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On the joint spectral radius of a nilpotent Lie algebra of matrices
by
ENRICO BOASSO (Buenos Aires)

Abstract. For o complex nilpotent finite-dimensional Lie algebra of matrices, and a
Jordan-Hélder basis of it, we prove a spectral radius formula which extends a well-known
result for commuting matrices.

1. Introduction. Let T = (Ty,...,T,) be an n-tuple of d X d complex
matrices. A point X € C" is in the joint point spectrum of T, ope(T), if there
exists a nonzero z € C% with Ti{z) = Mz, 1 < @ < n. Given p such that
1 < p € o0, R. Bhatia and T. Bhattacharyya [1] introduced the algebraic
spectral radius of an n-tuple T', op(T'), whose definition depends of the usual
p-norm of €%, and proved that if T' is an n-tuple of commuting matrices, then
the algebraic spectral radius coincides with the geometric spectral radius,
ie., 0p(T) = rp(T) = max{|Alp: A € ops(T)} (see [1] or Section 2 for more
details). This is a generalization of the well-known spectral radius formula
for a single matrix; for p = 2, it was proved by M. Cha and T. Huruya [6].

M. Cho and M. Takaguchi [7] proved that if T is a commuting n-tuple of
matrices, then oy (T) = Sp(T, C*), where Sp(T, €4) denotes the Taylor joint
spectrum of T' (see [12]). A. Mclntosh, A. Pryde and W. Ricker [9], as a con-
sequence of a more general result which also concerns infinite-dimensional
spaces, extended the above identity to many other joint spectra including
the cominutant, the bicommutant and the Harte joint spectra.

On the other band, in [4] we defined a joint spectrum, Sp(L, F), for
complex solvable finite-dimensional Lie algebras L of operators acting on
a Banach space E. We proved that Sp(L, E) is a compact nonempty sub-
set of L* satisfying the projection property for ideals. Moreover, when L
is a commmutative algebra, Sp(L, E) reduces to the Taylor joint spectrum
in the following sense. If dimL = n and {Ti}i<icn i85 & basis of L, then
{(f@Y,... . f(Tu)) : f € Sp(L,E)} = Sp(T,E) for T = (Ty,...,Tn), ie,

1901 Mathematics Subject Classificaiion: Primary 4TALS. ‘ ‘
Key words and phrases: Taylor spectrum, joint spectral radius, nilpotent Lie algebras.
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Sp(L, E) in terms of the basis of L* dual to {T;}1<i<n coincides with the
Taylor joint spectrum of the n-tuple T'. Furthermore, in [2] we also ex-
tended to complex solvable finite-dimensional Lie algebras the Stodkowski
joint spectra o5y and o 3, and we proved the most important properties of a
spectral theory, i.e., compactness, nonemptiness and the projection property
for ideals.

For E finite-dimensional, in [3] we extended the characterization of [7],
and partially that of [9], to complex nilpotent Lie algebras acting on FE.
Indeed, we proved that Sp(L, E), o5 (L, E) and oy (L, E) coincide with
the set of all weights of the Lie algebra L for the vector space E, which is
the intrinsic algebraic description of the joint point spectrum, and showed
that in suitable bases of L and L* it reduces to the joint point spectrum
of the basis of L (see [3] or Section 2 for details). This also extended the
characterization of [7] and [9] to the Slodkowski joint spectra of an n-tuple
of commuting matrices.

Thus, if L is a complex nilpotent finite-dimensional Lie algebra acting
on a complex finite-dimensional vector space E, and if instead of consider-
ing the elements of Sp{L, E) as linear functionals on L we work with their
coordinates in a basis of L*, dual to a suitable basis of L, then, as in the
former basis Sp(L, E) reduces to the joint point spectrum of the latter basis,
it is possible to compute the geometric and algebraic spectral radii of I with
respect to its basis, and to look for a generalization of the main result of
[1]. In this article we extend the spectral radius formula of R. Bhatia and
T. Bhattacharyya to the case under consideration. The argument is quite el-
ementary, and it furnishes another proof of the formula for the commutative
case.

The paper is organized as follows. In Section 2 we review several defini-
tions and results which we need. In Section 3, we prove our main theorem
and study some examples to show that in the solvable not nilpotent case
the spectral radius formula fails.

2. Preliminaries. We briefly recall several definitions and results re-
lated to the spectrum of a Lie algebra (see [4]). Although in [4] we considered
complex solvable finite-dimensional Lie algebras of linear bounded operatars
acting on a Banach space, for our present purpose we restrict ourselves to
the case of complex finite-dimensional nilpotent Lie algebras of linear trans-
formations defined on finite-dimensional vector spaces. Moreover, as in this
case the Slodkowski joint spectra and the Taylor joint spectrum coincide,
we concentrate on the latter; for more information about the Slodkowski
Jjoint spectra see [11} and [2].

From now on E denotes a complex finite-dimensional vector space, L({FE)
the algebra of all linear transformations defined on E, and L a complex
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nilpotent finite-dimensional Lie subalgebra of £{E}°F, the algebra £{E) with
opposite product. Such an algebra is called a nilpotent Lie algebra of linear
transformations in E. If dimL = n and f is a character of L, ie., f € L*
and f(L?) = 0, where L? = {[2,y] : 7,y € L}, consider the chain complex
(E@ A L,d(f)), where A\ L denotes the exterior algebra of L and

do(f): E® N'L - EQ@ NP7,

P
dp(flelm Ao Amp) = (=1)* e(my — fl@e)) (@i AL AGRA .. ATy
k=1
+ 3 (CUe(mrml Az A ATRA L AFA L Ap),
1<k<i<p

where ~ means deletion. If p < 0 or p > n+ 1, we define dy,(f) = 0.
If we denote by H.(F @ A L, d(f}) the homology of the complex (F &
AL, d{f)), we may state our first definition.

DEeFINITION 1. With E, L and f as above, the set {f € L*: f(L?) =0,
H.(E® AL,d(f)) # 0} is the joint spectrum of L acting on E, and it is
denoted by Sp(L, E).

As already mentioned, in [4] we proved that Sp(L, E) is a compact
nonempty subset of L*, which reduces, in the sense explained in the in-
troduction, to the Taylor joint spectrum when L is a commutative algebra.
Moreover, if 7 is an ideal of L, and = denotes the projection map from L*
to I*, then

SP(I:E) = W(SP(IHE))’

i.e., the projection property for ideals still holds. In this connection, we wish
to mention the paper of C. Ott [10] who pointed out a gap in [4] in the proof
of this result and gave another proof.

We recall the most important results of the theory of weight spaces,
essentially Theorems 7 and 12, Chapter II of [8]. For a complete exposition
see [8; II).

Let [ and E be as above. A weight of L for E is s mapping a: L — C
such that there exists a nonzero vector v in E with the following property:
for each = in L there is m, . in N such that (z — a(z))™=(v) = 0. The
set of vectors, zero included, which satisfy this condition is a subspace of
E, denoted by E, and called the weight space of E corresponding to the
weight a.

Under our assumptions we have the following properties (see [8; II, 7,12]):

(i) the weights are linear functions on L which vanish on L2 ie., they

are characters of L, .ﬁ
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(i) E has only a finite number of distinct weights; the weight spaces are
submodules, and E is their direct sum,

(iii) for each weight «, the restriction of any ¢ € L to E, has only one
characteristic root, a(z}, with a certain multiplicity,

(iv) there is a basis of E such that for each weight o and each € I the
matrix of 2, the restriction of x to E,, is

o(x) *
0 ‘ afx)

We now recall the following theorem of [3] which will be crucial for our
main result.

THEOREM A. Let E be o compler finite-dimensional vector space, ond L
a complex finite-dimensional nilpotent Lie subalgebra of L{E)°P. Then

Sp(L,E) ={a € L" : @@ is a weight of L for E}.

We observe that the right hand side set is a generalization of the joint
point spectrum. In fact, if we cousider a commutative algebra L, and T" =
(T1,-..,Tn) is an n-tuple of matrices such that {Ti}1<i<n is a basis of L,
then the set of weights of L for E represented in terms of the basis of L*
dual to {T5}1<icn coincides with oy, (T7).

As we shall work with the coordinates of elements of Sp(L, E), we need
to construct suitable bases for I and L*.

By [5; IV,1], there is a Jordan-H&lder sequence of ideals, (Li)o<i<n, such
that:

() {0} = Lo C L C Lo = I,

(ii) dim L; =1,

{iii) there is a k (0 < k < n) such that L = L2,

(IV) if 4 < 7, then [Li,Lj] C L;_;.

As a consequence, if {;}1<;j<n is a basis of I such that {z;}1< < is a
basis of L; for each ¢, then T

i—1
[.Z‘j, $i] = Z c?jmh7
he=]

where 1 <4 < 7 < n. Such a basis will be called a Jordan-Hslder basis.
Now, given a Jordan—Hélder basis and an o € Sp(L, F), we may repre-
sent it by its coordinates in the dual basis of L*, L.e., by (a(z1),. .., a(zn)).
The set of all such n-tuples will be denoted by Sp{(2i)1<icn, B), ie.,
Sp((#d)1<icn, B) = {(a(z1), - ., al@n)) : @ € Sp(L, E)}.
‘We observe that Sp((:n'i)lgiSmE) = th((mi)lgi_'gn)-

icm

Joint spectral radius 19

Recall that when L is a solvable Lie algebra, by [5; IV,2] we may also
construct a sequence {(L;)o<icn of ideals with properties (i), (ii} and (iii),
and property (iv)': if 4 < j, then [Ly, L] € L;. Thus, if {2;}1<j<n is a basis
of I such that {z;}1<;<: is a basis of L; for each i, then

i
[mj,xi] = Zc?jash,
h=1
where 1 <7 < j < n. As in the nilpotent case, such a basis will be called, a
Jordan—Hdélder basis of the solvable Lie algebra L.
We now recall the geometric and algebraic spectral radii, as defined in [1].
Let By, 1 < p < co, denote the space C? provided with the usual p-norm

d 1/
oty = (3 Lol

i=1

zllco = sup |2l
1<i<d

1<p <o,

On the other hand, for A € C*, we denote its p-norm by [Al,.
If T = (T,...,T%) is an n-tuple of d x d complex matrices, then the
geometric spectral radius of T is defined as

rp{T) = max{|Alp : A € ot (T}

On the other hand, we may identify a matrix M with the associated
linear transformation, which we also denote by M. Thus, the n-tuple T'
induces an operator from E, to the direct sum of n copies of Ej, considered
with its natural p-norm. The norm of this operator, also denoted by 7', is

1Tl = s (S Im@IE)"
1

lzlls<1 N 52

Now, given an m € N, we consider the n™-tuple whose entries are all
the products T;, ... T},., where 1 < iy,...,4, < n, with repetitions allowed
and the indices arranged lexicographically. We denote this n™-tuple by T™.
Then the algebraic spectral radius of the n-tuple T' is defined as

0p(T) = inf [T, 1< p < oo

Ag already mentioned, R. Bhatia and T. Bhattacharyya [1] proved that
for a commuting n-tuple T’ of matrices the algebraic and geometric spectral
radii coincide. Now, given a nilpotent Lie algebra L of matrices in £(C%)°P,
and a Jordan-Holder basis {z;}1<icn of L, where n is dim L, we may con-
sider the n-tuple (z;)1<i<n. In the next section we shall see that the geo-
metric and algebraic spectral radii of (2;)1<i<n also coincide.
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3. The main result. In this section we prove that the spectral radius
formula proved in [1] extends to nilpotent Lie algebras of matrices.

Observe that if T = (T3,...,7%) is a commuting n-tuple of matrices,
and if U is an invertible matrix such that UTU = = (UTYUY,... . UT,U™Y)
is an n-tuple of commuting upper triangular matrices, then op(7T) =
opt(UTU™Y), rp(T) = rp(UTU) and 0,(T) = 0p(UTU); see [1] or
Proposition 2 below. If we decompose the matrices U1} Uv-l1<i< n, into
their diagonal and nilpotent parts, we have two new commuting n-tuples of
matrices, N and D. The spectral radii of T coincide with the corresponding
radil of D. This suggests that in the computations of the spectral radii the
nilpotent parts of the matrices are not of great importance. In this section,
in order to prove our main theorem, we consider an n-tuple 1" of upper
triangular matrices with some additional properties, and we give an upper
bound for the associated n-tuple N in order to show that the algebraic and
geometric spectral radii of T coincide. As the nilpotent and commuting cases
may be reduced to this situation, we obtain our main result as well as a new
proct for the commuting case.

Let us begin with two propositions which simplify our work.
ProrosiTiON 1. Let T be an n-tuple of d x d matrices. Then
Too(T) = pli{’go ro(T) 00e(T) = pl-i+nolo p{(T).
Proof If z ¢ C¢, g € N, then
Izlleo < [l]ls < @¥/7)]co.
In particular, by the definition of v, (T,
Too(T) S 1p(T) < nMProg (T,

which gives us the first part of the proposition.
Om the other hand, an easy calculation using the above inequality yields

1Tl < () #(Tllos, |1 Tlleo < {Tpd*P.
Then, if m € N, we obtain
177 oo < 1T |pdM® < (&R P(T™ | o,
which implies that
| T™™ < [Tl m M ) < @2 /e | g 2,
Thus,

_ 000 (T7) < 0p(T) < n‘l/P”T”ma
which shows that lim,_,e 05 (T) = oo (T). =

Thus, we may restrict our proof to the case 1 < p < oo.
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PROPOSITION 2. Let T be an n-tuple of matrices acting tn Ep, and U
an invertible motriz acting in By, Set UTU ! = (UTyU-L, ..., UT,U™Y).
Then

rp(T) = ro(UTU™),  05(T) = 0,(UTU™Y).

Proof As ops(UTU ) = gy (T)), we have rp (UTU ) = v (T).

For the algebraic spectral radius, we first observe that (UTU )™ =
UT™U ! for all m € N, Thus, if k is such that U~*(B(0,k)) € B(0,1),
then |[(UTTU2", < Ul |T™ ok, which gives

op{UTU™) < 0u(T).
As T = U~ Y UTU 1)U, we obtain the desired equality. m

From now on we consider an n-tuple T' of matrices such that C¢ decom-
poses into a direct sum of linear subspaces, C? = D1<j<s M, such that
for each 4, 1 €4 < n, the linear transformation associated with T3 satisfies
Ti(M;) € M; for 1 < j < s. In addition, we assume that for each j, there is
a basis of M; in which the matrix of T;|M; has an upper triangular form for
all 7. Moreover, we also assume that all the diagonal entries of T3|M; coin-
cide. By Proposition 2 we may suppose that the above basis is the canonical
one and that each M; is generated by elements of the canonical basis of €2,

A straightforward calculation shows that for such T we have opt (T) =
{(csr ncf} 1S5 < s} where ¢ denotes the diagonal entries of T:|M; in
the above basis of M;.

On the other hand, by the theory of weight spaces recalled in Section 2,
if {zit1cicn isad ordan-Fslder basis of an n-dimensional nilpotent Lie alge-
bra of linear transformations defined on a complex finite-dimensional vector
space, then the n-tuple (zi)1<i<n clearly gatisfies the above conditions.

Moreover, if T = (Ty,...,Tn) is a commuting n-tuple of d x d complex
matrices, and if T is the C-vector subspace of £L{C?%) generated by T3, 1 £ 2 <
n, then L is a commuting Lie subalgebra of L£{C?%) and £(C#)°?, in particular,
T is a nilpotent Lie subalgebra of L£(C4)°P, Thus, we may apply the weight
space theory to 7. and C% to obtain a decomposition and a basis of C? in
which the above conditions are satisfied by T. Indeed, as the properties
(i)}-(iv) of Section 2 are satisfied by each z in L, they are, in parti.cul.ar,
satisfied by T3, 1 £ 4 € n. This approach gives a more precise .descrlptlon
of the joint spectrum of an n-tuple of commuting matrices, refining those of
[1], [7} and [9].

Now, denote by D = (Dy, .. ., Dy), respectively N = (Ny, ... ,Nn), the
n-tuple of the diagonal, respectively nilpotent, parts of the matrices 13,
1< 4 < n. As opy(D) = op(T), we have rp(D) = ro(T). Furthermore, as D
is an n-tuple of commuting matrices, by [1], Lemma 6, op(D) = rp(D).
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If s=1 and D; = c'Id, 1 < i € n, then an easy calculation gives

1 7T & i L/p m
D) = el = 3 TLEr) " = 1™,
(it ooy ) € Drp k=1

where Iy = {(#1,... i) 1 1 <y <nfor 1 < k< m}.

We now start the proof of our main result: for an n-tuple 7 which satisfies
the above conditions, r,(T) = 0,(1").

PRrOPOSITION 3. Let T', D and N be as above. Then

rp(T) < 0p(T).

Proof. Suppose that D;|M; = cild; forall 1 <d <nand 1 <5 < s,
where Id; denotes the identity on M. Then, as r,(T) = r,(D), and as D; is
the diagonal part of Ty, if (¢}, .., ¢}, ) is such that || (¢}, ..., )||p = (D),

"
there is an element z € M, such that lz|lp, = 1 and, for all (41,...,0m) € In,
Ty Tyl(@) = Dy . Dy (3) = [ e

1<k<m

Thus, by the previous observation,

)™ =D = ek neillip = (0 TLiekr)™

(itsonyim)Ely k=1

1/p
=( X memeE) T <im,,
(31, i €T

which implies the assertion. m

In order to prove that g,(T") < r,(T") we need some preparation. We
begin by studying the form of the product of m upper triangular matrices
with constant diagonal entries.

Let T = (T1,...,T,) be an n-tuple of b x b upper triangular matrices
whose diagonal entries coincide, i.e., for each i (1 < ¢ < n), there is a ¢! € C
such that (Tj)y = c* forall 1 <t < b. Let me Nand 1 < iy < n for
1<k<m Then (T;;, ... T}, )ee =0if L <t <5 <b and (T - T3, )ee =
[Tewy ¢ if s =t. As T} are upper triangular, a straightforward calculation
shows that if 1 < s <t < b then - '

(T ---Ta,,;)st = 2 H (ﬂk)h.‘u-llhk’

hoyoyhm e 1<k<m

where J = {(ho,...,hm) 1 s = hg < ... € hp, = t}. Decompose J as

Wo<qem1 Jo: where J; = {(ho,...,hy) € J : there are g-indices k with
©he=hyi, 0<k<m-~—1}. Ast > s, there cannot be m such k. Moreover,
if Jy % 0 there are m—gq pairs (k,k+1),0 < k <m—1, such that hy % Pty

which implies that ¢ — s > m — q. Thus, J = Um_t+3<q<m_l Jg.
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For 1 < g <t~ s, we may reppresent Jo,_, as
Jm—q=A{(8,...,8,8+11,...,s+1l,8+1,...,5F1a,...,
§-klget,.. 5+ 19,8, .. 1)
1<h<... <1 £t—5-—-1},
where the jumps occur at theindices by, 1 Su < gand 1 < ki < ... < kg <

m 1. With this representation it is easy to see that J,., has (mq_l) (t:l)
elements, and that

m q
(I'i;_ cee Tim)st = Z Z H c** H (Tﬂku )5+1u—13‘+’l‘u’
1<g<t—5 Kyq,Ly k=1 k#ky u=1

where Ky = {(k1,...,kg) : 1 < k1 < ... < kg £ m — 1} and L, =
{(ll,...,lq_l) 1< <...<lq_1 St—S—l}, 1<g<t—s.

Now we prove the reverse inequality of Proposition 3 for the case under
consideration.

If |lyll, <1 then

P

M

%2, T @I = | (30T Tt

lgwgb”p

< (Z( b |(1;1...Tim)wvl)P)HyE|§

==l  v=w

-
Il

If w = v, we have |(Ty ... Tt Juw| = [[req |¢*]. On the other hand, if
1< w < v <b, as there is a constant Ry > 1 such that |(T;)s:| < R; for all
s,tand i with 1 < 5,2 < band 1 < i < n, we have

ke

(Ti o Toduw IS BEHO-1 D ¥ I 1™l

1<gfv—w (ki,...kg)EK, k=1, ktke

Now, if wg and vy are such that |T1, ... T3, lwe < T4 .. T lwowe for all
w, v with 1 < w < v < b, we obtain

IT, - Ti ()1

cop(Tierr-( = > I =),

k=1 1€g<uo—wo (Ri....kg) Ky k=1kstky

where C = RY*™Vpbtr, . ‘
Observe that if there are [ indices 41, ...,%; such that ¢ = 0, and if
I> vy — wg, then T3, ... 75, 20’;
Set T, = Ug<rg Is Where b =min{b —1,m} and

I" = {{i1,- .- »im) € I : there are r indices  such that c* = 0}.
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Then, if (41,...,im) € I, we have
15, - Ten 5
m ) q 1 P
conler(i+( > % Tlgy))
k=1 1<g<Sup—wo (k1...,kg}E K, u=L

If Ry > max{R;,1/|c| : ¢’ # 0,1 <4 < n} then

m
175, - i @)IE < Collyl® [ 1c™ [P,
k=1

where Cp = 2PC(b — 1)P(m — 1)(b-12 2"

Moreover, if (i1,...,im) € I7, (1 <7 <}), a similar calculation gives
m
1T Ton @B < Cellle T 1P,
ke=1,k#1

where 4; (1 < 1 < r), are such that ¢* = 0, and C, = 2?C(b — r)P x
2 —~
(m— 1) PRE < Chforall L <r < b
Now, for m > b, an easy calculation shows that

[T = s (X I T W)
||‘y||p$1 (115 msbon } €T,

a (XY I TLwIR)

Ill2S1 Y o<r<bat (4,0 i) €lz,

e

2,2 II dewr

0<rCb—1 (i1,...,im)ET, k=1, k3540

r—1
IR ORI SR | (51
0Lr<b—1 i=0 (F1,-im—rp ) €Ly k=1
where h=§{l: ¢ =0, 1 <1< n}

By the observation which precedes Proposition 3,

b—1
1771} < ot mbry( D)=+ (Y, (D)),
j=0
Thus, for m > b there is a constant & > 1 such that
”Tm”;/m < Kl/m(ml/m)Zbrp(D)(m—b—}«l)/m,

which implies that
2p(T) S1p(D) = rp(T),
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and by Preposition 3 we obtain
2p(T) = 1p(D) = 1p(T).

Let us now return to the general case. For an n-tuple T" as specified after
Proposition 2, and for s = 1, we have just seen that g,(T) = r,(T). We
now prove the general case. Let us begin by the following observation. By
Proposition 2, as we may assume that the subspaces M; (1 < j < s), are
generated by elements of the canonical basis of C%, if y = (¥iigi<s € 4
and |lyl|p < 1, then

1T T @ = | 3 T Tua)| = 3 I T
1<4<s 1<%
Now, as ||y;llp < |lyllp <1 for 1 < 7 < s, we may proceed as follows:

1/p
IT™p= s (3 T T @)
il <1 (i1 1eerim ) ETm

com (Y T Tm k)

[lyli=<1 (41 ,00yim )€ 155 <58

> W™y < [T,
1%5%s _
where T7 is the n-tuple defined by 79 = T3|M; (1 < i < n), and jg is such
that [[(T9)™ |, < [|(T9 )™, for all .
Thus, if d;, = dim Mj,, then there is a constant Kp such that

IA

”Tm”é/m < Sl/mKé-/m(ml/m 2d (Djn)(m—dj+1)/m
< S]'/mKé/m( llm) (D)(m d; +1)/m
which implies that
op(T) £ rp(D) = rp(T).

Thus, QP(T) = rp(T).
‘We have thus proved our main theorem.

TuroreM 1. Let L be a complex nilpotent Lie algebra of linear transfor-
mations in L{C*)°P, and {z:}1<i<n o Jordan-Holder basis of L. Then

Q}J((mi)léi_{n) = rp{{zi)1<i<n)

Moreover, if T = (T1,..., Ty} is an n-tuple of commuting d X d matrices,
then

where Ll Sp<oo. w
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Finally, we consider several examples to show that our result fails in the
solvable not nilpotent case.

Consider a complex solvable finite-dimensional Lie algebra of linear
transformations, I, acting on a complex finite-dimensional vector space E.
By [5; IV,2], as in the nilpotent case, we may construct a Jordan-Hélder se-
quence of ideals and a Jordan-Hélder basis for L (see Section 2). However, in
the solvable not nilpotent case, Theorem A Is no longer true, ie., if dim.L =
n and {#;}1<i<n i a Jordan-Holder basis of L, then Sp((zi}1<icn, B} #
opt((Zi)1<icn). Thus, we may consider max{|Al, : A € Sp((2:)1<i<n, B)}
instead of 7p((%:)1<i<n), and try to see if op({(zil1<icn) = ma}c{|)\|?rJ CAE
Spl(zi)1<i<n, E)}. However, as we shall see, this equality also fails.

In the following examples we consider the space E = C?, and the solvable
not nilpotent algebras we work with are representations in £{C?)°P of the
two-dimensional solvable algebra I = (y)} @ (z) with bracket [z,y] = .
Observe that (y,z) is a Jordan-Hélder basis of L.

As our first example consider the algebra Ly C £(C?)°P with Jordan—

Hoélder basis
{0 2 _{=1/2 0
y‘(o o)’ “’—( 0 1/2)'
Then

op((y:2)) = {(0,-1/2)},  Sp((y.x), E) = {{0,1/2), (0,-3/2)},
and
Too{(%,2)) = 1/2 = oo ((, 2)), but max{|Ale : A € Sp((y,2), E)} = 3/2.
On the other hand, if Ly C £(C?)°P is the algebra with Jordan-Hélder

basis,
_ (0 1 20
v=(00) ==(53).
we obtain
UP*((y: m)) = {(07 2)}: SP((ya :L'), E) = {(Or 1)1 (0: 3)}=
and

Too((1,2)) =2, but geo({y,)) =3 = max{|A s : A€ Sp{(y, =), B)}.
Our last example is the algebra Ly C £(C?)°P generated by

=G0 ()

Upt((y) $)) = {(01 _1/3)}3 SP(('U, {D),E) = {(01 _4/3)1 (01 2/3)}>

Then
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and

ool (¥ z))=1/3, gw((y, z)} = 2/3,
max{jAle : A € Sp((y,x), E)} = 4/3.
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