
FUNDAMENTA
MATHEMATICAE
162 (1999)

Minimal fixed point sets of relative maps

by

Xuezhi Zhao (Beijing)

Abstract. Let f : (X,A) → (X,A) be a self map of a pair of compact polyhedra.
It is known that f has at least N(f ;X,A) fixed points on X. We give a sufficient and
necessary condition for a finite set P (|P | = N(f ;X,A)) to be the fixed point set of a map
in the relative homotopy class of the given map f . As an application, a new lower bound
for the number of fixed points of f on Cl(X − A) is given.

1. Introduction. Nielsen fixed point theory is concerned with the deter-
mination of minimal fixed point sets of maps (see [1] or [4] for introduction).
The Nielsen number N(f) provides a homotopy invariant lower bound for
the number of fixed points of a map f : X → X, which can be realized in
fairly general cases. More precisely, a space X is said to be a Nielsen space
if every map f : X → X is homotopic to a map g : X → X which has N(f)
fixed points and if these fixed points can lie anywhere in X. It is known that
a compact polyhedron X will be a Nielsen space if either X has no local
cut point and is not a surface with negative Euler characteristic, or X is
contractible, or X is a circle S1 (see [3, Main Theorem]).
Relative Nielsen fixed point theory provides information about fixed

point sets of relative maps, i.e. maps of the form f : (X,A)→ (X,A). A rel-
ative Nielsen number N(f ;X,A) was introduced in [5]; it is the lower bound
of the number of fixed points of maps in the relative homotopy class of f .
Here, homotopies between relative maps are always relative ones, i.e. maps
of the form H : (X×I,A×I)→ (X,A). So, it is natural to ask the following:

Problem 1.1. For f : (X,A) → (X,A) and a finite set P ⊂ X with
cardinality |P | = N(f ;X,A), does there exist a map g homotopic to f with
fixed point set Fix g = P?
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It is obvious that the answer is “no” if P is an arbitrary set. The restric-
tion f : A→ A of f to A has at least N(f) fixed points in A. From [6] and [8],
we know that any map in the homotopy class of f has at least Ñ(f ;X,A)
fixed points in Cl(X −A) and at least N(f ;X −A) fixed points in X −A.
Furthermore, if f has a minimal fixed point set , i.e. |Fix f | = N(f ;X,A),
then f has at least ñ(f ;X,A) fixed points on Bd(A). A brief definition of
these relative Nielsen numbers will be given in Section 3. The conditions
following from the minimal fixed point set assumption are summarized in:

Theorem 1.2 ([9, Theorem 4.2]). If f : (X,A)→ (X,A) has N(f ;X,A)
fixed points, then f has:

(1) at most N(f)− ñ(f ;X,A) fixed points in Int(A),
(2) at least ñ(f ;X,A) and at most N(f) + N1010(f ;X,A) fixed points

on Bd(A),
(3) at least N(f) and at most N(f) +N1010(f ;X,A) fixed points in A,
(4) at least N(f ;X−A) and at most N1010(f ;X,A)+N(f ;X−A) fixed

points in X −A,
(5) at least Ñ(f ;X,A) and at most N(f ;X,A) fixed points in Cl(X−A).

For the realization, we have

Theorem 1.3 ([9, Theorem 4.3]). Let (X,A) be a pair of compact poly-
hedra such that :

1) X is connected ,
2) X −A has no local cut point and is not a 2-manifold ,
3) every component of A is a Nielsen space with nonempty interior ,
4) A can be by-passed in X.

Let f : (X,A) → (X,A). If ñ(f ;X,A) ≤ k1 ≤ N(f) and 0 ≤ k2 ≤
N1010(f ;X,A), then we can homotope f to a map g : (X,A)→ (X,A) with
N(f ;X,A) fixed points in X, of which N(f)−k1 lie in Int(A), N(f ;X−A)
+ k2 lie in X −A, and therefore k1 +N1010(f ;X,A)− k2 lie on Bd(A).

Does this theorem mean that, if (X,A) satisfies the conditions of the
theorem, then any finite set P with |P | = N(f ;X,A), |P ∩Int(A)| ≤ N(f)−
ñ(f ;X,A) and N(f ;X−A) ≤ |P ∩(X−A)| ≤ N(f ;X−A)+N1010(f ;X,A)
can be the fixed point set of a relative map in the homotopy class of the
given map f : (X,A) → (X,A)? Unfortunately not. An example is given
below:

Example 1.4. Let X be a solid torus in Euclidean space R
3, which is

constructed by rotating the 2-disc {(x1, x2, 0) | x21 + (x2 − 3)2 ≤ 4} around
the x1-axis.
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Let A be the subset of X with two components A1 and A2, where A1 and
A2 are two solid tori in X defined by

A1 = {x ∈ X | d(x,B1) ≤ 1/2}, A2 = {x ∈ X | d(x,B2) ≤ 1/2},
where d(·, ·) is the usual metric in R

3, and

B1={(0, x2, x3) | (x2−3)2+x23=1}, B2={(0, x2, x3) | (x2+3)2+x23=1}.
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A map f : (X,A)→ (X,A) is defined by f(x1, x2, x3) = (x1, x2,−x3).
From the definition f has two fixed point classes F1 and F2, where

F1 = {(x1, x2, 0) | x21 + (x2 − 3)2 ≤ 4},
F2 = {(x1, x2, 0) | x21 + (x2 + 3)2 ≤ 4}.

We can calculate that ind(f,F1) = ind(f,F2) = 1, so N(f) = 2.
Write f1 : A1 → A1 and f2 : A2 → A2 for the restrictions of f to A1 and

A2. Then f1 and f2 have the same homotopy type as f with Fix f1 ⊂ F1,
Fix f2 ⊂ F2. Since L(f) = L(f1) = L(f2) = 2, F1 and F2 are common and
do not assume their indices in A. Thus, N(f, f) = 2, ñ(f ;X,A) = 2 and
N(f ;X,A) = N(f) +N(f)−N(f, f) = 4 + 2− 2 = 4.
Let P = {(0, 412 , 0), (0, 1

1
2 , 0), (0,−2, 0), (0,−4, 0)} = {p1, p2, p3, p4}.

Then |P ∩ Int(A)| = 2 = N(f) − ñ(f ;X,A), |P ∩ Bd(A)| = 2 = ñ(f ;X,A)
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and |P ∩ (X −A)| = 0 = N(f ;X −A). We shall show that P cannot be the
fixed point set of any map in the homotopy class of f .
Suppose g : (X,A) → (X,A) is homotopic to f and Fix g = P , write

g1 : A1 → A1 and g2 : A2 → A2 for the restrictions of g to A1 and A2. Then
g1 � f1, g2 � f2. It follows that N(g1) = N(g2) = 2. Since Fix g1 = {p1, p2}
and Fix g2 = {p3, p4}, by the homotopy invariance of fixed point index we
have

ind(g1, p1) = ind(g1, p2) = ind(g2, p3) = ind(g2, p4) = 1.
Also, g has two essential fixed point classes G1 and G2, which are homo-

topy related to F1 and F2 respectively. Since F1 contains two essential fixed
point classes of f1 and since F2 contains two fixed point classes of f2, G1
and G2 contain two essential fixed point classes of g1 and g2 respectively.
Hence, G1 = {p1, p2} and G2 = {p3, p4}. Since G2 is contained in Int(A2),
we have

ind(g,G2) = ind(g, p3) + ind(g, p4) = ind(g2, p3) + ind(g2, p4) = 2.

On the other hand, ind(g,G2) = ind(f,F2) = 1. This is a contradiction.
So we have proved that P cannot be the fixed point set of any map in the
homotopy class of f .

Remark 1.5. The example above does not show that Theorem 1.3 is
false. In fact, we can pick another finite set

P ′ =
{
(0, 4, 0),

(
0, 112 , 0

)
,
(
0,−112 , 0

)
, (0,−4, 0)

}
.

Then |P ′ ∩ Int(A)| = |P ∩ Int(A)| = 2, |P ′ ∩ (X −A)| = |P ∩ (X −A)| = 0.
It is obvious that P ′ can be the fixed point set of a map in the homotopy
class of f .

It is the purpose of this paper to give a theoretical reason for this phe-
nomenon. We shall show that there exist more restrictions imposed on min-
imal fixed point sets of relative maps and hence we obtain some conditions
for the realization of the minimal fixed point set, i.e. give an answer to
Problem 1.1.
We assume the reader is familiar with the results and technique in rela-

tive Nielsen theory which were introduced in [5], [6] and [8]. In this paper,
all the fixed point classes are those in the sense of lifting classes, i.e. the
empty fixed point classes are taken into account. Background material can
be found in [4].

2. Bipartite graphs and matchings. In this section, we present some
matching theorems. Similar conclusions can be found in [7, Sec. 4]. Here,
some adjustments are made for our purpose. On the way, we introduce some
notations in order to give a brief definition of relative Nielsen numbers in
the next section.
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A bipartite graph G is a graph represented by a triple G = (A,B, E),
where the vertex set of G is the disjoint union of A and B, and the edge set
E of G is such that each edge joins a vertex in A to a vertex in B.
For a vertex subset V of G, a V -semimatching M in G is a subset of

E such that no two edges of M share a vertex in V . In particular, when
V = A ∪ B is the total vertex set, a V -semimatching M is said to be a
matching in G, i.e. no two elements ofM share a vertex.
A V -semimatching (or matching)M in G is said to saturate a vertex set

S in G if every vertex in S is an endpoint of an edge inM.
For S ⊆ A and T ⊆ B, we define

Γ (S) = {b ∈ B | (a, b) ∈ E for some a ∈ S},
γ(T ) = {a ∈ A | (a, b) ∈ E for some b ∈ T },

where (a, b) denotes an edge between a and b. We shall write ΓG(S) and
γG(T ) if a specific graph G is emphasized.

Lemma 2.1. A bipartite G = (A,B, E) admits a matching which saturates
B if and only if , for all T ⊆ B, |γ(T )| ≥ |T |. Symmetrically , it admits a
matching which saturates A if and only if , for all S ⊆ A, |Γ (S)| ≥ |S|.

P r o o f. See [2, Theorem 1].

This result was originally stated in terms of representatives of subsets
([2, Theorem 1]), but one can translate it into the form of a matching of a
bipartite graph if we regard the membership relations as edges connecting
elements and subsets of a given set (cf. [7, Sec. 4]).

Theorem 2.2. Let G = (A,B, E) be a bipartite graph and φ : A → Z

be a correspondence from A to the nonnegative integers. Then there is a
B-semimatching M which saturates B such that |{b | (a, b) ∈ M}| ≤ φ(a)
for all a ∈ A if and only if , for all T ⊆ B,

(∗)
∑
a∈γ(T )

φ(a) ≥ |T |.

P r o o f. We construct a new bipartite graph G′ = (A′,B′, E ′) as follows:
Let B′ = B and begin with A′ = ∅ and E ′ = ∅. For each a ∈ A, add φ(a)
new vertices to A′ and then add edges from each of these new vertices to all
the vertices b ∈ ΓG(a).
Now, observe that the hypothesis (∗) is equivalent to |γG′(T )| ≥ |T | for

all T ⊆ B′. Applying Lemma 2.1 to the graph G′, we get a matching M′
in G′ saturating B′, which corresponds to a B-semimatchingM in G which
saturates B with |{b | (a, b) ∈M}| ≤ φ(a) for all a ∈ A(G).



168 X. Z. Zhao

Theorem 2.3. Let G = (A,B, E) be a bipartite graph and φ : A → Z

be a correspondence from A to the nonnegative integers. Then there is a
B-semimatching M such that |{b | (a, b) ∈M}| = φ(a) for all a ∈ A if and
only if , for all S ⊆ A,

(∗∗)
∑
a∈S
φ(a) ≤ |Γ (S)|.

P r o o f. We construct G′ = (A′,B′, E ′) as in the proof of Theorem 2.2.
The condition (∗∗) is equivalent to |ΓG′(S′)| ≥ |S′| for all S ⊆ A′. Ap-
plying Lemma 2.1 to the graph G′, we get a matching M′ in G′ saturat-
ing A′, and this matching corresponds to a B-semimatching M in G with
|{b | (a, b) ∈M}| = φ(a) for all a ∈ A(G).

3. Relative Nielsen numbers and minimal fixed point sets. Let
f : (X,A) → (X,A) be a self map of a pair of compact polyhedra. For
any component Ak of A, we write fk for the restriction of f to Ak. As in
[8, Sec. 2] (cf. [4, Ch. 1, Sec. 1]), we can define, via lifting classes, the set
FPC(f) of fixed point classes of f : X → X and the set FPC(fk) of those of
fk if fk : Ak → Ak is a self map. The set FPC(fk) of fixed point classes of
fk is regarded as being empty if fk is not a self map on Ak, i.e. f(Ak) �⊆ Ak.
For each fk, there is a correspondence

ik,FPC : FPC(fk)→ FPC(f).

A fixed point class Fk of fk is contained in a fixed point class F of f : X → X
if and only if ik,FPC(Fk) = F. Letting FPC(f) =

⋃
FPC(fk) be the disjoint

union of the fixed point classes of f on all components of A, we get a
correspondence

iFPC : FPC(f)→ FPC(f).
Furthermore, we write FPCe(·) and FPCi(·) for the sets of essential and
inessential fixed point classes respectively. With this notation, we have
N(f ;X − A) = |FPCe(f) − iFPC(FPC(f))|. Write F for the set of fixed
point classes of f which do not assume their indices in A, i.e.

F = {F ∈ FPC(f) | ind(f,F) �= ind(f,F ∩A)}.

We define

F1 = F ∩ iFPC(FPCe(f)),
F2 = (FPCe(f) ∩ iFPC(FPCi(f))− iFPC(FPCe(f)).

Then F1 ∪ F2 ⊆ F , and F − (F1 ∪ F2) is the set of essential and weakly
noncommon fixed point classes of f . Hence, |F1| = ñ(f ;X,A), |F2| =
N1010(f ;X,A), |F − (F1 ∪ F2)| = N(f ;X −A) and |F| = Ñ(f ;X,A).
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Writing A for the set of all components of A, we construct two bipartite
graphs as follows:

G1 = (A,F1, E1 = {(Aj ,F) | F ∈ ij,FPC(FPCe(fj))}),
G2 = (A,F2, E2 = {(Aj ,F) | F ∈ ij,FPC(FPC(fj))}).

Definition 3.1. For any S ⊆ A, we define
ñ(f ;X,S) := |ΓG1(S)|, n(f ;X,S) := |ΓG2(S)|.

It is obvious that for any S={A1, . . . , Ak}⊆A, ñ(f ;X,S) is the number
of common fixed point classes of f which do not assume their indices in A
and contain essential fixed point classes of fj : Aj → Aj for an Aj ∈ S, and
n(f ;X,S) is the number of noncommon and essential fixed point classes
of f which contain (inessential) fixed point classes of fj : Aj → Aj for an
Aj ∈ S. Clearly, we have

Corollary 3.2. For any S ⊆ A,

0 ≤ ñ(f ;X,A)−ñ(f ;X,A−S) ≤ ñ(f ;X,S) ≤ min
(
ñ(f ;X,A),

∑
Aj∈S
N(fj)

)
,

0 ≤ N1010(f ;X,A)− n(f ;X,A− S) ≤ n(f ;X,S)

≤ min
(
N1010(f ;X,A),

∑
Aj∈S
(R(fj)−N(fj))

)
,

in particular , ñ(f ;X, ∅)=n(f ;X, ∅)=0, ñ(f ;X,A)= ñ(f ;X,A), n(f ;X,A)
= N1010(f ;X,A).

So, the notation ñ(f ;X,A) coincides with the original ñ(f ;X,A) in [6]
if we regard A as A. In what follows, we shall treat S ⊆ A as a collection
of components of A or the union of the elements in S, depending on con-
text. Thus, Bd(S) and Int(S) are thought of as the sets

⋃
Aj∈S Bd(Aj) and⋃

Aj∈S Int(Aj) respectively.
From the proof of the lower bound property of the relative Nielsen num-

ber N(f ;X,A) in [5], we get

Lemma 3.3. If f has a minimal fixed point set , then, for any fixed point
class F of f ,

|F| =
{ |i−1FPC(F) ∩ iFPC(FPCe(f))| if F is common,
1 if F is noncommon and essential ,
0 otherwise.

For any F ∈ FPCe(f), |F| = 1.

Lemma 3.4. Let S ⊆ A and F ∈ F1 − ΓG1(A− S). If f has a minimal
fixed point set , then F ⊆ S and F ∩ Bd(S) �= ∅.
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P r o o f. As F ∈ F1, F is common. Since f has a minimal fixed point set,
by Lemma 3.3, |F| is equal to the number of essential fixed point classes of f
which are contained in F; each of them contains exactly one fixed point of f .
Because F �∈ ΓG1(A−S), F does not lie in the image of ij,FPC(FPCe(fj)) for
any Aj �∈ S, and therefore each essential fixed class of f contained in F is a
fixed point class of fj : Aj → Aj for some Aj ∈ S. Thus, F ⊆ S. Moreover,
F does not assume its index in A, which implies that F ∩ Cl(X − A) �= ∅.
So, we have F ∩ Bd(S) �= ∅.
Notice that |F1−ΓG1(A−S)| = ñ(f ;X,A)− ñ(f ;X,A−S). The second

conclusion of Lemma 3.4 implies

Theorem 3.5. Let S ⊆ A. If f has a minimal fixed point set , then f
has at least ñ(f ;X,A)− ñ(f ;X,A− S) fixed points on Bd(S).
Theorem 3.6. Let S ⊆ A. If f has a minimal fixed point set , then f has

at most
∑
Aj∈S N(fj)− ñ(f ;X,A) + ñ(f ;X,A− S) fixed points in Int(S).

P r o o f. Suppose

|Fix f ∩ Int(S)| >
∑
Aj∈S
N(fj)− ñ(f ;X,A) + ñ(f ;X,A− S).

By Theorem 3.5, |Fix f ∩ Bd(S)| ≥ ñ(f ;X,A) − ñ(f ;X,A − S), and so we
have |Fix f ∩ S| >

∑
Aj∈S N(fj). Since f has a minimal fixed point set,

from Lemma 3.3, each essential fixed point class of f contains exactly one
point. Among these

∑
Aj∈S N(fj) fixed points in essential fixed point classes

of f , by Theorem 3.5, there are ñ(f ;X,A) − ñ(f ;X,A− S) points that lie
on Bd(S). Thus, there must be a fixed point x ∈ Int(S) which belongs to
an inessential fixed point class Fj of f : Aj → Aj where x ∈ Aj ∈ S.
Let F = ij,FPC(Fj). We claim that there is a contradiction in each case of
Lemma 3.3 for the fixed point class F of f .

Case (i): F is common. As Fj is inessential, x would be different from
those |i−1FPC(F) ∩ iFPC(FPCe(f))| fixed points.
Case (ii): F is noncommon and essential. Then F does not assume its

index inA, we have F∩Cl(X−A) �= ∅. But x �∈ Cl(X−A), hence |F| ≥ 2 �= 1.
Case (iii): Trivial.

The theorem above is not a direct corollary of Theorem 3.5. In fact, a
component Aj of A may contain more than N(fj) fixed points on Aj even
if f has a minimal fixed point set. An upper bound is given in:

Theorem 3.7. Let S ⊆ A. If f has a minimal fixed point set , then f
has at most

∑
Aj∈S N(fj) + n(f ;X,S) fixed points in S.

P r o o f. Since f has a minimal fixed point set, each essential fixed point
class of f contains exactly one fixed point. If x is a fixed point in S which
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is different from these
∑
Aj∈S N(fj) points, then x belongs to an inessential

fixed point class Fj of fj : Aj → Aj with Aj ∈ S. Let F = ij,FPC(Fj).
From Lemma 3.3, we see that F is noncommon (in case (ii)). Thus, we have
F ∈ F2, and therefore F ⊆ ΓG2(S).
Note that |ΓG2(S)| = n(f ;X,S) and that, from Lemma 3.3, any fixed

point class of f in F2 contains exactly one fixed point if f has a minimal
fixed point set. So the theorem holds.

We summarize the lower and upper bound theorems as follows:

Theorem 3.8. Let S = {A1, . . . , Ak} ⊆ A be k components of A. If f
has a minimal fixed point set , i.e. |Fix f | = N(f ;X,A), then

(1) 0 ≤ |Fix f ∩ Int(S)| ≤
∑k
j=1N(fj)− ñ(f ;X,A) + ñ(f ;X,A− S),

(2) ñ(f ;X,A) − ñ(f ;X,A − S) ≤ |Fix f ∩ Bd(S)| ≤
∑k
j=1N(fj) +

n(f ;X,S),
(3)
∑k
j=1N(fj) ≤ |Fix f ∩ S| ≤

∑k
j=1N(fj) + n(f ;X,S).

Similar to [8], we have

Theorem 3.9 (Homotopy invariance). Let f � g : (X,A) → (X,A) be
two homotopic maps. Then, for any S ⊆ A, we have

ñ(f ;X,S) = ñ(g;X,S), n(f ;X,S) = n(g;X,S).

Remark 3.10. It is known that the fixed point class sets FPC(f) and
FPC(f) are invariant under homotopy. So is the inclusion relation iFPC.
Hence, the bipartite graphs G1 and G2 are constant for maps in a given
(relative) homotopy class.

4. Realization of a minimal fixed point set. In this section, we
shall show that under suitable assumptions on (X,A) the conditions in
Theorem 3.8 are also sufficient for the realization of a finite set P with |P | =
N(f ;X,A) as the fixed point set for a map in the homotopy class of the given
map f : (X,A)→ (X,A). Basic technique here is the same as in the proof of
[5, Theorem 6.2] (cf. [3]).

Theorem 4.1. Let (X,A) be a pair of compact polyhedra such that

(1) X is connected ,
(2) X −A has no local cut point and is not a 2-manifold ,
(3) each component of A is a Nielsen space,
(4) A can be by-passed in X.

Let f : (X,A) → (X,A) and P ⊂ X be a finite set with |P | = N(f ;X,A).



172 X. Z. Zhao

If , for any components S = {A1, . . . , Ak} ⊆ A,

|P ∩ Int(S)| ≤
k∑
j=1

N(fj)− ñ(f ;X,A) + ñ(f ;X,A− S),

k∑
j=1

N(fj) ≤ |P ∩ S| ≤
k∑
j=1

N(fj) + n(f ;X,S),

then there is a map g : (X,A)→ (X,A) homotopic to f such that Fix g = P .

P r o o f. Consider the two bigraphs G1 and G2. Define two correspon-
dences φ1, φ2 : A → Z by

φ1(Aj) = N(fj)− |Int(Aj) ∩ P |, φ2(Aj) = |P ∩Aj | −N(fj).

Step 1. For any T ⊆ F1, we have∑
Aj∈γG1 (T )

φ1(Aj) =
∑

Aj∈γG1 (T )
N(fj)− |Int(γG1(T )) ∩ P |

≥ ñ(f ;X,A) − ñ(f ;X,A− γG1(T ))
= |F1| − |ΓG1(A− γG1(T ))|
≥ |T |.

By Theorem 2.2, there is an F1-semimatching M1 in G1 such that
|{F | (Aj ,F) ∈M1}| ≤ φ1(Aj) for all Aj ∈ A.
For any S ⊆ A, we have∑
Aj∈S
φ2(Aj) =

∑
Aj∈S
(|P ∩Aj | −N(fj)) ≤ n(f ;X,S) = |ΓG2(S)|.

By Theorem 2.3, there is an F2-semimatchingM2 in G2 with |{F | (Aj ,F) ∈
M2}| = φ2(Aj) for all Aj ∈ A.

Step 2. For any component Aj of A, notice that

|P ∩ Bd(Aj)| = |P ∩Aj | − |P ∩ Int(Aj)|
= (φ2(Aj) +N(fj))− (N(fj)− φ1(Aj))
= φ1(Aj) + φ2(Aj)

≥ |{F | (Aj ,F) ∈M1}|+ |{F | (Aj ,F) ∈M2}|.
Thus, we can label |{F | (Aj ,F) ∈ M1}| + |{F | (Aj ,F) ∈ M2}| points in
P ∩ Bd(Aj) with fixed point classes of f which are the vertices of the edge
setsM1 orM2.
Altogether, we thus get |M1|+ |M2| labelled points in P ∩Bd(A). Since

M1 is an F1-semimatching in G1 saturating F1, for each F ∈ F1 there exists
exactly one point labelled by F. The F2-semimatchingM2 implies that for
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any F ∈ F2 there is at most one point which is labelled by F. (Some fixed
point classes in F2 have not been labelled the fixed points in these will be
left in the complement X −A later).
Step 3. For each component Ak of A, we can homotope fk : Ak → Ak

to a map f (1)k : Ak → Ak which has N(fk) fixed points lying in Ak − P .
SinceM1 saturates F1, for each F ∈ F1 there is a unique edge (Aj ,F)

inM1. Let p ∈ P ∩Bd(Aj) be the point labelled by F. From the definition
of the bipartite graph G1, F contains an essential fixed point class Fj of fj .
We move the single fixed point x in Fj to the point p.
Repeat the procedure above for every element inM1. We shall move the

|F1| fixed points to the labelled points of fixed point classes in F1. Moving
the other fixed points to those N(f) − |F1| points in P ∩ A which are not
labelled, we get a map f (2) : A → A homotopic to f : A → A with the
properties:

(1) f (2)|Aj : Aj → Aj has N(fj) fixed points for all components Aj of A,
(2) P ∩ Int(A) ⊆ Fix f (2) ⊆ P ∩A,
(3) for each edge (Aj ,F) ∈ M1, there is a fixed point p ∈ Bd(Aj) ∩ F

with p ∈ Fj ∈ FPCe(f (2)).
Step 4. Consider an edge (Aj ,F) ∈ M2. From the definition of the

bipartite graph G2, F contains an inessential fixed point class Fj of fj :
Aj → Aj for this Aj . Write p for the point in Aj ∩P which is labelled by F.
As in the proof of [8, Theorem 3.6], we can create a fixed point at p which
is contained in Fj , and therefore in F. Thus we get a map f (3) : A → A
homotopic to f : A→ A such that
(1) Fix f (3) = P ∩A,
(2) for each edge (Aj ,F) ∈ M1, there is a fixed point p ∈ Bd(Aj) ∩ F

with p ∈ Fj ∈ FPCe(f (3)),
(3) for each edge (Aj ,F) ∈ M2, there is a fixed point p ∈ Bd(Aj) ∩ F

with p ∈ Fj ∈ FPCi(f (3)).
Step 5. Using the homotopy extension property, we can extend f (3) :

A → A to a map f (4) : (X,A) → (X,A) which is relatively homotopic to
f : (X,A)→ (X,A). From [5, Theorem 4.1], we can assume that the number
of fixed points of f (4) in X − A is finite, each fixed point of f (4) in X − A
lies in a maximal simplex, and there is a neighborhood N(A) of A in X such
that f (4)(N(A)) ⊆ A.
Since A can be by-passed in X and since X −A has no local cut point,

we can unite the fixed points in X − A which are in the same fixed point
class to one point. Deleting the fixed points in X − A of zero indices, we
get a map f (5) : (X,A)→ (X,A) homotopic to f such that each fixed point
class of f (5) contains at most one fixed point in X −A.
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The existence of the neighborhood N(A) of A ensures that each fixed
point x of f (5) in A has the same index as a fixed point of the restriction
f (5) of f (5) to A, i.e. ind(f (5), x) = ind(f (5), x), and therefore a fixed point
class of f (5) contains one point in X − A if and only if it does not assume
its index in A. Thus, we have:

(1) Fix f (5) = P ∩A,
(2) for each edge (Aj ,F) ∈ M1, there is a fixed point p ∈ Bd(Aj) ∩ F

with p ∈ Fj ∈ FPCe(f (5)),
(3) for each edge (Aj ,F) ∈ M2, there is a fixed point p ∈ Bd(Aj) ∩ F

with p ∈ Fj ∈ FPCi(f (5)),
(4) |(X −A) ∩ Fix f (5)| = Ñ(f ;X,A) = |F1|+ |F2|+N(f ;X −A),
(5) |Fix f (5)| = N(f) + |M2|+ |F1|+ |F2|+N(f ;X −A).
Step 6. For any fixed point class F of f (5) which is a vertex of the

matching M1 or M2, by Step 2, there is a point a ∈ F ∩ Bd(A). Hence,
we can map the unique point in F ∩ (X − A) to a. After doing this for all
edges of M1 and M2, we get a map f (6) : (X,A) → (X,A) homotopic to
f (5) such that f (6)|A = f (5)|A and
|Fix f (6)| = |Fix f (5)| − (|M1|+ |M2|) = |Fix f (5)| − (|F1|+ |M2|)

= N(f) + |F2|+N(f ;X −A)
= N(f) +N1010(f ;X,A) +N(f ;X −A) = N(f ;X,A).

Notice that |P ∩ (X − A)| = |P | − |P ∩ A| = |Fix f (6)| − |A ∩ Fix f (6)|.
Moving these fixed points on X −A to P ∩ (X−A), we get the desired map
g : (X,A)→ (X,A).
Combining the theorem above with Theorem 3.8, we get

Theorem 4.2. Let (X,A) be a pair of compact polyhedra such that :

(1) X is connected ,
(2) X −A has no local cut point and is not a 2-manifold ,
(3) each component of A is a Nielsen space,
(4) A can be by-passed in X.

Let f : (X,A) → (X,A). A finite set P ⊂ X with |P | = N(f ;X,A) is a
fixed point set of a map in the (relative) homotopy class of f if and only if ,
for any components S = {A1, . . . , Ak} ⊆ A,

|P ∩ Int(S)| ≤
k∑
j=1

N(fj)− ñ(f ;X,A) + ñ(f ;X,A− S),

k∑
j=1

N(fj) ≤ |P ∩ S| ≤
k∑
j=1

N(fj) + n(f ;X,S).
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We know that
∑k
j=1N(fj) − ñ(f ;X,A) + ñ(f ;X,A − S) ≥ 0 for all

S ⊆ A from Corollary 3.2. So, the condition |P ∩ Int(S)| ≤
∑k
j=1N(fj) −

ñ(f ;X,A) + ñ(f ;X,A − S) is automatically satisfied if Int(S) = ∅. Thus,
we have

Theorem 4.3. Let (X,A) be a pair of compact polyhedra such that :

(1) X is connected ,
(2) X −A has no local cut point and is not a 2-manifold ,
(3) each component of A is a Nielsen space with empty interior ,
(4) A can be by-passed in X.

Let f : (X,A) → (X,A). A finite set P ⊂ X with |P | = N(f ;X,A) is a
fixed point set of a map in the (relative) homotopy class of f if and only if ,
for any components S = {A1, . . . , Ak} ⊆ A,

k∑
j=1

N(fj) ≤ |P ∩ S| ≤
k∑
j=1

N(fj) + n(f ;X,S).

Finally, we go back to the example in the first section, where (X,A)
satisfies the assumptions in Theorem 4.2. Note that

FPC(f) = FPCe(f) = {F1,F2},
F = {F1,F2}, F1 = {F1,F2}, F2 = ∅.

So, we have Ñ(f ;X,A)= ñ(f ;X,A)=2, N1010(f ;X,A)=N(f ;X − A)=0.
Moreover,

G1 = (A,F1, E1) = ({A1, A2}, {F1,F2}, {(A1,F1), (A2,F2)}),
G2 = (A,F2, E2) = ({A1, A2}, ∅, ∅).

Thus, we find that ñ(f ;X, {A1}) = ñ(f ;X, {A2}) = 1 and n(f ;X, {A1}) =
n(f ;X, {A2}) = 0.
From Theorem 4.2, a finite set D with |D| = N(f ;X,A) = 4 can be

realized as a minimal fixed point set of a map homotopic to f if and only if:

|D ∩ Int(A1)| ≤ 2− 2 + 1 = 1,
|D ∩ Int(A2)| ≤ 2− 2 + 1 = 1,
|D ∩ (Int(A1) ∪ Int(A2))| ≤ 4− 2 + 0 = 2,

2 ≤ |D ∩A1| ≤ 2 + 0,
2 ≤ |D ∩A2| ≤ 2 + 0,
2 ≤ |D ∩ (A1 ∪A2)| ≤ 4 + 0,

i.e.

(†) |D ∩ Int(A1)| ≤ 1, |D ∩ Int(A2)| ≤ 1, |D ∩A1| = |D ∩A2| = 2.
It is easy to see that (†) holds for the P ′ of Remark 1.5, but it does not hold
for the P of Example 1.4.

5. An application. In this section, we shall make use of the relative
Nielsen numbers defined in Section 3 to give a new lower bound for the
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number of fixed points of a map f : (X,A) → (X,A) on Cl(X − A), which
is larger than the lower bound Ñ(f ;X,A) in [6].
First, we make a convention: write S0 = {Aj ∈ A | Int(Aj) = ∅} for

the set of all components of A with empty interiors. For a relative map
f : (X,A)→ (X,A), we make
Definition 5.1.

Ñ ′(f ;X,A) := Ñ(f ;X,A) +
∑
Aj∈S0

N(fj)− ñ(f ;X,S0).

It is clear that Ñ ′(f ;X,A) is a relative homotopy invariant. Moreover,
we have

Proposition 5.2.

Ñ(f ;X,A) ≤ Ñ ′(f ;X,A) ≤ N(f ;X,A).
P r o o f. We have ñ(f ;X,A)− ñ(f ;X,S0) ≤

∑
Aj∈A−S0 N(fj) by Corol-

lary 3.2. Thus,

Ñ ′(f ;X,A) = Ñ(f ;X,A) +
∑
Aj∈S0

N(fj)− ñ(f ;X,S0)

= N(f ;X −A) +N1010(f ;X,A) + ñ(f ;X,A)

+
∑
Aj∈S0

N(fj)− ñ(f ;X,S0)

≤ N(f ;X −A) +N1010(f ;X,A) +
∑
Aj∈S0

N(fj)

+
∑

Aj∈A−S0

N(fj)

= N(f ;X −A) +N1010(f ;X,A) +N(f) = N(f ;X,A)
(cf. [9, Theorem 3.9]). The left inequality is a direct consequence of Corol-
lary 3.2.

From Corollary 3.2, we also have

Proposition 5.3. If Int(A) = ∅, i.e. S0 = A, then Ñ ′(f ;X,A) =
N(f ;X,A). If every component of A has a nonempty interior , i.e. S0 = ∅,
then Ñ ′(f ;X,A) = Ñ(f ;X,A).

The next example will show that Ñ ′(f ;X,A) is different from both
Ñ(f ;X,A) and N(f ;X,A) in general.

Example 5.4. Let X = {(x, y) ∈ R
2 | 1 ≤ x2 + y2 ≤ 9} be an annulus

in R
2, and let the subspace A consist of two components A1 and A2, where
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A1 = {(0, 2)} is a single point and A2 = {(x, y) ∈ R
2 | x2 + (y + 2)2 ≤ 1}

is a disc in X. The map f : (X,A) → (X,A) is a reflection defined by
f(x, y) = (−x, y).
We see that f has two fixed point classes, F1 = {(0, y) ∈ X | 1 ≤ y ≤ 3}

and F2 = {(0, y) ∈ X | −3 ≤ y ≤ −1}. Both have the same index 1,
and hence assume their indices in A. So, Ñ(f ;X,A) = ñ(f ;X,A) = 0.
Since S0 = {A1}, we have Ñ ′(f ;X,A) = Ñ(f ;X,A) +

∑
Aj∈S0 N(fj) −

ñ(f ;X,S0) = 0+1−0 = 1. Since F1 contains the unique fixed point class of
f1 : A1 → A1, F1 is common. So is F2. Thus, N(f ;X,A) = N(f) +N(f)−
N(f, f) = 2 + 2 − 2 = 2. So, in this example, Ñ(f ;X,A) < Ñ ′(f ;X,A) <
N(f ;X,A).

Theorem 5.5 (Lower bound theorem). Each map in the relative homo-
topy class of f : (X,A) → (X,A) has at least Ñ ′(f ;X,A) fixed points on
Cl(X −A).

P r o o f. Since N ′(f ;X,A) is a homotopy invariant, it is sufficient to show
that N ′(f ;X,A) is a lower bound for the number of fixed points of f on
Cl(X −A).
Notice that Ñ(f ;X,A) = N(f ;X − A) + N1010(f ;X,A) + ñ(f ;X,A).

Thus

Ñ ′(f ;X,A) = N(f ;X −A) +N1010(f ;X,A) + ñ(f ;X,A) − ñ(f ;X,S0)

+
∑
Aj∈S0

N(fj).

Observe that N(f ;X − A) + N1010(f ;X,A) + ñ(f ;X,A) − ñ(f ;X,S0) is
just the number of fixed point classes that do not assume their indices in
A and do not contain any essential fixed point classes of fj : Aj → Aj for
an Aj ∈ S0, i.e. Int(Aj) = ∅. Thus, each of these fixed point classes has a
fixed point on Cl(X−A) which is different from the fixed points contained in
those

∑
Aj∈S0 N(fj) essential fixed point classes of f . Since S0 ⊆ Cl(X−A),

we get our conclusion.

Similar to [9, Theorem 4.2], from Theorem 3.8 we have

Theorem 5.6. I f f : (X,A)→ (X,A) has N(f ;X,A) fixed points, then
f has:

(1) at most
∑
Aj∈A−S0 N(fj) − ñ(f ;X,A) + ñ(f ;X,S0) fixed points in

Int(A),
(2) at least

∑
Aj∈S0 N(fj)+ ñ(f ;X,A)− ñ(f ;X,S0) and at most N(f)+

N1010(f ;X,A) fixed points in Bd(A),
(3) at least N(f) and at most N(f) +N1010(f ;X,A) fixed points in A,
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(4) at least N(f ;X−A) and at most N1010(f ;X,A)+N(f ;X−A) fixed
points in X −A,
(5) at least Ñ ′(f ;X,A) and at most N(f ;X,A) fixed points in Cl(X−A).

Comparing the conditions of the minimum theorem [6, Theorem 5.2] for
Ñ(f ;X,A) with the conditions of the minimum theorem [5, Theorem 6.2]
for N(f ;X,A), one finds that there is an extra condition: every component
of A has a nonempty interior, i.e. S0 = ∅. From Proposition 5.3, this implies
that Ñ ′(f ;X,A) = Ñ(f ;X,A). But the new lower bound Ñ ′(f ;X,A) can
be realized under the same assumptions as in [5, Theorem 6.2].

Theorem 5.7. Let (X,A) be a pair of compact polyhedra such that :

(1) X is connected ,
(2) X −A has no local cut point and is not a 2-manifold ,
(3) every component of A is a Nielsen space,
(4) A can be by-passed in X.

Let f : (X,A)→ (X,A). If

ñ(f ;X,A) − ñ(f ;X,S0) ≤ k1 ≤
∑

Aj∈A−S0

N(fj)

and 0 ≤ k2 ≤ N1010(f ;X,A), then we can homotope f to g : (X,A) →
(X,A) with N(f ;X,A) fixed points in X, of which

∑
Aj∈A−S0 N(fj) − k1

lie in Int(A), N(f ;X−A)+k2 lie in X−A, and therefore
∑
Aj∈S0 N(fj)+

k1 +N1010(f ;X,A)− k2 lie on Bd(A).

P r o o f. We construct a finite subset P in X with |P | = N(f ;X,A) step
by step as follows.
Let F∗1 ⊆ F1 be the set of common fixed point classes of f which do not

assume their indices in A and do not contain any essential fixed point classes
of fj : Aj → Aj for an Aj ∈ S0. Then |F∗1 | = ñ(f ;X,A) − ñ(f ;X,S0). For
each F ∈ F∗1 , there is an essential fixed point class Fj of fj : Aj → Aj with
Int(Aj) �= ∅ such that Fj ⊆ F. We choose a point p on Bd(Aj). After making
this choice for all fixed point classes in F∗1 , we get a set P1 ⊆ Bd(A − S0)
with |P1| = ñ(f ;X,A)− ñ(f ;X,S0).
Since ñ(f ;X,A) − ñ(f ;X,S0) ≤ k1 ≤

∑
Aj∈A−S0 N(fj), we can add

k1 − ñ(f ;X,A) + ñ(f ;X,S0) new points on Bd(A−S0) to P1, and then we
get a finite set P2 such that |P2 ∩ Bd(Aj)| ≤ N(fj) for each Aj ∈ A− S0.
Adding N(fj) − |P2 ∩ Aj | new points in Int(Aj) for each Aj ∈ A − S0,

and N(fj) new points in Aj for each Aj ∈ S0, we get a finite set P3 such
that
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(1) P3 ⊆ A,
(2) |P3 ∩Aj | = N(fj) for each A ∈ A,
(3)
∑
Aj∈A−S0 |P3 ∩ Bd(Aj)| = k1.

Thus, for any S ⊆ A,
|P3 ∩ Int(S)| = |P3 ∩ Int(S − S0)| = |P3 ∩ (S − S0)| − |P3 ∩ Bd(S − S0)|

≤
∑

Aj∈S−S0

N(fj)

− |{F ∈ F∗1 | F is labelled by a point in Aj ∈ S − S0}|

≤
∑

Aj∈S−S0

N(fj)− (ñ(f ;X,A) − ñ(f ;X,S − S0))

≤
∑
Aj∈S
N(fj)− ñ(f ;X,A) + ñ(f ;X,S).

Since 0 ≤ k2 ≤ N1010(f ;X,A) = |F2|, we can pick a subset F∗2 of F2 with
|F∗2 | = N1010(f ;X,A)−k2. For each F ∈ F∗2 , there is therefore an inessential
fixed point class Fj of fj : Aj → Aj with Fj ⊆ F. We choose a new point
p on Bd(Aj) as the labelling point of F. Add these N1010(f ;X,A) − k2
labelling points to P3 to get a finite set P4 in A. For any S ⊆ A, we have
|P4 ∩ S| = |P3 ∩ S|+ |(P4 − P3) ∩ S|

=
∑
Aj∈S
N(fj) + |{F ∈ F∗2 | F is labelled by a point in Aj ∈ S}|

≤
∑
Aj∈S
N(fj) + |{F ∈ F∗2 | F ∈ iFPC(FPC(fj)), Aj ∈ S}|

≤
∑
Aj∈S
N(fj) + |{F ∈ F2 | F ∈ iFPC(FPC(fj)), Aj ∈ S}|

=
∑
Aj∈S
N(fj) + n(f ;X,S).

Add N(f ;X −A) + k2 distinct points in X −A to P4 to get a finite set
P with

|P | = |P4|+N(f ;X −A) + k2
= |P3|+ (N1010(f ;X,A) − k2) +N(f ;X −A) + k2
= N(f) +N1010(f ;X,A) +N(f ;X −A) = N(f ;X,A).

Notice that |P ∩ Aj | = |P4 ∩ Aj | ≥ |P3 ∩ Aj | = N(fj) for each component
Aj of A, and P ∩ Int(S) = P3 ∩ Int(S), P ∩ S = P4 ∩ S for any S ⊆ A.
Thus, the set P satisfies the conditions of Theorem 4.1, and then we get the
conclusion.
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Setting k1 = ñ(f ;X,A) − ñ(f ;X,S0) and k2 = 0 in the theorem above,
we have

Theorem 5.8. Let (X,A) be a pair of compact polyhedra satisfying the
conditions in the theorem above. Then any map f : (X,A) → (X,A) is
homotopic to a map g : (X,A) → (X,A) with N(f ;X,A) fixed points
in X, of which

∑
Aj∈A−S0 N(fj) − ñ(f ;X,A) + ñ(f ;X,S0) lie in Int(A),

N(f ;X −A) lie in X −A, and therefore
∑
Aj∈S0 N(fj) +N1010(f ;X,A) +

ñ(f ;X,A)− ñ(f ;X,S0) lie on Bd(A). So there are Ñ ′(f ;X,A) fixed points
in Cl(X −A).
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