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Lower bounds for Schrédinger operators in H'(R)

by
RONAN POULIQUEN (Brest)

Abstract. We prove ftrace inequalities of type |u'||%a -+ Yiez Eilu(a)* > Alul%e

where u € H(R), under sultable hypotheses on the sequences {a;} ez and {k;} jez, With
the first sequence increasing and the second bounded.

Introduction. In 1989, R. Strichartz proved (see [Str]) that for an in-
creasing real sequence {a;}jez unbounded from above and below and such
that, for all j in Z, aju1 — a; < 8 where (8 is a fixed positive constant, the
following inequality holds in H*(R):

1/2
& Lo+ VBT an) " 2 flsa
JEZ

This result enables usg to define operators such as —A + )‘ZJEZ 5% with
X > 8/3, where 84, i8 the Dirac measure at aj, as unbounded selfadjoint
operators in L2(R), using a theorem of [Re-Si]. This theorem (see [Re-5il,
Th. VIIL15) states that a unique selfadjoint operator can be associated
with every lower semibounded and closed gquadratic form. Indeed, the form
|22 -+ A Y ez [wlag)|? is lower semibounded (as sketched at the end of
the Introduction) and closed (as shown in [Pou]). In order to give a sense to
more general operators, using the same theorem, we prove the corresponding
trace inequalities.

The aim of this paper is to present inequalities similar to (1), with a
family {k;}jen of weights attached to the points a;. The improvement is
that wo allow the ky’s to take negative values and tend to 0 at infinity under
suitable hypotheses on the quotient |ky/ (a5 — a5)-

In Soetion 1, we provide the following generalizations of (1):

(1) (@ >0) (Vue BR) ol + D Il lulan)i® = Mallullze,
jes
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/][22 = k5] [ulas)F = =Aallull3s.
JEZ

(1) (3xg > 0) (Vu € H'(R))

The proof is based on the approximation of a scaling function by a piecewise
linear function.

Hence, given a quadratic form ||u'[|22 + 3 kslu(as)|*, we can prove that
it is lower semibounded: separate the positive and negative subsequences of
{k;}icz (vespectively denoted {kp, }jez and {~kn, };ez) and apply nequal-
ity (1) to the quadratic form ||v/|| g2 — 3, kn, |[u(a;)|? in ordor to obtain the
result. Inequality (1) is useful to give a first information about the spec-
trum of an operator defined from a quadratic form with a positive sequence
of weights {k;};ez. However, this question will not be studied in the present
paper. See [Pou] for the explicit construction of the operator and [Al-Ge]
for a study of its spectrum.

In Section 2, we give a different proof of a weaker form of the second
inequality, using the Poisson formula.

IZ

1. Weighted trace inequalities in H(R)

THrOREM 1.1. Let {a;j}jez and {k;}jez be two real sequences, the first
one increasing and the second one positive. Suppose that there exists o uni-
form upper bound 3 on the difference a1 — ¢; and that

Im a; =—o00 and lim a; = +oo.
J——oe J—++o0

If liminf; o0 by /{a541 — a;) > O then there ezists A > 0 such that the
following ineguality holds in H'(R):
(2) 1122+ D eslulas)* = Mullfa.

JEL
If Bmyqoo i/ (aj41 ~ a5} = 0 (or i limjos_oo k;/(aje1 — a;) = 0) then
(2) is false.

Proof. Let ubein H'(R). Setting m = infjap k;/(a;41— a;), we shall,
in fact, prove that

1 . 1
||u'“%2(m) 'i‘Z%kj'“(aj)P Z 5 (E,m)llum(m-
JEd

First define a new sequence of weights {}};ez by k; = m(az41 ~ ay). Then
for any n in N and jp in N such that j5 > » we have

do—1 g
(3) Z (kjluag)[* — Kjlu(ajo) ") = —2Re | f(s)u(s)a (s)ds
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where the function f is defined in {a,, +oo[ by
(4) HOED WS I
jzn
We can approximate f by the following function g on each interval [a;, a;41],
g

‘ Flagin) = flay)
g(8) = flag) + =il (g - ag),
gl — Gy
which is continuous on R, piecowise differentiable and satisfies on each
Jag gl
W
kS

Gt — o IF(s) — g(s)| < K.

) (s} =

Now, for any jo > n, we can write (3) as

Jo—1 Gig
3 Kilulog)* = glag,)ulag,)* —2Re | (F(s) - g(s))u(s)a'(s) ds
Jusn an
ﬂjo
- 2Re S g(&)u{s)@ (s) ds.
Ay
Integrating the last term hy parts, we have, letting jo tend to infinity,
o0
© S Kluleg) = - 2Re | (f(s) - gls)u(efT(s) ds
jen Gy,
.|‘oo )
+ | g(9)lu(s)* ds
LN
+o0
(6') 2 =2 § [F(s) = als) - |uls)] - [@'{s)| ds
A
Aot kj ‘2
. Lo |1} |* ds.

On. the other hand, using (5), we have

+oo
2§ 1F(s) = glo)) - |us)] - |7/ (s)| ds
iy ] agat a4 2
<Y = | @)Pds+ Y w? | (s ds,
jzn jzn a |
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where « is an arbitrary positive constant. We combine this inequality with
{6'} to obtain

Ait1

M 30§ (e Pds+ Y vkjlules)

jzn aj jzn

N Zaafd;( 'Yk.;‘

a- ,_..a-
jznoag NIHLT

= ) ule)P s

j43
> | (ym—4*m?8) u(s)* ds.

jzn ay
Setting v = 1/(2mf3?), we get

Zj+1 k. Ogjpl
J

® ¥ | WOPEsY )Pz g | el
Jjzn

izn aj jzn aj

Using &} < k; and dividing (8) by max(1,1/(2mg?%)), we obtain
Gy

min(L,2m%) Y § [W/(s)ds + Y Kylulay)?

jzn o izn

1 1 Bt .
> Emin (W,m) Z S lu(s)]? ds.
jzn ey

It remains to let n tend to —oo, applying the monotone convergence theorern.

We now prove that (2) is false if, for instance, lim;., 4o k5 /(0541 — a;)
= (). Suppose (2) iz valid for a given A= Cp > 0. Let M > 0, Cp = C7 4+ C;
where C1,Cy € RT are fixed constants and ¢ € D(]—M — 1, M + 1]), such
that ¢||_ar,arp = 1 and 0 < @(z) < 1. The positive constant M is taken
sufficiently large, so that we can write

||<P’|li=(1m} < 02”‘#’”3:2(1&)-

We shall prove that, for v > 0 large enough, the function . (z) = ¢(x ~ )

does not satisfy (2) any more. By the last inequality, we must prove that
there exists A > 0 such that, for v > A4,

(9) D kilen () < Cilloyl3am-
JjE&
Let
Cn’ — Cl”‘P"f“z
M +1)+ 58

Note that C” is independent of . From limy_,4u0 ki /(a1 ~ a5) = 0, we

deduce that for j greater than a certain jo, we have k; < C'(aj.41 — a;),
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hence

J
Z Iﬂg < C’(a_j+1 - a.jo).
l=jn
Taking A = a;, -+ M 4 1, we obtain for any v > A,

Z ky < ¢ sup (g1 — ;) S C'2(M + 1) + B8).

Jfe;Esupnipy) 0k EHUPP(1 )
‘ LTI o 4 . N2 .
Hence, (9) is satisfied, since 3, i kil (a)? < Ej Jo€euppon) k.

REMARKS. If Hmsup;.,poq (@41 — a5) = 400, then inequality (2) is
false, whatever the hypothesis oo ky/(aj1 — aj): a counter-example is
given by ¢; € D(R) with supp(er) C lajuy, a0+l 0 < @ifz) < 1 and
Otl)a Lz pr~10 = 1o Here gy is a subsequence of a; which satisfies
It oo (@ ()41 — Gjqy) = +oe. For such functions, ||¢jljz» remains con-
stant and 37y kglwi(ay)|? is zero, while limy oo 1]l z2 = +-o00.

We can assume that the sequence {a;}jez converges to finite limits «y
and & as 7§ tends to —oo and -+oo, respectively. Inequality (2) then remains
true with norms in L2(}y, 8).

There is a wore general condition under which we can have
Wars i0f sy oo Ky / (741 — @3) = 0 and still prove an inequality similax to (2):
Let m be a positive constant and {ay)}iez a subsequence such that, for I
in Z, we have

i
@ity ~ i)

Then inequality (2) holds, with A still given by 27! min((28)~",m). The
proof is the same as for Theorem 1.1, after replacing g(z) by the function
associated with the subsequence {aj() hiez-

ajueny ~ o) S B and

A similar inequality with negative weights is given by
TunoreM 1.2. Let {a;}jen and {kj} ez be two real sequences, respec-
tiely incrensing ond bounded positive. Suppose that

lim ay=-—0c and lim ;= -+oc,
Jor 000 jrref00

TF B sup; 4 oo M/ (g1 ~ ag) < 400 then there ewists A >0 such that the
following incquality is true in H'(R):

(10) |20 ~ 3 ylulag)? 2 =X ulzs.
JER

If Mmoo kg /{00y ~ 05) = 400 (or if Himy——o ki/ (a1 — aj) = +0o0)
then (10) fails.
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Proof. If {k;}jez € £%°(Z) and limsup,_, .o k;/ (2541 — @;) < +oo,
then we can find a positive constant M such that, for any 7 in Z,

(11) P — ki .
J+r Qg
We prove that, in H'(R),

> kslula)® <l Za + (M + [[Rs3) l 2.
JEZ

<M.

This is an immediate consequence of (6) applied to the sequence {k;}jen
(see (4) for the definition of f and g, after replacing & by k;):

+o0 +oo
> kslu(ag)P = —2Re | (£(s) - g()u(s)u (s)ds+ | g'(a)lu(s)|* ds.
j=n an [+ 7%
Hence
o0
S kilu(a)® < 1’| zeeanroop | fuls)]? ds
Fzn ap
+on
+ 2l = gllzoeansoon | lu(s)T (5)] ds

< (||9’||L°°([am+oo[) +11f - QHQLW([a",-{-m[))||u|]%3([av-,,-}-oc[)
+ H“'|]2L2([an,+oo[)-

We finish the proof using | f(s) —g(s)| < ||k;||e= and |g'(s)| € M in [ay, +o0[
and letting n tend to —oo, by the monotone convergence theorem.

Now, let us prove that (10) is false if lim;_ o0 kj/(aj41 — a;) = oo
As {k;}jez € £7°(Z), we immediately deduce that limj_ o0 a1 — ag] = 0.
For two positive constants 0 < N < M we can write |ajoy ~a;| < M =N
for 7 > 7p.

Let A € R and C = A/N. As Iy o0 ki /(a1 ~ @) = +00, there
exists a positive integer j; such that, for any j > 71, k; 2 Clajq ~ a;l.

Define jp = max(fo, j1) and 73 = max{j | a; < M+a;,}. As 110 oo €15
= 00, we have jz < 4-00. Moreover, aj, > N +a;,: indeed, if a;, < N+ay,,
then j3 would not be the maximum of the above set, as Agyt1 < gy 4+ M —
N < M+aj,. If weset () = ¢(- — a;) with ¢ € D(j~1, M <+ 1]) such that
0< w{z) <1 and @jg,m[ = 1, we have

ds—1
Y kileqn(a)? = 3 ki > Clag, — ag,| > CN.
JeN J=jz

Hence for all 4 € B, we can find a member ©j, of the family {i¢;};exn such
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that
> kslegag)? > A
JEN

Noticing that |¢}]|%. and |lg;]|2, are finite and do not depend on j concludes
the proof.

ReMarks, Il linsup; o k5 = 400, then inequality (10) fails under
any hypothesis on k; /(a1 — ¢4): a counter-example is provided by ¢ €
D=1, 1), ¢(0) = 1 and @i(z) = w(w ~ ay(), where a;q is the subse-
quence corresponding to kg, a subsequence of k; satisfying limy_, 4o k) =
+o00. For such fanctions we have limpyeo 3o ey kilvi(ay)]* = +oo, while
lo||p2 and [jeill s remain constant.

As for Theoremn 1.1, we can gencralize the hypotheses on {a;}jez: first
we can suppose that Iy ..o a5 = v and lim;_,_o a; = §. Independently
of this, if there exist two positive constants o and M and a subsequence
{ajy her such that, for any I in Z, either

Gi(+1) — G0y £
(1)~ i) T Ay >
=il D e m JU+1) =50 +1,

@i0+1) ~ 450
then, for k = max(eM, || k;|«), inequality (10) holds with || - || L2(.y,6)) and
A=k(l/o+ k).

If we assuwe that ¢ and § are finite and limyq.c0 &5/ (@541 — a5) = 400,
then inequality (10) holds if and only if {k;} ez € {*(Z). When this condition
is not satisfied, functions with compact support, locally constant at -y or 4§,
are simple counter-examples.

Under more restrictive hypotheses on {a;}jez, we will obtain an inequal-
ity without weights, similar to (10), using the Poisson formula.

2. Trace inequalities and the Poisson formula in R

TrwonsM 2.1, Let {a;}jen be a recl increasing sequence. Assume that
there exists a uniform lower bound « for aj.y - aj. Then, for any positive
constant i, the following inequality holds in F'* (R):

f
2 e C1(20p)) s
(12) ““’ L4~ ML ufa)|® 2 ”WH”“L”!
JED
where €y (z) = da(x + m2) /2. For pu € [0, o), o =~ 8.83, we gel a betier
lower bound given by Ca(x) = 24x/(12 ~ x), where ug is the unique positive
solution of Cy () = Cy(x).

We need the following two lemmas:
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LEMMA 2.2. Let uw € H*(R). Then

(SR <3 (T aora)”

JER keZ k

Proof. Let u be in H(R). Using the Poisson formula, we can write

> u(iyas) = > axu)

J€R. I
k+1 1/2, k1 12
< S (§mera) (| ae+ )
IKEE "k i
Let Gy = (§y7|@(€)|2de) 2. By a change of variables in the second inte-

gral, we see that the right-hand side is 37, 1z CkCity, Which is equal to
(3"kez Cr)?. The conclusion follows.

LEMMA 2.3. There ezist two positive functions, C1{p) and Co{u), and o

constant g = 8.83 such that, for any u in H'(R),

(Ve e [0,pal)  IleliFe =D (B 2~ Calu)ullZa,

kEZ

(Fp > po)  [/l3a—p Y [u(k)® = = Colu)ullZa.
ke

Moreover, C1(p) = 4pu(p + %) /n? on [po, +oo[ and Cy(u) = 24p/(12 - p)
on [0:#0}

REMARK. The lower bound Gy (p) is, in fact, valid for all 4 € R*. The

constant o is the unique positive solutisn of Cy(z) = Cq(z). Its exact value
is

12—~ 72 4/t 4 144

by = 5
Proof (of Lemma 2.3). Let w € H*(R). Then
k1
1) Y (§ merae)”
k€L K
1 kL / k1 ,
=3 (] Iu(f;“)lzdﬁ)1 DYy (§ |a(£)|2az§)”2
h=—l =k k2l k

k<—l
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< ( § pora)” + (2 )" (T emer a)
] [

k>l
1/2 '":l ‘/1
WS arm) (5 emore)”
fe -1 -

Iflel, I »>1, we can write

Similarly,

Combined with (13), this gives
RS

ag () mera)” < | aerda)”

kG ke 1§l

e o=l 1 ermera)”
+ (ws )]

For | € R* \ N, we intexrpolate the versions of inequality (14) for [} and
[] + 1, where [I] is the integer part of [, and use Lemma 2.2 to obtain, for
any « in [0, 1] and A >0,

(B2 < 2(1+ 3 ) (- 1) + (1~ o)) ful 3
A

ked
1~ o 12
g+ (F “ Il

Henee, setting

[ +1) o te
BN OE e S R DR

(where f(I} =1 — [I]), we have, for all 2 1, in HY(®),

2+ 40 = Dllfuf3e 2 720 = 1) Y ().
keZ
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Putting p = #2(l — 1), we finally obtain, for any j« 2 0,

dpp +7?) ,
e + 2EET g, 2 0 3 (el
ke
1 = 1, we use the equality 3_,o 1/]k[* = 7% /6 in (13) and Lemma 2.2
to obtain -

(Shiir)* <va( § aora)”

keZ |&]<1

T

T / s . ' '
P (] ermere) "+ (] etaera) ]
—o ]
Hence for any A > 0,

1 A+l
St < (14 5 Jlwlhe + S5
€

;[Settir[lg p = 12/(A + 1), we finally obtain the sccond mequality, valid in
0,12[:

24p
2 2
|22 + m”uﬂm >u Y |ulk).
kER

Proof of Theorem 2.1. We can easily define {bg}rez, with {ag}rez a

subsequence, satisfying for all k& in Z, _ ' -
a < bk+1 - by < 2a.
It can be constr}lcted by recurrence, setting by = ap. If the dequence iy
defined up to k(jo) with be(;) = aj, (Jo > 0), we set
(Vie{l,..., N} br(jo)+1 = @i+l and  bygiop1) = Gyo41,

where Nj, = [(aj,+1 - az,)/0] ~ 1 and k(jo + 1) = k(jo) -+ N, -+ 1.

The similar process for negative indices yields the whole sequence. Then
we define the function b(z) in each interval [k, k -+ 1] by b(z) == by -
(% —k)(brs1 —bi); it is continuous on R and differentiable om cach ki, k-1

1 * ' *
I;eit UI,R € H*(R). Since u(b(z)) is in H1(R) we can apply Lemna 2.3, For all
n d

B+1
Rl
Yo 1 W@ (@) de~ A Y fulbe) > ~C() S0 (b)) da.
keZ k kez hEZ k
By a change of variables in each integral, we obtain

2’2 — 2 Y u(o)l? 2 =L 2,
kcZ «
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As {ay}jez i a subsequence of {bx}rez, we have

3 ufag) P < lu(be) 2.

JEZ keZ
Setting p = A/(2a) yields the theorem.

REMARK. Though inequality (12) is not as sharp as (10), even in the
case whoere all the ky’s are equal and {a;}jez is the whole Z, the interest
of the proof is that it can easily be cxtended to the case of a lattice of
points in R, This result is, therefore, to be related to work of S. Albeverio,
F. Gesztosy, R. Hoegh-Krohn and H. Holden [Al-Ge].
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