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A generalization of Zeeman’s family

by

Micha l S i e r a k o w s k i (Warszawa)

Abstract. E. C. Zeeman [2] described the behaviour of the iterates of the difference
equation xn+1 = R(xn, xn−1, . . . , xn−k)/Q(xn, xn−1, . . . , xn−k), n ≥ k, R,Q polynomi-
als in the case k = 1, Q = xn−1 and R = xn + α, x1, x2 positive, α nonnegative. We
generalize his results as well as those of Beukers and Cushman on the existence of an
invariant measure in the case when R,Q are affine and k = 1. We prove that the totally
invariant set remains residual when the coefficients vary.

1. Introduction. Recently E. C. Zeeman [2] described the behaviour
of accumulation points of sequences S = (x1, x2, . . .) of positive numbers
generated by the difference equation

(1) xn+1 =
γ + xn
xn−1

, n ≥ 2,

where the parameter γ is nonnegative and the initial terms x1, x2 are pos-
itive. These sequences may be treated as projections of the trajectories of
the 2-dimensional system

(2) Φ(u, v) =
(
v,
γ + v

u

)
.

The map Φ : R2
+ → R2

+ is called the unfolding of the difference equa-
tion (1). The sequence S is the projection onto the u-axis of the orbit
O = ((x1, x2), (x2, x3), (x3, x4), . . .) = (X,Φ(X), Φ2(X), . . .), X = (x1, x2).

In this paper we consider the following generalization of (1):

(3) xn+1 =
γ +Bxn +Axn−1

E +Dxn + Cxn−1
, n ≥ 2,

or equivalently the generalization of (2):

(4) Φ(u, v) =
(
v,
γ +Bv +Au

E +Dv + Cu

)
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which is defined on R2 less the critical line Cu + Dv + E = 0. Here all
the coefficients γ,A,B,C,D,E and also the initial terms are real numbers.
We want to emphasize similarities between the behaviour of sequences of
the form (1) and sequences derived from generalized Zeeman’s equation (3).
Using the 2-dimensional unfolding (2) of equation (1) we show that for every
parameter γ the complement of the set of preimages of the critical line is
residual in R2.

In this paper we only deal with maps in the family (4) satisfying D = 0.
As we want to investigate a family including Zeeman’s case we assume
BC 6= 0. Examples given in the last section show that for BC = 0 and
D 6= 0 there exist maps in the family (4) whose asymptotic behaviour is not
similar to Zeeman’s maps. Under all these assumptions, if we divide by B
and then use the chart x = Cu, y = Cv then the map Φ takes the form

(5) F (x, y) =
(
y,
α+ y + ax

x+ e

)
.

For a = e = 0 and α ≥ 0 we obtain the unfolding considered by Zeeman [2].

Remark 1. Recently [3] Zeeman considered another generalization of
(1), namely

xn+1 =
γ + xn + xn−1 + . . .+ xn−k+2

xn−k+1
, n ≥ k.

He described the behaviour of the sequences of this form for k = 3, where,
as in (1), the parameter γ is nonnegative and the initial terms are positive.

2. Definitions and notation. We shall use the following notation:

• d(X,Y ) is the standard euclidean metric on Rn,
• B(X, r) = {Y ∈ R2 : d(X,Y ) < r},
• dist(Ω1, Ω2) = inf{d(X,Y ) : X ∈ Ω1, Y ∈ Ω2},
• R2

a = {(x, y) : x > a, y > a}.
The map F defined in (5) has two fixed points W1, W2 such that Wi =

(ωi, ωi) with

ω1 =
a+ 1− e−

√
(a+ 1− e)2 + 4α
2

,

ω2 =
a+ 1− e+

√
(a+ 1− e)2 + 4α
2

.

Because F is differentiable in R2 \ {(x, y) : x = −e} we have the formulas

DF (Wi) =
(

0 1
(ae−α)−ωi

(ωi+e)2
1

ωi+e

)
,

∆i = (trDF (Wi))2 − 4 detDF (Wi) =
1

(ωi + e)2 (1 + 4(ae− α)− 4ωi).
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Definition 1. A periodic point X of a map H : Rn → Rn is called
neutral iff detDH(X) 6= 0 and if all the eigenvalues λi of DH(X) lie on the
unit circle.

Definition 2. A fixed point Y of a map H : Rn → Rn is called a
centre iff there exists ε > 0 and an open set Ω containing Y such that for
any 0 < ε1, ε2 < ε there exist open sets Ω2 ⊂ Ω1 ⊂ Ω such that for any
X ∈ int(Ω1 −Ω2) we have

0 < ε2 < d(Hk(X), Y ) < ε1 <∞
for every integer k.

Definition 3. A set Λ is called forward invariant for a map F iff
F (Λ) ⊂ Λ; backward invariant iff F−1(Λ) ⊂ Λ; and totally invariant iff
Λ = F (Λ) = F−1(Λ).

Property 1. It is easy to see that the fixed point Wi of F is neutral iff
∆i ≤ 0 and (ae− α)− ωi = −(ωi + e)2.

Property 2. For e = −a and α ≥ −a(a + 1) the unfolding (5) is a
diffeomorphism of R2

a.

3. Statement of results. We begin with a general result on fixed points
of maps of the form (5). This theorem yields the existence of nonhyperbolic
maps and also maps with fixed points of centre type within this family.

Theorem 1. The real fixed points Wi of the map F given by (5) have
the following properties:

• W1 is neutral iff a = −e and α ≥ − 1
4 (2a+ 1)2 + 1. Moreover , it is a

centre iff it is neutral , the above inequality is strict , and 4α 6= −(2a+1)2+9.
• W2 is neutral iff a = −e and α ≥ − 1

4 (2a + 1)2. Moreover , it is a
centre iff it is neutral and the above inequality is strict.

The following theorem is an extension of results showed for Zeeman’s
maps (2) in [1] by F. Beukers and R. Cushman and also in [2] by E. C. Zee-
man.

Theorem 2. For e = −a and α ≥ −a(a + 1) the function V : R2
a → R

given by

V (x, y) =
(x− a+ 1)(y − a+ 1)(x+ y + a2 − a+ α)

(x− a)(y − a)

is invariant under the map F : R2
a → R2

a of the form (5), that is, V ◦F = V .
Moreover F preserves the 2-form

σ =
dx ∧ dy

(x− a)(y − a)
.
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Theorem 3 states that under our assumptions there exists a totally in-
variant set on which forward and backward iterates of F given by (5) are
well defined. This theorem is interesting because F is not a homeomorphism
on the whole R2 and also the totally invariant set depends on the coefficients
of F .

Theorem 3. For e = −a the map F has a totally invariant set Λ which
is residual.

4. Proofs

4.1. Proof of Theorem 1

Lemma 1. The fixed point Wi = (ωi, ωi) of F is neutral iff the following
conditions are satisfied :

(6) (a+ 1− e)2 + 4α ≥ 0,

(7) 1 + 4(ae− α)− 4ωi ≤ 0,

(8) (ae− α)− ωi = −(ωi + e)2.

P r o o f. Condition (6) ensures the existence of real fixed points of F .
Furthermore by Property 1 conditions (7) and (8) are equivalent to the
neutrality of Wi.

Condition (8) can be reformulated as ωi = tj , i, j = 1, 2, where

t1 =
1−2e−

√
1−4(e(a+ 1)−α)

2
, t2 =

1−2e+
√

1−4(e(a+ 1)−α)
2

are solutions of the equation (ae − α) − t = −(t + e)2. Because we are
interested only in real fixed points of F , we want the equation (8) to have
real solutions. Hence we assume

(9) α ≥ e(a+ 1)− 1/4.

Suppose t1 = ω1 or t1 = ω2. After elementary calculations we obtain

2(a+ e)
√

1− 4(e(a+ 1)− α) = 2(a+ e),

so a = −e or α = e(a+ 1). On the other hand if t2 = ω1 or t2 = ω2 then

−2(a+ e)
√

1− 4(e(a+ 1)− α) = 2(a+ e)

and so a = −e.
For α = e(a+ 1) condition (6) takes the form

(a+ 1− e)2 + 4α = (a+ 1 + e)2 ≥ 0

and is trivial, and (7) does not hold because α = e(a + 1) implies
t1 = −e.
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If a = −e , then (a+ 1− e)2 + 4α = −4e(a+ 1) + 1 + 4α and (6) holds
as a consequence of (9). Because in this case 1 + 4(ae− α) = 1− 4(a2 + α),
at W1 for α ≥ −a(a+ 1) + 3/4 we have

(2a+ 1)2 + 4α ≥ 2((2a+ 1)2 + 4α)1/2,

−4a(a+ 1)− 4α− 1 ≤ −2((2a+ 1)2 + 4α)1/2,

1 + 4(ae− α) ≤ 2((a+ 1− e)− ((a+ 1− e)2 + 4α)1/2) = 4ω1.

Hence (7) holds. We have thus proved the neutrality of the real fixed point
W1. The proof for W2 is analogous.

We now proceed to determine when W1 is a centre. Differentiating V
gives

∂V

∂x
=

(y − a+ 1)(x2 − 2ax− y − α)
(x− a)2(y − a)

,

∂V

∂y
=

(x− a+ 1)(y2 − 2ay − x− α)
(x− a)(y − a)2 ,

∂2V

∂x2 =
2(y − a+ 1)(y + a2 + α)

(x− a)3(y − a)
,

∂2V

∂y2 =
2(x− a+ 1)(x+ a2 + α)

(x− a)(y − a)3 ,

∂2V

∂x∂y
=
α− (x− a)2 − (y − a)2 + a2 + a

(x− a)2(y − a)2 .

Because ωi + a2 + α = (ωi − a)2 at Wi, we have

∂V

∂x
=
∂V

∂y
= 0,

∂2V

∂x2 =
2(ωi − a+ 1)

(ωi − a)2 .

For i = 1 using the condition 4α 6= −(2a+1)2 +9 we have ∂2V/∂x2 6= 0.
Since at W1,

det HessV =
∂2V

∂x2

∂2V

∂y2 −
(
∂2V

∂x∂y

)2

> 0,

and the principal minor ∂2V/∂x2 of the second derivative of V at W1 is
not 0, it follows that the second derivative of V at W1 is definite. In other
words, W1 is a nondegenerate extreme point of V . Thus W1 is a fixed point
of centre type. The proof for W2 is analogous.

Remark 2. A neutral fixed point may not be a centre; e.g. for H(x, y) =
(y, (y + 2)/x), the point W1 = (−1,−1) is fixed and neutral, but for S =
(−1, t), where −1 < t < 0, we obtain limn→∞H3n(S) = (−1,−1).

Remark 3. It is easy to check that for the map F given by (5) the fixed
point W2 lies in R2

a.
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Remark 4. For a = 0 and α ≥ 0 the fixed point W2 lies in R2
+ and it is

a centre. This is Zeeman’s case [2].

4.2. Proof of Theorem 2. Although, as we show below, the function V is
a formal integral for the map F , that is, V is constant along the orbits of F ,
some problems appear because F is not a homeomorphism and its image
contains points of the critical line x + e = 0. In order to define all forward
iterates of F we shall determine a forward invariant set of F , i.e., a set Λ
with F (Λ) ⊂ Λ.

First we study a restriction of F which is a diffeomorphism of an open
set. Our next task is to find global properties of invariant sets of F .

By property (2), we have F : R2
a → R2

a. We have to show that V is
invariant under F|R2

a
. Now e = −a. Therefore

V ◦ F (x, y) = V

(
y,
ax+ y + α

x− a
)

=
(y − a+ 1)(ax+y+α

x−a − a+ 1)(y + ax+y+α
x−a + a2 − a+ α)

(y − a)(ax+y+α
x−a − a)

=
(y − a+ 1)(x+ y + a2 − a+ α)

(x− a)(y − a)(y + α+ a2)

× (xy − ay + y + α+ a2x− a3 + a2 + αx− aα)

=
(y − a+ 1)(x+ y + a2 − a+ α)(x− a+ 1)(y + α+ a2)

(x− a)(y − a)(y + α+ a2)
= V (x, y).

Therefore V ◦ F = V , as required. The proof of the fact that F preserves
the form σ is analogous.

4.3. Proof of Theorem 3

Remark 5. For e = −a the maps F are topologically conjugate to Zee-
man’s maps G of the form (2) (that is, for each F there exists a map G and
a homeomorphism H with F ◦H = H ◦G).

P r o o f. Given F let Ha : R2 → R2 denote the translation given by
Ha(x, y) = (x− a, y − a). Then for

G(x, y) =
(
y,
y + a(a+ 1) + α

x

)

we have

H ◦ F (x, y) = H

(
y,
ax+ y + α

x− a
)

=
(
y − a, y + a2 + α

x− a
)

=
(
y − a, y − a+ a(a+ 1) + α

x− a
)

= G(x− a, y − a) = G ◦H(x, y).
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Remark 6. The generalized family given by (5) contains maps which
are not topologically conjugate to any Zeeman map. For example in this
family there exist maps with two hyperbolic fixed points (see Section 5)
while Zeeman maps with two fixed points have at least one which is not
hyperbolic.

Because topological conjugacy preserves the topological properties of
trajectories it is enough to prove Theorem 3 for Zeeman’s maps. Given a
Zeeman map G, which is defined on R2 less the line x = 0, and its invariant
function V , we observe that each orbit of G lies on a level curve V = const.
If we denote by C a level curve of V then C is the cubic curve in R2 given
by

(10) (x+ 1)(y + 1)(x+ y + α)− vxy = 0.

If we think of the variables x, y as being complex, then (10) defines a family
of elliptic curves C in the space C2. The closure C of C in the complex
projective space CP 2 is defined by

(11) (x+ z)(y + z)(x+ y + αz)− vxyz = 0.

When we wish to emphasize the parameter v we shall add it as a subscript
in the following. For any V let Cv be the closure of the level curve V = v
defined by (11). We see that C is obtained from C by adding three points
at infinity, namely (1, 0, 0), (0, 1, 0), (1,−1, 0). One of the most interesting
properties of G is that G = I ◦ J , where I and J are involutions defined on
R2 less the line x = 0 given by

I(x, y) = (y, x), J(x, y) =
(
y + α

x
, y

)
.

As Zeeman shows [2], I, J,G extend to maps

I : CP 2 → CP 2, (x, y, z) 7→ (y, x, z),

J : CP 2 → CP 2, (x, y, z) 7→ (z(y + az), xy, xz),

G : CP 2 → CP 2, (x, y, z) 7→ (xy, (y + αz)z, xz),

which preserve the curve Cv for each v. When Cv is a nonsingular elliptic
curve, diffeomorphic to the 2-torus, its intersection with the real projective
plane RP 2 is either the union of two disjoint closed curves C ′v and C ′′v or one
closed curve C ′v. The curve C ′′v corresponds to the convex component of the
intersection Cv ∩R2 and C ′v corresponds to another component which is not
convex. To describe the invariant set of G we need to know the evolution on
each level curve. This is achieved by means of the following lemma.

Lemma 2. For each nonsingular elliptic curve Cv the maps G|C′v and
G|C′′v are smoothly conjugate to a rotation.
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P r o o f. Although in his Theorem 3 ([2], pp. 12–16) Zeeman proves the
assertion of Lemma 2 for v > v2 only, the same proof applies for any real
value of v assuming that Cv is nonsingular.

In the pencil of cubics given by varying the parameter v in the extended
complex plane there are five values (namely, 0,∞, α− 1, v1 and v2, the last
two being the values of the integral V at the fixed points of G) where the
curve Cv is not elliptic (see [2], p. 13). It is worth noticing that at each of
these five exceptional values, the intersection of Cv with R2 is a closed set
whose complement is dense in R2. Let D be the intersection of all these five
complements, and R the set of parameters v for which Cv is nonsingular,
i.e. R = R \ {0,∞, α− 1, v1, v2}.

The integral V is defined on R2 less the lines {(x, y) : xy = 0}. Observe
that for (x, y) in the domain of V its G-image also lies in the domain of V iff
y 6= −α. Moreover for any x, G(x,−α) = (−α, 0). Denote the point (−α, 0)
by Y . At Y we have

(−α+ 1) · (0 + 1) · (−α+ 0 + α)− v · (−α) · 0 · 1 = 0,

so Y ∈ Cv ∩ RP 2 for each v. Furthermore Y ∈ C ′v (see [2], p. 23).
Let Λ+ ∈ R2 be the forward invariant set of the map (2) with γ ∈ R.

The complement of Λ+ in D is the set of all preimages of Y under G|C′v for
all v ∈ R. To simplify notation let G−iv (Y ) denote the ith preimage of Y
under G|C′v .

Setting A =
⋃
i∈N, v∈RG

−i
v (Y ) we have Λ+ = D \ A. Moreover, define

Ai =
⋃

v∈R
G−iv (Y ) and Λi = D \ Ai.

Lemma 3. Λi is dense in D.

P r o o f. Let X ∈ D. For vX = V (X) we have X ∈ C ′vX ∪ C ′′vX . Because
X ∈ D, X is not a critical point of the integral V , so by the implicit function
theorem we find that for any ε > 0, B(X, ε) = {Y : d(X,Y ) < ε} contains
points other than X, lying on the level curve C ′vX passing through X. By
Lemma 2 the map G restricted to C ′vX and C ′′vX is smoothly conjugate to a
rotation, so ]{Ai ∩ (C ′vX ∪ C ′′vX )} = 1. Thus there also exists in B(X, ε) a
point W ∈ D lying in C ′vX which is not in Ai (the intersection of Ai with
B(X, ε) consists of at most one point). We have V (W ) = V (X). From this
it follows that W 6∈ Ai.

Lemma 4. Λi is an open set.

P r o o f. Let %v denote the rotation number of GC′v and GC′′v . Fix X ∈ Λi.
By Lemma 2 there exists δ0 such that B(X, r)∩G−ivX (Y ) = ∅ for any r < δ0.
Fix r0 < δ0. Choose εX > 0 such that IεX = (vX − εX , vX + εX) ⊂ R.
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Since the rotation number of a continuous family of homeomorphisms is
continuous (see [2] and references given there), %v is a continuous function

of v in IεX . It follows that there exists δ1 such that d(X,G
−i
v (Y )) > r0

for |v − vX | < δ1. Because V is continuous at X there exists δ2 such that
|V (W ) − V (X)| < δ1 for W satisfying d(W,X) < δ2. Because Dc is closed
and X ∈ D, it follows that the distance of X to Dc is nonzero. Let δ3 be
smaller than dist(X,Dc). For δ = min(r0, δ2, δ3) we have B(X, δ) ∩ Ai = ∅.
Thus B(X, δ) ⊂ Λi, which proves that Λi is open.

Proof of Theorem 3. Due to the definition of Λ+ we have Λ+ = D \A =
D \⋃∞i=0Ai =

⋂∞
i=0(D \Ai) =

⋂∞
i=0 Λi. By Lemmas 3 and 4 and since D is

a dense subset of R2 we infer that Λ+ is a residual set. If we denote by Λ−
the backward invariant set for the map (2), now considering images of the
point Z = (0,−α) we prove in an analogous way that Λ− is residual. One
can check that in this case the set Λ = Λ+ ∩ Λ− is totally invariant. This
ends the proof of Theorem 3.

Corollary 1. Λ is dense (by Baire’s theorem).

Remark 7. Although Theorem 3 states that the totally invariant set Λ is
residual, it may contain subsets which are homeomorphic to R2. In Zeeman’s
case for α ≥ 0 we have R2

+ ⊂ Λ (see Property 2) and also for α ≥ 1, α 6= 2
we find that the triangle S1S2S3 with S1 = (−1,−1), S2 = (−1, 1−α), S3 =
(1− α,−1) is contained in Λ.

5. Remarks. As we show in Theorem 1 and in Remark 5 each map with
a neutral fixed point contained in the family (5) is topologically conjugate
to a Zeeman map. Below we give examples of maps of the form (4) which
are not topologically conjugate to any map (2). The principal significance
of these examples is that the family of unfoldings given by (4) with at least
one neutral fixed point is not contained in the conjugacy class of Zeeman’s
family. This means that Zeeman’s family does not contain all nonhyperbolic
maps of the form (4). Furthermore, as mentioned in Remark 6, even the
family (5) contains maps not conjugate to Zeeman’s family.

Example 1. The map

FA(x, y) =
(
y,

3 + y + x

x

)

contained in the family (5) has two hyperbolic fixed points.

P r o o f. The fixed points of FA are A1 = (−1,−1) and A2 = (3, 3). Both
are hyperbolic, because in absolute value both eigenvalues are equal to

√
2

at A1 and
√

2/3 at A2.
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Example 2. The maps

FB(x, y) = (y, x), FC(x, y) = (y, 2y − x), FD(x, y) =
(
y,

y

x+ y − 1

)

are not topologically conjugate to any map in the family (2).

P r o o f. For FB , FC the line {(x, y) : x = y} is fixed, while Zeeman’s
maps have at most two real fixed points.

Suppose that FD is conjugate to a map of the form (2). Let G be a
Zeeman map with any real γ. At the fixed points Wi of this map, for γ 6= 0
we have G−1(Wi) = Wi. The origin (0, 0) is a neutral fixed point of FD and
F−1
D (0, 0) = {(x, y) : y = 0}. From these facts it follows that if G and FD

are topologically conjugate then γ has to be equal to 0. Recall that (y, y/x)
is a periodic map with period 6, but FD is not periodic with period 6. The
first 7 iterations of the point (0,−1) under FD are the following:

F : (0,−1) 7→ (−1, 1/2) 7→ (1/2,−1/3)

7→ (−1/3, 2/5) 7→ (2/5,−3/7) 7→ (−3/7, 5/12) 7→ (5/12,−7/17),

which ends the proof.

The above example gives information about sequences of the form (3)
whose limit behaviour differs significantly from those given by (1), in the
sense that the sets of accumulation points of these sequences may be very
different. It is an interesting question whether in the family (4) there exists
a map with a neutral fixed point of centre type which is not topologically
conjugate to any member of Zeeman’s family.

Acknowledgments. The author thanks T. Nowicki for suggesting the
problem.
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