

[6] J. A. Goldstein, Extremal properties of contraction semigroups on Hilbert and Banach spaces, Bull. London Math. Soc. 25 (1993), 369-376.

[7] E. Hille and R. S. Phillips, Functional Analysis and Semi-Groups, Amer. Math. Soc. Colloq. Publ. 31, Amer. Math. Soc., 1957.

[8] I. Namioka, Separate continuity and joint continuity, Pacific J. Math. 51 (1974), 515-531

[9] W. Rudin, Fourier Analysis on Groups, Interscience, 1967.

[10] K. Yosida, Functional Analysis, Springer, 1966.

Department of Mathematics Monash University Clayton, Victoria 3168 Australia

78

E-mail: bbasit@vaxc.cc.monash.edu.au ajpryde@vaxc.cc.monash.edu.au

Received September 16, 1997 (3956) Revised version April 28, 1998

STUDIA MATHEMATICA 132 (1) (1999)

Lower bounds for Schrödinger operators in $H^1(\mathbb{R})$

by

RONAN POULIQUEN (Brest)

Abstract. We prove trace inequalities of type $||u'||_{L^2}^2 + \sum_{j \in \mathbb{Z}} k_j |u(a_j)|^2 \ge \lambda ||u||_{L^2}^2$ where $u \in H^1(\mathbb{R})$, under suitable hypotheses on the sequences $\{a_j\}_{j \in \mathbb{Z}}$ and $\{k_j\}_{j \in \mathbb{Z}}$, with the first sequence increasing and the second bounded.

Introduction. In 1989, R. Strichartz proved (see [Str]) that for an increasing real sequence $\{a_j\}_{j\in\mathbb{Z}}$ unbounded from above and below and such that, for all j in \mathbb{Z} , $a_{j+1}-a_j<\beta$ where β is a fixed positive constant, the following inequality holds in $H^1(\mathbb{R})$:

(1)
$$\frac{\beta}{\sqrt{8}} \|u'\|_{L^2} + \sqrt{\beta} \Big(\sum_{j \in \mathbb{Z}} |u(a_j)|^2 \Big)^{1/2} \ge \|u\|_{L^2}.$$

This result enables us to define operators such as $-\Delta + \lambda \sum_{j \in \mathbb{Z}} \delta_{a_j}$ with $\lambda > 8/\beta$, where δ_{a_j} is the Dirac measure at a_j , as unbounded selfadjoint operators in $L^2(\mathbb{R})$, using a theorem of [Re-Si]. This theorem (see [Re-Si], Th. VIII.15) states that a unique selfadjoint operator can be associated with every lower semibounded and closed quadratic form. Indeed, the form $\|u'\|_{L^2}^2 + \lambda \sum_{j \in \mathbb{Z}} |u(a_j)|^2$ is lower semibounded (as sketched at the end of the Introduction) and closed (as shown in [Pou]). In order to give a sense to more general operators, using the same theorem, we prove the corresponding trace inequalities.

The aim of this paper is to present inequalities similar to (1), with a family $\{k_j\}_{j\in\mathbb{Z}}$ of weights attached to the points a_j . The improvement is that we allow the k_j 's to take negative values and tend to 0 at infinity under suitable hypotheses on the quotient $|k_j|/(a_{j+1}-a_j)$.

In Section 1, we provide the following generalizations of (1):

(1')
$$(\exists \lambda_1 > 0) \ (\forall u \in H^1(\mathbb{R})) \quad \|u'\|_{L^2}^2 + \sum_{j \in \mathbb{Z}} |k_j| \cdot |u(a_j)|^2 \ge \lambda_1 \|u\|_{L^2}^2,$$

¹⁹⁹¹ Mathematics Subject Classification: Primary 35P05, 35P15; Secondary 46N50

Bounds for Schrödinger operators

The proof is based on the approximation of a scaling function by a piecewise linear function.

Hence, given a quadratic form $\|u'\|_{L^2}^2 + \sum k_j |u(a_j)|^2$, we can prove that it is lower semibounded: separate the positive and negative subsequences of $\{k_j\}_{j\in\mathbb{Z}}$ (respectively denoted $\{k_{p_j}\}_{j\in\mathbb{Z}}$ and $\{-k_{n_j}\}_{j\in\mathbb{Z}}$) and apply inequality (1") to the quadratic form $\|u'\|_{L^2} - \sum k_{n_j} |u(a_j)|^2$ in order to obtain the result. Inequality (1') is useful to give a first information about the spectrum of an operator defined from a quadratic form with a positive sequence of weights $\{k_j\}_{j\in\mathbb{Z}}$. However, this question will not be studied in the present paper. See [Pou] for the explicit construction of the operator and [Al-Ge] for a study of its spectrum.

In Section 2, we give a different proof of a weaker form of the second inequality, using the Poisson formula.

1. Weighted trace inequalities in $H^1(\mathbb{R})$

THEOREM 1.1. Let $\{a_j\}_{j\in\mathbb{Z}}$ and $\{k_j\}_{j\in\mathbb{Z}}$ be two real sequences, the first one increasing and the second one positive. Suppose that there exists a uniform upper bound β on the difference $a_{j+1}-a_j$ and that

$$\lim_{j \to -\infty} a_j = -\infty \quad and \quad \lim_{j \to +\infty} a_j = +\infty.$$

If $\liminf_{j\to\infty} k_j/(a_{j+1}-a_j) > 0$ then there exists $\lambda > 0$ such that the following inequality holds in $H^1(\mathbb{R})$:

(2)
$$||u'||_{L^2}^2 + \sum_{j \in \mathbb{Z}} k_j |u(a_j)|^2 \ge \lambda ||u||_{L^2}^2.$$

If $\lim_{j\to +\infty} k_j/(a_{j+1}-a_j) = 0$ (or if $\lim_{j\to -\infty} k_j/(a_{j+1}-a_j) = 0$) then (2) is false.

Proof. Let u be in $H^1(\mathbb{R})$. Setting $m=\inf_{j\in\mathbb{Z}}k_j/(a_{j+1}-a_j)$, we shall, in fact, prove that

$$\|u'\|_{L^2(\mathbb{R})}^2 + \sum_{j \in \mathbb{Z}} k_j |u(a_j)|^2 \ge \frac{1}{2} \min\left(\frac{1}{2\beta^2}, m\right) \|u\|_{L^2(\mathbb{R})}^2.$$

First define a new sequence of weights $\{k'_j\}_{j\in\mathbb{Z}}$ by $k'_j=m(a_{j+1}-a_j)$. Then for any n in \mathbb{N} and j_0 in \mathbb{N} such that $j_0>n$ we have

(3)
$$\sum_{j=n}^{j_0-1} (k_j'|u(a_j)|^2 - k_j'|u(a_{j_0})|^2) = -2 \operatorname{Re} \int_{a_n}^{a_{j_0}} f(s)u(s)\overline{u}'(s) ds$$

where the function f is defined in $[a_n, +\infty[$ by

(4)
$$f(s) = \sum_{j \ge n} \mathbf{1}_{]a_j, +\infty[}(s)k'_j.$$

We can approximate f by the following function g on each interval $[a_j, a_{j+1}]$, j > n:

$$g(s) = f(a_j) + \frac{f(a_{j+1}) - f(a_j)}{a_{j+1} - a_j}(x - a_j),$$

which is continuous on \mathbb{R} , piecewise differentiable and satisfies on each $]a_j, a_{j+1}[,$

(5)
$$g'(s) = \frac{k'_j}{a_{j+1} - a_j}, \quad |f(s) - g(s)| \le k'_j.$$

Now, for any $j_0 > n$, we can write (3) as

$$\sum_{j=n}^{j_0-1} k'_j |u(a_j)|^2 = g(a_{j_0}) |u(a_{j_0})|^2 - 2 \operatorname{Re} \int_{a_n}^{a_{j_0}} (f(s) - g(s)) u(s) \overline{u}'(s) \, ds$$
$$- 2 \operatorname{Re} \int_{a_n}^{a_{j_0}} g(s) u(s) \overline{u}'(s) \, ds.$$

Integrating the last term by parts, we have, letting j_0 tend to infinity,

(6)
$$\sum_{j\geq n} k'_j |u(a_j)|^2 = -2 \operatorname{Re} \int_{a_n}^{+\infty} (f(s) - g(s)) u(s) \overline{u}'(s) \, ds$$

$$+ \int_{a_n}^{+\infty} g'(s) |u(s)|^2 \, ds$$

$$\geq -2 \int_{a_n}^{+\infty} |f(s) - g(s)| \cdot |u(s)| \cdot |\overline{u}'(s)| \, ds$$

$$+ \sum_{j\geq n} \int_{a_j}^{a_{j+1}} \frac{k'_j}{a_{j+1} - a_j} |u(s)|^2 \, ds.$$

On the other hand, using (5), we have

$$2\int_{a_n}^{+\infty} |f(s) - g(s)| \cdot |u(s)| \cdot |\overline{u}'(s)| ds$$

$$\leq \sum_{j \geq n} \frac{1}{\gamma} \int_{a_j}^{a_{j+1}} |\overline{u}'(s)|^2 ds + \sum_{j \geq n} \gamma (k_j')^2 \int_{a_j}^{a_{j+1}} |u(s)|^2 ds,$$

where γ is an arbitrary positive constant. We combine this inequality with (6') to obtain

$$(7) \sum_{j\geq n} \int_{a_{j}}^{a_{j+1}} |u'(s)|^{2} ds + \sum_{j\geq n} \gamma k'_{j} |u(a_{j})|^{2}$$

$$\geq \sum_{j\geq n} \int_{a_{j}}^{a_{j+1}} \left(\frac{\gamma k'_{j}}{a_{j+1} - a_{j}} - \gamma^{2} (k'_{j})^{2} \right) |u(s)|^{2} ds$$

$$\geq \sum_{j\geq n} \int_{a_{j}}^{a_{j+1}} (\gamma m - \gamma^{2} m^{2} \beta^{2}) |u(s)|^{2} ds.$$

Setting $\gamma = 1/(2m\beta^2)$, we get

(8)
$$\sum_{j\geq n} \int_{a_j}^{a_{j+1}} |u'(s)|^2 ds + \sum_{j\geq n} \frac{k_j'}{2m\beta^2} |u(a_j)|^2 \geq \frac{1}{4\beta^2} \sum_{j\geq n} \int_{a_j}^{a_{j+1}} |u(s)|^2 ds.$$

Using $k'_i < k_j$ and dividing (8) by $\max(1, 1/(2m\beta^2))$, we obtain

$$\begin{split} \min(1, 2m\beta^2) \sum_{j \geq n} \int\limits_{a_j}^{a_{j+1}} |u'(s)|^2 \, ds + \sum_{j \geq n} k_j |u(a_j)|^2 \\ & \geq \frac{1}{2} \min\left(\frac{1}{2\beta^2}, m\right) \sum_{j \geq n} \int\limits_{a_j}^{a_{j+1}} |u(s)|^2 \, ds. \end{split}$$

It remains to let n tend to $-\infty$, applying the monotone convergence theorem.

We now prove that (2) is false if, for instance, $\lim_{j\to+\infty} k_j/(a_{j+1}-a_j)$ = 0. Suppose (2) is valid for a given $\lambda=C_0>0$. Let M>0, $C_0=C_1+C_2$ where $C_1,C_2\in\mathbb{R}^+$ are fixed constants and $\varphi\in\mathcal{D}(]-M-1,M+1[)$, such that $\varphi|_{]-M,M[}=1$ and $0\leq\varphi(x)\leq1$. The positive constant M is taken sufficiently large, so that we can write

$$\|\varphi'\|_{L^2(\mathbb{R})}^2 < C_2 \|\varphi\|_{L^2(\mathbb{R})}^2$$

We shall prove that, for $\gamma > 0$ large enough, the function $\varphi_{\gamma}(x) = \varphi(x - \gamma)$ does not satisfy (2) any more. By the last inequality, we must prove that there exists A > 0 such that, for $\gamma > A$,

(9)
$$\sum_{j\in\mathbb{Z}} k_j |\varphi_{\gamma}(a_j)|^2 < C_1 \|\varphi_{\gamma}\|_{L^2(\mathbb{R})}^2.$$

Let

$$C' = \frac{C_1 \|\varphi_{\gamma}\|^2}{2(M+1) + \beta}.$$

Note that C' is independent of γ . From $\lim_{j \to +\infty} k_j/(a_{j+1} - a_j) = 0$, we deduce that for j greater than a certain j_0 , we have $k_i < C'(a_{j+1} - a_j)$,

hence

$$\sum_{l=j_0}^{j} k_l < C'(a_{j+1} - a_{j_0}).$$

Taking $A = a_{j_0} + M + 1$, we obtain for any $\gamma > A$,

$$\sum_{j/a_j \in \text{supp}(\varphi_{\gamma})} k_j \le C' \sup_{a_j, a_k \in \text{supp}(\varphi_{\gamma})} (a_{k+1} - a_j) \le C'(2(M+1) + \beta).$$

Hence, (9) is satisfied, since $\sum_{j\in\mathbb{Z}} k_j |\varphi_{\gamma}(a_j)|^2 \leq \sum_{j/a_j \in \text{supp}(\varphi_{\gamma})} k_j$.

REMARKS. If $\limsup_{j\to+\infty}(a_{j+1}-a_j)=+\infty$, then inequality (2) is false, whatever the hypothesis on $k_j/(a_{j+1}-a_j)$: a counter-example is given by $\varphi_l\in\mathcal{D}(\mathbb{R})$ with $\sup(\varphi_l)\subset]a_{j(l)},a_{j(l)+1}[,\ 0\leq \varphi_l(x)\leq 1$ and $\varphi_l|_{[a_{j(l)}+1,a_{j(l)+1}-1]}=1$. Here $a_{j(l)}$ is a subsequence of a_j which satisfies $\lim_{l\to+\infty}(a_{j(l)+1}-a_{j(l)})=+\infty$. For such functions, $\|\varphi_l'\|_{L^2}$ remains constant and $\sum_{j\in\mathbb{Z}}k_j|\varphi_l(a_j)|^2$ is zero, while $\lim_{l\to+\infty}\|\varphi_l\|_{L^2}=+\infty$.

We can assume that the sequence $\{a_j\}_{j\in\mathbb{Z}}$ converges to finite limits γ and δ as j tends to $-\infty$ and $+\infty$, respectively. Inequality (2) then remains true with norms in $L^2(]\gamma, \delta[)$.

There is a more general condition under which we can have $\lim \inf_{j\to +\infty} k_j/(a_{j+1}-a_j)=0$ and still prove an inequality similar to (2): Let m be a positive constant and $\{a_{j(l)}\}_{l\in\mathbb{Z}}$ a subsequence such that, for l in \mathbb{Z} , we have

$$a_{j(l+1)} - a_{j(l)} \le \beta$$
 and $\frac{\sum_{m=j(l)}^{j(l+1)-1} k_m}{a_{j(l+1)} - a_{j(l)}} \ge m$.

Then inequality (2) holds, with λ still given by $2^{-1}\min((2\beta)^{-1}, m)$. The proof is the same as for Theorem 1.1, after replacing g(x) by the function associated with the subsequence $\{a_{j(l)}\}_{l\in\mathbb{Z}}$.

A similar inequality with negative weights is given by

THEOREM 1.2. Let $\{a_j\}_{j\in\mathbb{Z}}$ and $\{k_j\}_{j\in\mathbb{Z}}$ be two real sequences, respectively increasing and bounded positive. Suppose that

$$\lim_{j \to -\infty} a_j = -\infty \quad and \quad \lim_{j \to +\infty} a_j = +\infty.$$

If $\limsup_{j\to+\infty} k_j/(a_{j+1}-a_j) < +\infty$ then there exists $\lambda > 0$ such that the following inequality is true in $H^1(\mathbb{R})$:

(10)
$$||u'||_{L^2}^2 - \sum_{j \in \mathbb{Z}} k_j |u(a_j)|^2 \ge -\lambda ||u||_{L^2}^2.$$

If $\lim_{j\to +\infty} k_j/(a_{j+1}-a_j) = +\infty$ (or if $\lim_{j\to -\infty} k_j/(a_{j+1}-a_j) = +\infty$) then (10) fails.

Proof. If $\{k_i\}_{i\in\mathbb{Z}}\in\ell^\infty(\mathbb{Z})$ and $\limsup_{j\to+\infty}k_j/(a_{j+1}-a_j)<+\infty$, then we can find a positive constant M such that, for any j in \mathbb{Z} ,

$$\frac{k_j}{a_{j+1} - a_j} \le M.$$

We prove that, in $H^1(\mathbb{R})$,

$$\sum_{j\in\mathbb{Z}} k_j |u(a_j)|^2 \le ||u'||_{L^2}^2 + (M + ||k_j||_{\ell^{\infty}}^2) ||u||_{L^2}^2.$$

This is an immediate consequence of (6) applied to the sequence $\{k_i\}_{i\in\mathbb{Z}}$ (see (4) for the definition of f and g, after replacing k'_i by k_i):

$$\sum_{j \ge n} k_j |u(a_j)|^2 = -2 \operatorname{Re} \int_{a_n}^{+\infty} (f(s) - g(s)) u(s) \overline{u}'(s) \, ds + \int_{a_n}^{+\infty} g'(s) |u(s)|^2 \, ds.$$

Hence

$$\sum_{j\geq n} k_j |u(a_j)|^2 \leq \|g'\|_{L^{\infty}([a_n, +\infty[)} \int_{a_n}^{+\infty} |u(s)|^2 ds$$

$$+ 2\|f - g\|_{L^{\infty}([a_n, +\infty[)} \int_{a_n}^{+\infty} |u(s)\overline{u}'(s)| ds$$

$$\leq (\|g'\|_{L^{\infty}([a_n, +\infty[)} + \|f - g\|_{L^{\infty}([a_n, +\infty[)}^2) \|u\|_{L^2([a_n, +\infty[)}^2)$$

$$+ \|u'\|_{L^2([a_n, +\infty[)}^2).$$

We finish the proof using $|f(s)-g(s)| \leq ||k_j||_{\ell^{\infty}}$ and $|g'(s)| \leq M$ in $[a_n, +\infty[$ and letting n tend to $-\infty$, by the monotone convergence theorem.

Now, let us prove that (10) is false if $\lim_{j\to+\infty} k_j/(a_{j+1}-a_j)=+\infty$. As $\{k_j\}_{j\in\mathbb{Z}}\in\ell^\infty(\mathbb{Z})$, we immediately deduce that $\lim_{j\to+\infty}|a_{j+1}-a_j|=0$. For two positive constants 0 < N < M we can write $|a_{j+1} - a_j| \le M - N$ for $j > j_0$.

Let $A \in \mathbb{R}$ and C = A/N. As $\lim_{j \to +\infty} k_j/(a_{j+1} - a_j) = +\infty$, there exists a positive integer j_1 such that, for any $j > j_1$, $k_j \ge C|a_{j+1} - a_j|$.

Define $j_2 = \max(j_0, j_1)$ and $j_3 = \max\{j \mid a_j \leq M + a_{j_2}\}$. As $\lim_{j \to +\infty} a_{ij}$ $=+\infty$, we have $j_3<+\infty$. Moreover, $a_{j_3}\geq N+a_{j_2}$: indeed, if $a_{j_3}\leq N+a_{j_2}$, then j_3 would not be the maximum of the above set, as $a_{j_3+1} \leq a_{j_3} + M$ $N \leq M + a_{j_2}$. If we set $\varphi_j(\cdot) = \varphi(\cdot - a_j)$ with $\varphi \in \mathcal{D}(]-1, M+1[)$ such that $0 \le \varphi(x) \le 1$ and $\varphi_{||0,M|} = 1$, we have

$$\sum_{j\in\mathbb{N}} k_j |\varphi_{j_2}(a_j)|^2 \ge \sum_{j=j_2}^{j_3-1} k_j \ge C|a_{j_3} - a_{j_2}| \ge CN.$$

Hence for all $A \in \mathbb{R}$, we can find a member φ_{j_2} of the family $\{\varphi_j\}_{j\in\mathbb{N}}$ such

that

$$\sum_{j\in\mathbb{N}} k_j |\varphi_{j_2}(a_j)|^2 \ge A.$$

Noticing that $\|\varphi_i'\|_{L^2}^2$ and $\|\varphi_i\|_{L^2}^2$ are finite and do not depend on i concludes the proof.

REMARKS. If $\limsup_{j\to+\infty} k_j = +\infty$, then inequality (10) fails under any hypothesis on $k_j/(a_{j+1}-a_j)$: a counter-example is provided by $\varphi \in$ $\mathcal{D}(]-1,+1[), \ \varphi(0)=1 \ \text{and} \ \varphi_l(x)=\varphi(x-a_{j(l)}), \ \text{where} \ a_{j(l)} \ \text{is the subse-}$ quence corresponding to $k_{j(l)}$, a subsequence of k_j satisfying $\lim_{l\to+\infty} k_{i(l)} =$ $+\infty$. For such functions we have $\lim_{l\to+\infty}\sum_{i\in\mathbb{Z}}k_i|\varphi_l(a_i)|^2=+\infty$, while $\|\varphi_l\|_{L^2}$ and $\|\varphi_l'\|_{L^2}$ remain constant.

As for Theorem 1.1, we can generalize the hypotheses on $\{a_i\}_{i\in\mathbb{Z}}$: first we can suppose that $\lim_{j\to+\infty} a_j = \gamma$ and $\lim_{j\to-\infty} a_j = \delta$. Independently of this, if there exist two positive constants α and M and a subsequence $\{a_{i(l)}\}_{l\in\mathbb{Z}}$ such that, for any l in \mathbb{Z} , either

$$\begin{cases} a_{j(l+1)} - a_{j(l)} \le \alpha, \\ \frac{\sum_{m=j(l)}^{j(l+1)-1} k_m}{a_{j(l+1)} - a_{j(l)}} \le M \end{cases} \quad \text{or} \quad \begin{cases} a_{j(l+1)} - a_{j(l)} > \alpha, \\ j(l+1) = j(l) + 1, \end{cases}$$

then, for $k = \max(\alpha M, ||k_j||_{\ell^{\infty}}^2)$, inequality (10) holds with $||\cdot||_{L^2([\gamma, \delta])}$ and $\lambda = k(1/\alpha + k)$.

If we assume that γ and δ are finite and $\lim_{j\to+\infty} k_j/(a_{j+1}-a_j)=+\infty$, then inequality (10) holds if and only if $\{k_i\}_{i\in\mathbb{Z}}\in l^1(\mathbb{Z})$. When this condition is not satisfied, functions with compact support, locally constant at γ or δ , are simple counter-examples.

Under more restrictive hypotheses on $\{a_i\}_{i\in\mathbb{Z}}$, we will obtain an inequality without weights, similar to (10), using the Poisson formula.

2. Trace inequalities and the Poisson formula in \mathbb{R}

THEOREM 2.1. Let $\{a_i\}_{i\in\mathbb{Z}}$ be a real increasing sequence. Assume that there exists a uniform lower bound α for $a_{j+1} - a_j$. Then, for any positive constant μ , the following inequality holds in $H^1(\mathbb{R})$:

(12)
$$||u'||_{L^2}^2 - \mu \sum_{j \in \mathbb{Z}} |u(a_j)|^2 \ge -\frac{C_1(2\alpha\mu)}{2\alpha^2} ||u||_{L^2}^2,$$

where $C_1(x) = 4x(x + \pi^2)/\pi^2$. For $\mu \in [0, \mu_0], \ \mu_0 \simeq 8.83$, we get a better lower bound given by $C_2(x) = 24x/(12-x)$, where μ_0 is the unique positive solution of $C_1(x) = C_2(x)$.

We need the following two lemmas:

LEMMA 2.2. Let $u \in H^1(\mathbb{R})$. Then

$$\left(\sum_{j\in\mathbb{Z}}|u(j)|^2\right)^{1/2}\leq\sum_{k\in\mathbb{Z}}\left(\int_{k}^{k+1}|\widehat{u}(\xi)|^2\,d\xi\right)^{1/2}.$$

Proof. Let u be in $H^1(\mathbb{R})$. Using the Poisson formula, we can write

$$\sum_{j \in \mathbb{Z}} u(j)\overline{u}(j) = \sum_{j \in \mathbb{Z}} \widehat{u} * \widehat{\overline{u}}(j)$$

$$\leq \sum_{j,k \in \mathbb{Z}} \left(\int_{k}^{k+1} |\widehat{u}(\xi)|^2 d\xi \right)^{1/2} \left(\int_{k}^{k+1} |\widehat{u}(\xi+j)|^2 d\xi \right)^{1/2}.$$

Let $C_k = (\int_k^{k+1} |\widehat{u}(\xi)|^2 d\xi)^{1/2}$. By a change of variables in the second integral, we see that the right-hand side is $\sum_{j,k\in\mathbb{Z}} C_k C_{k+j}$, which is equal to $(\sum_{k\in\mathbb{Z}} C_k)^2$. The conclusion follows.

LEMMA 2.3. There exist two positive functions, $C_1(\mu)$ and $C_2(\mu)$, and a constant $\mu_0 \simeq 8.83$ such that, for any u in $H^1(\mathbb{R})$,

$$(\forall \mu \in [0, \mu_0]) \qquad \|u'\|_{L^2}^2 - \mu \sum_{k \in \mathbb{Z}} |u(k)|^2 \ge - C_2(\mu) \|u\|_{L^2}^2,$$
$$(\forall \mu > \mu_0) \qquad \|u'\|_{L^2}^2 - \mu \sum_{k \in \mathbb{Z}} |u(k)|^2 \ge - C_1(\mu) \|u\|_{L^2}^2.$$

Moreover, $C_1(\mu) = 4\mu(\mu + \pi^2)/\pi^2$ on $[\mu_0, +\infty[$ and $C_2(\mu) = 24\mu/(12 - \mu)$ on $[0, \mu_0]$.

REMARK. The lower bound $C_1(\mu)$ is, in fact, valid for all $\mu \in \mathbb{R}^+$. The constant μ_0 is the unique positive solution of $C_1(x) = C_2(x)$. Its exact value is

$$\mu_0 = \frac{12 - \pi^2 + \sqrt{\pi^4 + 144}}{2}.$$

Proof (of Lemma 2.3). Let $u \in H^1(\mathbb{R})$. Then

(13)
$$\sum_{k \in \mathbb{Z}} \left(\int_{k}^{k+1} |\widehat{u}(\xi)|^{2} d\xi \right)^{1/2}$$

$$= \sum_{k=-l}^{l-1} \left(\int_{k}^{k+1} |\widehat{u}(\xi)|^{2} d\xi \right)^{1/2} + \sum_{\substack{k \ge l \\ k < -l}} \left(\int_{k}^{k+1} |\widehat{u}(\xi)|^{2} d\xi \right)^{1/2}$$

 $\leq (2l)^{1/2} \left(\int_{-l}^{l} |\widehat{u}(\xi)|^2 d\xi \right)^{1/2} + \left(\sum_{k \geq l} \frac{1}{|k|^2} \right)^{1/2} \left(\int_{l}^{+\infty} |\xi|^2 |\widehat{u}(\xi)|^2 d\xi \right)^{1/2}$ $+ \left(\sum_{k < -l} \frac{1}{|k+1|^2} \right)^{1/2} \left(\int_{-\infty}^{-l} |\xi|^2 |\widehat{u}(\xi)|^2 d\xi \right)^{1/2}.$

If $l \in \mathbb{N}$, l > 1, we can write

$$\sum_{k \ge l} \frac{1}{|k|^2} < \int_{l-1}^{+\infty} \frac{dx}{x^2} = \frac{1}{l-1}.$$

Similarly,

$$\sum_{k < -l} \frac{1}{|k+1|^2} < \frac{1}{l-1}.$$

Combined with (13), this gives

(14)
$$\sum_{k \in \mathbb{Z}} \left(\int_{k}^{k+1} |\widehat{u}(\xi)|^{2} d\xi \right)^{1/2} \leq (2l)^{1/2} \left(\int_{|\xi| < l} |\widehat{u}(\xi)|^{2} d\xi \right)^{1/2} + \frac{1}{\sqrt{l-1}} \left[\left(\int_{-\infty}^{-l} |\xi|^{2} |\widehat{u}(\xi)|^{2} d\xi \right)^{1/2} + \left(\int_{l}^{+\infty} |\xi|^{2} |\widehat{u}(\xi)|^{2} d\xi \right)^{1/2} \right].$$

For $l \in \mathbb{R}^+ \setminus \mathbb{N}$, we interpolate the versions of inequality (14) for [l] and [l] + 1, where [l] is the integer part of l, and use Lemma 2.2 to obtain, for any α in [0, 1] and $\lambda > 0$,

$$\sum_{k \in \mathbb{Z}} |u(k)|^2 \le 2\left(1 + \frac{1}{\lambda}\right) (\alpha([l] + 1) + (1 - \alpha)[l]) \|u\|_{L^2}^2 + \frac{1}{2\pi^2} (1 + \lambda) \left(\frac{\alpha}{[l]} + \frac{1 - \alpha}{[l] - 1}\right) \|u'\|_{L^2}^2.$$

Hence, setting

$$\alpha = \frac{[l](f(l)+1)}{f(l)+2[l]-1} \quad \text{and} \quad \lambda = \frac{[l]+\alpha}{[l]+2f(l)-\alpha}$$

(where f(l) = l - [l]), we have, for all $l \ge 1$, in $H^1(\mathbb{R})$,

$$||u'||_{L^2}^2 + 4\pi^2(l-1)l||u||_{L^2}^2 \ge \pi^2(l-1)\sum_{k\in\mathbb{Z}}|u(k)|^2.$$

Putting $\mu = \pi^2(l-1)$, we finally obtain, for any $\mu \ge 0$,

$$||u'||_{L^2}^2 + \frac{4\mu(\mu + \pi^2)}{\pi^2} ||u||_{L^2}^2 \ge \mu \sum_{k \in \mathbb{Z}} |u(k)|^2.$$

If l=1, we use the equality $\sum_{k\geq 1} 1/|k|^2=\pi^2/6$ in (13) and Lemma 2.2 to obtain

$$\left(\sum_{k\in\mathbb{Z}} |u(k)|^{2}\right)^{1/2} \leq \sqrt{2} \left(\int_{|\xi|<1} |\widehat{u}(\xi)|^{2} d\xi\right)^{1/2} \\
+ \frac{\pi}{\sqrt{6}} \left[\left(\int_{-\infty}^{-1} |\xi|^{2} |\widehat{u}(\xi)|^{2} d\xi\right)^{1/2} + \left(\int_{1}^{+\infty} |\xi|^{2} |\widehat{u}(\xi)|^{2} d\xi\right)^{1/2} \right].$$

Hence for any $\lambda > 0$,

$$\sum_{k \in \mathbb{Z}} |u(k)|^2 \le 2 \left(1 + \frac{1}{\lambda} \right) ||u||_{L^2}^2 + \frac{\lambda + 1}{12} ||u'||_{L^2}^2.$$

Setting $\mu = 12/(\lambda + 1)$, we finally obtain the second inequality, valid in [0, 12[:

$$||u'||_{L^2}^2 + \frac{24\mu}{12-\mu}||u||_{L^2}^2 \ge \mu \sum_{k \in \mathbb{Z}} |u(k)|^2.$$

Proof of Theorem 2.1. We can easily define $\{b_k\}_{k\in\mathbb{Z}}$, with $\{a_k\}_{k\in\mathbb{Z}}$ a subsequence, satisfying for all k in \mathbb{Z} ,

$$\alpha \le b_{k+1} - b_k < 2\alpha.$$

It can be constructed by recurrence, setting $b_0 = a_0$. If the sequence is defined up to $k(j_0)$ with $b_{k(j_0)} = a_{j_0}$ $(j_0 > 0)$, we set

$$(\forall l \in \{1, \dots, N_{j_0}\}) \ b_{k(j_0)+l} = a_{j_0} + l\alpha \quad \text{and} \quad b_{k(j_0+1)} = a_{j_0+1},$$

where
$$N_{j_0} = [(a_{j_0+1} - a_{j_0})/\alpha] - 1$$
 and $k(j_0+1) = k(j_0) + N_{j_0} + 1$.

The similar process for negative indices yields the whole sequence. Then we define the function b(x) in each interval [k, k+1[by $b(x) = b_k + (x-k)(b_{k+1}-b_k);$ it is continuous on \mathbb{R} and differentiable on each]k, k+1[. Let $u \in H^1(\mathbb{R})$. Since u(b(x)) is in $H^1(\mathbb{R})$ we can apply Lemma 2.3. For all λ in \mathbb{R} .

$$\sum_{k \in \mathbb{Z}} \int_{k}^{k+1} |u'(b(x))|^2 |b'(x)| \, dx - \lambda \sum_{k \in \mathbb{Z}} |u(b_k)|^2 \ge -C(\lambda) \sum_{k \in \mathbb{Z}} \int_{k}^{k+1} |u(b(x))|^2 \, dx.$$

By a change of variables in each integral, we obtain

$$||2\alpha||u'||_{L^2}^2 - \lambda \sum_{k \in \mathbb{Z}} |u(b_k)|^2 \ge -\frac{C(\lambda)}{\alpha} ||u||_{L^2}^2.$$

As $\{a_i\}_{i\in\mathbb{Z}}$ is a subsequence of $\{b_k\}_{k\in\mathbb{Z}}$, we have

$$\sum_{j \in \mathbb{Z}} |u(a_j)|^2 \le \sum_{k \in \mathbb{Z}} |u(b_k)|^2.$$

Setting $\mu = \lambda/(2\alpha)$ yields the theorem.

REMARK. Though inequality (12) is not as sharp as (10), even in the case where all the k_j 's are equal and $\{a_j\}_{j\in\mathbb{Z}}$ is the whole \mathbb{Z} , the interest of the proof is that it can easily be extended to the case of a lattice of points in \mathbb{R}^n . This result is, therefore, to be related to work of S. Albeverio, F. Gesztesy, R. Høegh-Krohn and H. Holden [Al-Ge].

Acknowledgements. I am very grateful to Professor R. S. Strichartz for his constructive suggestions about this work.

References

[Al-Ge] S. Albeverio, F. Gesztesy, R. Høegh-Krohn and H. Holden, Solvable Models in Quantum Mechanics, Springer, Berlin, 1988.

[Fe-Ph] C. Fefferman and D. H. Phong, The uncertainty principle and sharp Gårding inequalities, Comm. Pure Appl. Math. 34 (1981), 285-331.

[Ga-Ol] G. V. Galunov and V. L. Oleïnik, Analysis of the dispersion equation for a negative Dirac "comb", St. Petersburg Math. J. 4 (1993), 707-720.

[Ke-Sa] R. Kerman and E. Sawyer, The trace inequality and eigenvalue estimates for Schrödinger operators, Ann. Inst. Fourier (Grenoble) 36 (1986), no. 4, 207-228.

[Le-No] N. Lerner and J. Nourrigat, Lower bounds for pseudo-differential operators, ibid. 40 (1990), 657-682.

[Pou] R. Pouliquen, Uncertainty principle and Schrödinger operators with potential localized on hypersurfaces, Preprint Univ. Bretagne Occidentale, Fasc. 5 (1997).

[Re-Si] M. Reed and B. Simon, Methods of Modern Mathematical Physics II. Fourier Analysis, Self-adjointness, Academic Press, 1972.

[Str] R. Strichartz, Uncertainty principles in harmonic analysis, J. Funct. Anal. 84 (1989), 97-114.

Département de Mathématiques Université de Bretagne Occidentale 6, Avenue le Georgeu, BP 809 29285 Brest, France

> Received October 21, 1997 Revised version December 29, 1997

(3979)