, we consider three cases.

Case 1: $w_{n} f\left(t_{1}\right)$ and $w_{n} g\left(t_{1}\right)$ are between 0 and $1 / 2$. Suppose i / n is between $f\left(t_{1}\right)$ and $g\left(t_{1}\right)$. Then $w_{n}(i / n)=0$. For suppose $w_{n}(i / n)=1$. Then by either increasing t from t_{1} or decreasing t from $t_{1}, w_{n} g(t)$ stays below $1 / 2$ until $w_{n} f(t)$ decreases to 0 , at which point Lemma 1 is violated. Without loss of generality assume that $i / n-f\left(t_{1}\right) \leq g\left(t_{1}\right)-i / n$. Then we note from the geometry that $g\left(t_{1}\right)-f\left(t_{1}\right) \leq w_{n} g\left(t_{1}\right)$. Now as t increases or decreases from $t_{1}, w_{n} f(t)$ decreases to 0 before $w_{n} g(t)$ increases to $1 / 2$; hence at that point $g\left(t_{1}\right)-f\left(t_{1}\right) \leq w_{n} g(t)-w_{n} f(t)$ and the lemma holds.

Case 2: $w_{n} f\left(t_{1}\right)$ and $w_{n} g\left(t_{1}\right)$ are between $1 / 2$ and 1 . This case is nearly identical to Case 1.

Case 3: $w_{n} f\left(t_{1}\right)$ is between 0 and $1 / 2$ and $w_{n} g\left(t_{1}\right)$ is between $1 / 2$ and 1. This case cannot occur. For by increasing or decreasing t from t_{1}, we can decrease $w_{n} f(t)$ to 0 before $w_{n} g(t)$ increases to 1 , at which point the distance from $w_{n} g$ to $w_{n} f$ exceeds $1 / 2$, a contradiction.

In [6], Debski defines an approximating sequence as follows: Let f : $K_{\pi} \rightarrow I$ be an open map. A sequence of open maps $f_{i}: I_{i} \rightarrow I$ is called an approximating sequence for f provided that the sequence $f_{i} \pi_{i}: K_{\pi} \rightarrow I$ converges to f in the uniform metric. He then proves an approximation theorem [6, p. 206]:
4.5. Dębski's Approximation Theorem. Every open map $f: K_{\pi} \rightarrow I$ has an approximating sequence f_{i}. Furthermore, for sufficiently large i, the sequence $\operatorname{deg}\left(f_{i}\right) / \operatorname{deg}\left(\pi_{1}^{i}\right)$ is constant.

Let $\overline{0}$ denote the point in K_{π} all of whose coordinates are 0 .
4.6. Corollary. Let $f \in \mathcal{O}_{\varrho}^{\pi}$. If ϱ is even then $f(\overline{0})=\overline{0}$, and if ϱ is odd (with no twos) then $f(\overline{0})=\overline{\overline{0}}$ or $\bar{\alpha}(f(\overline{0}))=\overline{0}$.

Proof. For each positive integer k, let $f_{i}: I_{i} \rightarrow I_{k}$ be an approximating sequence for the k th coordinate map of $f, \varrho_{k} f: K_{\pi} \rightarrow I$. Since the maps f_{i} are open, we see that $f_{i}\left(\pi_{i}(\overline{0})\right)=f_{i}(0)$ is 0 or 1 . Since the sequence $f_{i} \pi_{i}$ converges uniformly to $\varrho_{k} f$, we know $f_{i}\left(\pi_{i}(\overline{0})\right)$ converges to $\varrho_{k}(f(\overline{0}))$, so $\varrho_{k}(f(\overline{0}))$ is 0 or 1 . Now if ϱ is even, then for each k there is an $l>k$ such that $\varrho_{k}^{l}=w_{2 m}$ for some m. Hence $\varrho_{k}(f(\overline{0}))=\varrho_{k}^{l}\left(\varrho_{l}(f(\overline{0}))\right)=$ $w_{2 m}(j)=0$, where j is 0 or 1 . This shows that $f(\overline{0})=\overline{0}$ if ϱ is even. If ϱ is odd, let $j=\varrho_{1}(f(\overline{0}))$. Now if for some $k, \varrho_{k}(f(\overline{0}))=t \neq j$, then $j=\varrho_{1}(f(\overline{0}))=\varrho_{1}^{k}\left(\varrho_{k}(f(\overline{0}))\right)=\varrho_{l}^{k}(t)=t \neq j$. This shows that $f(\overline{0})=\overline{0}$ or $\bar{\alpha} f(\overline{0})=\overline{0}$.

Debski defines the degree of an open map $f: K_{\pi} \rightarrow I$ to be the constant guaranteed by 4.5. The degree of an open map $f: K_{\pi} \rightarrow K_{\varrho}$ is defined as the degree of $\varrho_{1} f$. Note that this definition extends the notion of the degree of an induced open map from K_{π} to K_{ϱ}.
4.7. Theorem. If $f: K_{\pi} \rightarrow K_{\varrho}$ is an open map and $\varepsilon>0$, then there is an open induced map $g: K_{\pi} \rightarrow K_{\varrho}$ such that $|f-g|<\varepsilon$ and $\operatorname{deg}(f)=\operatorname{deg}(g)$.

Proof. Without loss of generality, we can assume that $f(\overline{0})=\overline{0}$. Hence for each $j, \varrho_{j}(f(\overline{0}))=0$ and so the terms of any approximating sequence for $\varrho_{j} f$ can be assumed to take 0 to 0 . We make this assumption below. Also, we assume that $\varepsilon<1 / 2$. For each $j \in \mathbb{N}$, there is a $\delta_{j}<\varepsilon / 4$ such that
(1) if $|x-y|<\delta_{j}$, then $\left|\varrho_{1}^{j}(x)-\varrho_{1}^{j}(y)\right|<\varepsilon / 4$.

For each $j \in \mathbb{N}$, let $\left\{f_{k}^{j}: I_{k} \rightarrow I_{j}\right\}$ be an approximating sequence for $\varrho_{j} f$. Choose N_{1} so that the following two conditions are met:
(2) $\left|f_{N_{1}}^{1} \pi_{N_{1}}-\varrho_{1} f\right|<\varepsilon / 4$,
(3) for $N>N_{1}$,

$$
\frac{\operatorname{deg}\left(f_{N}^{1}\right)}{\operatorname{deg}\left(\pi_{1}^{N}\right)}=\frac{\operatorname{deg}\left(f_{N_{1}}^{1}\right)}{\operatorname{deg}\left(\pi_{1}^{N_{1}}\right)}
$$

(Note: this number is actually $\operatorname{deg}(f)$, see [6].)
For $k>1$, choose $N_{k}>N_{k-1}$ such that the following conditions hold:
(4) $\left|f_{N_{k}}^{k} \pi_{N_{k}}-\varrho_{k} f\right|<\delta_{k}$,
(5) for $N>N_{k}$,

$$
\frac{\operatorname{deg}\left(f_{N}^{k}\right)}{\operatorname{deg}\left(\pi_{1}^{N}\right)}=\frac{\operatorname{deg}\left(f_{N_{k}}^{k}\right)}{\operatorname{deg}\left(\pi_{1}^{N_{k}}\right)}
$$

CLAim 1. For each $k,\left|f_{N_{1}}^{1} \pi_{N_{1}}^{N_{k}}-\varrho_{1}^{k} f_{N_{k}}^{k}\right|<\varepsilon / 2$.
To see this note that

$$
\begin{aligned}
\left|f_{N_{1}}^{1} \pi_{N_{1}}^{N_{k}} \pi_{N_{k}}-\varrho_{1}^{k} f_{N_{k}}^{k} \pi_{N_{k}}\right| & =\left|f_{N_{1}}^{1} \pi_{N_{1}}-\varrho_{1}^{k} f_{N_{k}}^{k} \pi_{N_{k}}\right| \\
& \leq\left|f_{N_{1}}^{1} \pi_{N_{1}}-\varrho_{1} f\right|+\left|\varrho_{1} f-\varrho_{1}^{k} f_{N_{k}}^{k} \pi_{N_{k}}\right| \\
& =\left|f_{N_{1}}^{1} \pi_{N_{1}}-\varrho_{1} f\right|+\left|\varrho_{1}^{k} \varrho_{k} f-\varrho_{1}^{k} f_{N_{k}}^{k} \pi_{N_{k}}\right|
\end{aligned}
$$

From (2), the first term of this sum is less than $\varepsilon / 4$, and since $\left|\varrho_{k} f-f_{N_{k}}^{k} \pi_{N_{k}}\right|<\delta_{k}$, we know from (1) that the second term is less than or equal to $\varepsilon / 4$. So we have $\left|f_{N_{1}}^{1} \pi_{1}^{N_{k}} \pi_{N_{k}}-\varrho_{1}^{k} f_{N_{k}}^{k} \pi_{N_{k}}\right|<\varepsilon / 2$. Since $\pi_{N_{k}}$ is a surjection, it can be cancelled from the right to yield Claim 1.

Since we have assumed that $\varepsilon<1 / 2$, Claim 1 shows that $\mid f_{N_{1}}^{1} \pi_{N_{1}}^{N_{k}}-$ $\varrho_{1}^{k} f_{N_{k}}^{k} \mid<1 / 2$ for each positive integer k. So by Lemma 4.2 , there is an order preserving homeomorphism h_{k} such that $f_{N_{1}}^{1} \pi_{N_{1}}^{N_{k}}=\varrho_{1}^{k} f_{N_{k}}^{k} h_{k}$. Let $g_{1}=f_{N_{1}}^{1}$, and for each $k>1$, let $g_{k}=f_{N_{k}}^{k} h_{k}$. Note that $g_{k} \in \mathcal{O}^{+}$for all k. Now we have

$$
\begin{equation*}
g_{1} \pi_{N_{1}}^{N_{j}}=\varrho_{1}^{j} g_{j} \quad \text { for each } j \tag{*}
\end{equation*}
$$

CLAim 2. For each $k, g_{k} \pi_{N_{k}}^{N_{k+1}}=\varrho_{k}^{k+1} g_{k+1}$.
Letting $j=k+1$ in $(*)$ yields

$$
\varrho_{1}^{k} \varrho_{k}^{k+1} g_{k+1}=\varrho_{1}^{k+1} g_{k+1}=g_{1} \pi_{N_{1}}^{N_{k+1}}=g_{1} \pi_{N_{1}}^{N_{k}} \pi_{N_{k}}^{N_{k+1}}
$$

Letting $j=k$ in $(*)$ and multiplying both sides of the resulting equation on the right by $\pi_{N_{k}}^{N_{k+1}}$ gives

$$
g_{1} \pi_{N_{1}}^{N_{k}} \pi_{N_{k}}^{N_{k+1}}=\varrho_{1}^{k} g_{k} \pi_{N_{k}}^{N_{k+1}}
$$

and so

$$
\varrho_{1}^{k} \varrho_{k}^{k+1} g_{k+1}=\varrho_{1}^{k} g_{k} \pi_{N_{k}}^{N_{k+1}}
$$

Since ϱ_{1}^{k} is a standard open map, Lemma 2.6 guarantees that ϱ_{1}^{k} can be cancelled on the left of this equation to yield $\varrho_{k}^{k+1} g_{k+1}=g_{k} \pi_{N_{k}}^{N_{k+1}}$. This proves Claim 2.

Now by Claim 2 and Lemma 3.1, the sequence of maps g_{k} induces an open map $g: K_{\pi} \rightarrow K_{\varrho}$. Since $g_{1}=f_{N_{1}}^{1}$, we have

$$
\operatorname{deg}(g)=\frac{\operatorname{deg}\left(g_{1}\right)}{\operatorname{deg}\left(\pi_{1}^{N_{1}}\right)}=\frac{\operatorname{deg}\left(f_{N_{1}}^{1}\right)}{\operatorname{deg}\left(\pi_{1}^{N_{1}}\right)}=\operatorname{deg}(f)
$$

In order to show that $|f-g|<\varepsilon$, we need to establish
CLAim 3. For each $k,\left|g_{k} \pi_{N_{k}}-\varrho_{k} f\right|<\varepsilon$.
For $k=1$, this follows from the definition of g_{1} and condition (2) above. When $k>1$, the triangle inequality gives $\left|g_{k} \pi_{N_{k}}-\varrho_{k} f\right| \leq\left|g_{k} \pi_{N_{k}}-f_{N_{k}}^{k} \pi_{N_{k}}\right|+$
$\left|f_{N_{k}}^{k} \pi_{N_{K}}-\varrho_{k} f\right|$. From (4) and $\delta_{k}<\varepsilon / 4$, the second term in this sum is less than $\varepsilon / 4$. To bound the first term, note that

$$
\left|\varrho_{1}^{k} g_{k}-\varrho_{1}^{k} f_{N_{k}}\right|=\left|\varrho_{1}^{k} f_{N_{K}}^{k} h_{k}-\varrho_{1}^{k} f_{N_{k}}^{k}\right|=\left|f_{N_{1}}^{1} \pi_{N_{1}}^{N_{k}}-\varrho_{1}^{k} f_{N_{k}}^{k}\right|<\varepsilon / 2<1 / 2
$$

(the first equality uses the definition of g_{k}, the second that of h_{k}; the first inequality is Claim 1, the second is by the choice of ε). As these are interval maps and ϱ_{1}^{k} is a standard map, Lemma 4.4 yields $\left|g_{k}-f_{N_{k}}^{k}\right|<\left|\varrho_{1}^{k} g_{k}-\varrho_{1}^{k} f_{N_{k}}^{k}\right|$ $<\varepsilon / 2$. Because $\pi_{N_{k}}$ is a surjection, $\left|g_{k} \pi_{N_{k}}-f_{N_{k}}^{k} \pi_{N_{k}}\right|=\left|g_{k}-f_{N_{k}}^{k}\right|<\varepsilon / 2$. This bounds the first term, and establishes Claim 3.

To complete the argument, choose $x \in K_{\pi}$ so that $|f-g|=|f(x)-g(x)|$. Then $|f-g|=\sum_{k=1}^{\infty}\left|g_{k} \pi_{N_{k}}(x)-\varrho_{k} f(x)\right| \cdot 2^{-k}<\sum_{k=1}^{\infty} \varepsilon \cdot 2^{-k}=\varepsilon$. $\sum_{k=1}^{\infty} 2^{-k}=\varepsilon$.
4.8. Theorem. If f and g are open maps from K_{π} to K_{ϱ} with $|f-g|$ $<1 / 4$, then $\operatorname{deg}(f)=\operatorname{deg}(g)$.

Proof. In the case where f and g are both induced, there are sequences f_{i} and g_{i} of inducing functions for f and g; furthermore, these sequences can be found so that for each $i, \operatorname{dom}\left(f_{i}\right)=\operatorname{dom}\left(g_{i}\right)=I_{k_{i}}$.

Now, for any $x_{k_{1}} \in I_{k_{1}}$, let $x \in \pi_{k_{1}}^{-1}\left(x_{k_{1}}\right)$ and $x_{k}=\pi_{k}(x)$. Then

$$
\begin{aligned}
\frac{1}{2}\left|f_{1}\left(x_{k_{1}}\right)-g_{1}\left(x_{k_{1}}\right)\right| & \leq \frac{1}{2}\left|f_{1}\left(x_{k_{1}}\right)-g_{1}\left(x_{k_{1}}\right)\right|+\sum_{n=2}^{\infty} 2^{-n}\left|f_{n}\left(x_{k_{n}}\right)-g_{n}\left(x_{k_{n}}\right)\right| \\
& =|f(x)-g(x)| \leq|f-g|<\frac{1}{4} .
\end{aligned}
$$

Thus, $\left|f_{1}-g_{1}\right| \leq 1 / 2$, and so f_{1} and g_{1} have the same degree. Finally,

$$
\operatorname{deg}(f)=\frac{\operatorname{deg}\left(f_{1}\right)}{\operatorname{deg}\left(\pi_{1}^{k_{1}}\right)}=\frac{\operatorname{deg}\left(g_{1}\right)}{\operatorname{deg}\left(\pi_{1}^{k_{1}}\right)}=\operatorname{deg}(g) .
$$

When one of f or g is not induced, use Theorem 4.7 with

$$
\varepsilon=1 / 4-|f-g| / 2
$$

to find induced maps f^{*} and g^{*} with the same degrees as f and g and so that $\left|f-f^{*}\right|<\varepsilon$ and $\left|g-g^{*}\right|<\varepsilon$.

We have an immediate corollary.
4.9. Corollary. The decomposition of $\mathcal{O}_{\varrho}^{\pi}$ into degree classes is an open decomposition and each class contains a dense set of induced open mappings. Further, the degree homomorphism deg : $\mathcal{O}_{\pi} \rightarrow Q_{\pi}$ is a continuous open mapping if \mathcal{O}_{π} is given the sup metric and Q_{π} is given the discrete topology.

For each rational $r / s \in Q_{\pi}$, let $\mathcal{O}_{\pi}(r / s)=\operatorname{deg}^{-1}(r / s)$, the open maps of degree r / s. Each element f of this degree class is a uniform limit of open induced maps from the class. For example, a degree one open map is the uniform limit of degree one induced open maps, the vertically induced
homeomorphisms. It is natural to ask whether degree one open maps must themselves be homeomorphisms. More generally, we can ask the following question:
4.10. Question. Suppose r / s is invertible in Q_{π}. Are the members of $\mathcal{O}_{\pi}(r / s)$ all homeomorphisms?

We have produced an algebraic structure theorem for the semigroup $\mathcal{I} \mathcal{O}_{\pi}$, Theorem 3.16. In view of this and Corollary 4.9, it is natural to seek a structure theorem for the semigroup \mathcal{O}_{π}. In particular, we ask the following question:
4.11. Question. Can each $f \in \mathcal{O}_{\pi}$ be factored into $w_{r / s} u$, where u is a degree one open map of K_{π} ?

We can give partial answers to this question, and note that an affirmative answer to the first question implies an affirmative answer to the second question.
4.12. Lemma. If r / s is invertible in Q_{π}, then $\mathcal{O}_{\pi}(r / s)=w_{r / s} \mathcal{O}_{\pi}(1)$.

Proof. $f \in \mathcal{O}_{\pi}(r / s)$ if and only if $f=w_{r / s}\left(w_{s / r} f\right) \in w_{r / s} \mathcal{O}_{\pi}(r)$.
4.13. Corollary. Let γ denote the sequence $2,3,2,3,5, \ldots$ of primes, in which each prime occurs infinitely often. Then each open map $f \in \mathcal{O}_{\gamma}$ can be written uniquely as $w_{r / s} u$, where r / s is the degree of f and u is a degree one open map.

Proof. By Lemma 4.12, f can be written as claimed. To show uniqueness, suppose $f=w_{r / s} u=w_{r / s} v$. Then multiply on the left by $w_{s / r}$ and conclude that $u=v$.
4.14. Lemma. If $u, v \in \mathcal{H} \mathcal{V}_{\pi}$ and $\left|\bar{w}_{r} u-\bar{w}_{r} v\right|<1 / 2$, then $\left|\bar{w}_{r} u-\bar{w}_{r} v\right| \geq$ $|u-v|$.

Proof. Let $\varepsilon>0$. Take n so large that $\sum_{i=n+1}^{\infty} 1 / 2^{i}<\varepsilon$ and we can choose homeomorphisms h, g of I so that $u=\overline{\left(\pi_{1}^{n} h\right)_{1}^{n}}$ and $v=\overline{\left(\pi_{1}^{n} g\right)_{1}^{n}}$. Then $\bar{w}_{r} u=\overline{\left(\pi_{1}^{n} w_{r} h\right)_{1}^{n}}$ and $\bar{w}_{r} v=\overline{\left(\pi_{1}^{n} w_{r} g\right)_{1}^{n}}$.

From the definition of distance in K_{π} and the given inequality, we have $\left|\pi_{1}^{n} w_{r} h-\pi_{1}^{n} w_{r} g\right|<1 / 2$, and so by Lemma 4.4 we have

$$
\left|\pi_{k}^{n} w_{r} h-\pi_{k}^{n} w_{r} g\right| \geq\left|\pi_{k}^{n} h-\pi_{k}^{n} g\right|
$$

for all k from 1 to n. Now let $x \in K_{\pi}$ so that $|u-v|=|u(x)-v(x)|$. It follows that

$$
\begin{aligned}
& \left|\bar{w}_{r} u-\bar{w}_{r} v\right| \\
& \quad \geq\left|\bar{w}_{r} u(x)-\bar{w}_{r} v(x)\right|=\sum_{i=1}^{\infty} \frac{\left|\pi_{i} \bar{w}_{r} u(x)-\pi_{i} \bar{w}_{r} v(x)\right|}{2^{i}} \\
& \quad \geq \sum_{i=1}^{n} \frac{\left|\pi_{i} \bar{w}_{r} u(x)-\pi_{i} \bar{w}_{r} v(x)\right|}{2^{i}}=\sum_{i=1}^{n} \frac{\left|\pi_{i}^{n} w_{r} h\left(x_{n}\right)-\pi_{k}^{n} w_{r} g\left(x_{n}\right)\right|}{2^{i}} \\
& \quad \geq \sum_{i=1}^{n} \frac{\left|\pi_{i}^{n} h\left(x_{n}\right)-\pi_{k}^{n} g\left(x_{n}\right)\right|}{2^{i}}=\sum_{i=1}^{n}\left|\pi_{i} u(x)-\pi_{i} v(x)\right| \geq|u-v|-\varepsilon
\end{aligned}
$$

Since ε was arbitrary, the lemma follows.
The next theorem is the closest we have come to a factorization theorem for \mathcal{O}_{π}.
4.15. Theorem. If $\operatorname{deg}(f)=r / s$, then $f=w_{r / s} u$ for some continuous surjection u of K_{π}.

Proof. By Theorem 4.7, $f=\lim _{n \rightarrow \infty} \bar{w}_{r} u_{n}$, where $u_{n} \in \mathcal{H} \mathcal{V}_{\pi}$ for each n. By Lemma 4.14, $\left|u_{n}-u_{m}\right|<\left|\bar{w}_{r} u_{n}-\bar{w}_{r} u_{m}\right|$ for sufficiently large n, m and so u_{n} is a Cauchy sequence. Since the space of continuous maps from K_{π} to K_{π} is complete, the sequence u_{n} converges uniformly to a continuous surjection $u: K_{\pi} \rightarrow K_{\pi}$. But also composition of functions is a continuous operation on the space of continuous maps of K_{π}, so the sequence $\bar{w}_{r} u_{n}$ converges to $\bar{w}_{r} u$. Hence $f=\bar{w}_{r} u$.

References

[1] R. D. Anderson and G. Choquet, A plane continuum no two of whose nondegenerate subcontinua are homeomorphic: an application of inverse limits, Proc. Amer. Math. Soc. 10 (1959), 347-353.
[2] G. Birkhoff, Lattice Theory, Amer. Math. Soc. Colloq. Publ. 25 (revised ed.), Amer. Math. Soc., New York, 1948.
[3] A. H. Clifford and G. B. Preston, The Algebraic Theory of Semigroups, Vol. 1, Math. Surveys 7, Amer. Math. Soc., 1961.
[4] —, —, The Algebraic Theory of Semigroups, Vol. 2, Math. Surveys 7, Amer. Math. Soc., 1967.
[5] J. F. Davis, Confluent mappings on $[0,1]$ and inverse limits, Topology Proc. 15 (1990), 1-9.
[6] W. Debski, On topological types of the simplest indecomposable continua, Colloq. Math. 49 (1985), 203-211.
[7] W. T. Ingram, Periodicity and indecomposability, Proc. Amer. Math. Soc. 123 (1995), 1907-1916.
[8] K. Kuratowski, Topology, Academic Press, New York, 1968.
[9] S. B. Nadler, Jr., Continuum Theory, Dekker, 1992.
[10] J. W. Rogers, On mapping indecomposable continua onto certain chainable indecomposable continua, Proc. Amer. Math. Soc. 25 (1969), 449-456.
[11] W. T. Watkins, Homeomorphic classification of certain inverse limit spaces with open bonding maps, Pacific J. Math. 103 (1982), 589-601.
[12] G. T. Whyburn, Analytic Topology, Amer. Math. Soc. Colloq. Publ. 28, 1963.

Department of Mathematics
University of Kentucky
Lexington, KY 40506, U.S.A.
E-mail: carl@ms.uky.edu
fugate@ms.uky.edu
schumann@ms.uky.edu

Received 30 September 1997;
in revised form 4 May 1999

[^0]: 1991 Mathematics Subject Classification: Primary 54H25; Secondary 54F20.
 Key words and phrases: continuum, degree, indecomposable, (induced) open mapping, semigroup, approximating sequence.

