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Translation-invariant operators on Lorentz spaces
Ll with0<g<1

by

LEONARDO COLZANI (Milano) and
PETER SIOGREN (Gbteborg)

Abstract. We study convolution operators bounded on the non-normable Lorentz
spaces L1 of the real line and the torus. Here 0 < ¢ < 1. On the real line, such an
operator is given by convolution with a discrete measure, but on the torus a convolutor
can also be an integrable function. We then give some necessary and some sufficient
conditions for a measure or a function to be a convolutor on L9 In particular, when the
positions of the atoms of a discrete measure are linearly independent over the ra.t'i_onalvs,
we give 4 necessary and sufficient condition. This condition is, however, only sufficient in
the general case,

0. Introduction and results. On the real line R and the torus T = R/Z
= [0,1), we shall consider convolution operators bounded on the Lorentz
spaces L9, 0 < g < 1. A linear operator which commutes with translations
and which is bounded on LY is given by convolution with a finite measure.
Denote by C%4 the space of such convolutors on LY, In the classical case
g = 1, one has L*' = I}, and CM' coincides with the space of all finite
Borel measures. The spaces ¢ with 1 < ¢ < co and ¢ = 00 have been
studied in [$J-2] and [SJ-1]. In this paper we shall examine the spaces ch
of convolutors on the Lorentz spaces L1 for 0 < g < 1. Convolutors on the
Lorentz spaces LP? with 0 < p < 1 have been studied and de%tem'%ined by
several authors, like [CO] and [SH]. See the further references given in [SJ-1]
and [SJ-2].

Given a Lebesgue measurable function f on R or T, or more generally
on some measure space, we denote by f* the :nu)ninclreasing1 rearrangement
of |f| on R, with Lebesgue measure. The Lorentz space b 0 < g < o0,
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102 L. Colzani and P. Sjégren
is then defined to consist of those f for which the quasinorm

1l = ( [ () C“)l/q

is finite.
An equivalent quasinorm in L™ is given in terms of the distribution
function,

b 1/q
P OO D
0

and we also have the discrete analogs

1Fle =~ (32 @ rem)™,
h=—co

e (30 ¥t 7@ > 2)7) "
k=—o00

Here and below we denote the Lebesgue measure of a set F by |F|. We
denote by ¢ > 0 and C < co various constants. By A = B we mean that 4
and B are comparable in the sense that ¢ < A/B < C. The index g will be
fixed in the sequel, with 0 < ¢ < 1. A general reference for Lorentz spaces
is [HUJ.

In the sequel, the setting will be R or T, except where otherwise explicitly
stated.

As is well known, the space I*9 is not normable. To see this, notice first
that for characteristic functions of measurable sets one has || x|, = | E|. If
{ B4} is a sequence of disjoint sets with | Ey| = 2* and the sequence {27 ||}
is decreasing, then |3, ax2 ®xg, |l1,0 & {34 o |9}/, Tt is clear that the
last expression can be much larger than 3=, |ax| = 3, lax2 % x5, ||1,¢- Thus
i-]l1,q is not equivalent with a norm. In some sense, the more different values
a function takes, the more the LY9-quasinorm differs from the Z'-norm.

The lack of subadditivity of the quasinorm of I*? is described by means
of the following notions.

The galb of LY? is defined as the set of all numerical sequences {a;}
such that 3, a; f; is in L% whenever the functions {f;} are in LM with
| fill1.q < 1. For such a sequence, the galb quasinorm is defined as

o {[ e, o <1}

The notion of galb was first mtroduced in [TU]. As an example, we mention

that the galb of L%* is £log£. The main part of this result follows from
[SNW, Lemma 2.3].
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Similarly, the equidistribution galb of L19 is the set of all sequences {a; }
such that 3, c; f; is in LM whenever the functions {f;} are equidistributed
and in L1, The equidistribution galb quasinorm has an obvious definition.
The equidistribntion galb was defined and studied for L™ with 1 < 7 < o0
in [SJ-2].

It is clear that the galb is contained in the equidistribution galb, and
it is casy to see that the equidistribution galb of L9 is contained in the
Lorentz sequence space £-? and hence in £*. In our case these inclusions are

strict, as the following theorem shows. This theorem actually holds in any
nonatomic o-finite measure space.

THEOREM 1. (a) The galb of L9 45 £9, with equivalence of quasinormns.

(b) Let {ct;}3%, be a sequence in £' and write {a}}52, for the decreastng
rearrangement of the sequence {|aj|}32,. The following three conditions are
equivalent:

(i) {e;}52, is in the equidistribution galb of L™4;
2n+1 -2 1/
. RN %
(i) (Z ot~ ’2)( Z aj) ) < 00;
§=22" 1
> ay1/q
(iif) (Z 2ra=a( Y josl) ) < oo
n=0 B3 oy ol 21

The expressions in (i) and (iil) are equivalent to the equidistribution galb
quasinorm.

Part (a) of this theorem means in particular that the space Lb7 is g-
normed, that is, the gquasinerm || - ||1,4 is equivalent to a quasinorm whose
gth power is subadditive.

‘We remark that it follows from Theorem 1 and [SJ-2], pp. 399400, that

the condition
22" g

i(2n\1/1~mll )y a;)’ﬂ/\r/ir—1]<m

n=0 J=22" —1

describes the equidistribution galb in all the spaces L7, 0 < r < o0,
The next theorem states some general, and essentially known, properties
of operators on our Lorentz spaces.

THEOREM 2. (a) Let S be a linear operator from the space of simple Sfunc-
tions into L9, and assume that there exists a positive constant d such that
for every measurable characteristic function x g, ||Sx&ll1,q < d|B|. Then for
any meesurable simple function f =3, exE, one has [|Sfll1q < C‘d||f||1,q
In particular, S has an estension to o continuous operator on Lba,
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(b} A bounded linear operator on LY has an extension to o bounded
linear operator on L.

(c) Any bounded linear operator on L*% which commutes with transla-
tions is given by convolution with a finite measure.

The space C1+ of convolutors on L9 has the natural quasinorm

lpllcns = sup{lips * flls,q + I Fllg < 13-

The results stated so far are valid not only for R and T, but in much
greater generality. However, now we start distinguishing between these

groups.

THEOREM 3. Bvery bounded linear operator § on LYM4(R) which com-
mutes with translations is given by convolution with a finite discrete measure

M= Ej aj5il!j1 i, Sf(ﬂ}) = Zj ajf(m - (L'j).

It is obvious that if g = 3, a;0,, has coefficients {;} in the equidistri-
bution galb of Z1:4(IR), then this measure is in C*?(R). The next results show
that in many cases, but not always, this sufficient condition is also necessary
and the equidistribution galb and convolutor guasinorms are equivalent.

In the sequel, it will always be understocd that in the expression

2.5 @j0z; the points z; are distinct.

THEOREM 4. (a) Let the set {x;} C R be lincarly independent over the
rationals. Then the measure ju =, ;05 is a convolutor on L1 (R) if and
only if the sequence {a;} s in the equidistribution galb of LMY(R).

(b) There emists a measure p = 3, ojby, which is a convolutor on
LY9(R) but such that the sequence {a;} does not belong to the equidistribu-
tion galb of LY9(R).

The example we shall produce to prove Theorem 4(b) is a signed measure.
We do not know whether the equidistribution galb condition is necessary
for all positive discrete measures, as happens for L1 (R) with 2 < r < co.
See [SJ-1] and [SJ-2]. However, in this direction we have the following two
results.

THEOREM 5. Let i = 3, oz, with {a;} positive. Then the convolutor
quasinorm on LY4(R) of this measyre is at least

C(Zaj) (1 +10g(%))1/qw1.

J J
We point out that in some cases of interest the last expression is close

to the quantities characterizing the equidistribution galb in Theorem 1(b).
For example, Theorems 1 and 5 imply that when the measnre is a sum of ¥V

icm
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: N
equal point masses, ;i = ZJ-:l 0¢;, then the equidistribution galb and the
convolutor quasinorm are both of the order of N (log(N))t/ -1,

. T;fg;EM t6. Let p :lzgfi_l ;85 be a positive measure fuppovr'ted on

positive integers and with masses {a;} thai form a decreasing sequence,
Then ki a convolutor on LM(R) if and only if the sequence {a;} 5 in
the equidistribution galb of LM(R), and the convolutor quasinorm of w is
equivalent to the equidistribution galb quasinorm of {cy}.

‘ Turning now to the torus, we remark that some results for R are eas-
ily extended to T. For example, Theorem 4 holds unchanged for C*4(T).
In Theorem 3 we saw that convolutors in CY9(R) are atomic measures.
However, for the torus the situation is different, because the space C*4(T)

containg, for instance, all functions in IP(T) with p > 1. Indeed, we have
the inclusions

LP(T) » L19(T) C LP(T) « L{(T) C IP(T) C LH4(T).

The following results give more precise estimates of the size of functions
which are convolutors on LL9(T).

TI.-IEOR.EM 7. The convolutor quasinorm on LYT) of the characteristic
function of @ measurable set E C T is comparable to |E|(1+1log(1/|E|) /a1,

This result gives a sharp estimate for the convolutor quasinorm of a
characteristic function. Since the space L™9(T) is g-normed, to estimate the
convolutor quasinorm of an arbitrary function, it is natural to consider an £4
sum of cxpressions analogous to that of Theorem 7. Qur next result shows
that this gives an upper estimate for the convolutor quasinorm which is
sharp in at least some cases.

THEOREM 8. (a) Assume that f is o measurable function on T and that

(i(gm(l/’Q—l) i f*(t)dt)Q)l/q<oo_

mz==(} 2--zm+1

am

Then the function f is o convolutor on LY4(T), and its convolutor quasinorm
s dominated by the above quantity.

(b) Let us identify functions on the torus T with functions on the interval
[0,1). If the function f 4s positive and decreasing on [0,1), then the condition
in (a) is necessary for f to be a convolutor on LYY(T) and the conwolutor
quasinorm of f is equivalent to the quantity in (a).

Observe that the monotonicity of the function in part (b) of this the-
orem s analogous to the monotonicity of the point masses in Theorem 6.
Both results say that the sufficient condition is also necessary. Moreover,
the proofs of these two results are based on the same ideas.

Before the proofs of the theorems, we make some remarks,
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For the torus, we have a proof that measures like the triadic Cantor
measure are not convolutors on L14(T). However, we do not know whether
CY4(T) contains measures which are continuous but singular with respect
to Lebesgue measure. _

A (Fourier) multiplier on LP(R), or on L?(T), is the Fourier transform
of a convolutor. In particular, a multiplier on LP(R) is a function on R, while
& multiplier on L?(T) is a sequence on Z.

When 1 < p < oo, there exists a close relation between multipliers on
LP(R) and LP(T): The restriction to the integers of a continuous Function
which is a multiplier on LP(R) is a multiplier on LP{T). Conversely, we can
interpolate a sequence which is a multiplier on LP(T) and obtain a function
which is a multiplier on L?(R). These classical results are due to K. de Leeuw
[DLE]; see also the book [SGW], Section VIL.3.

We do not know whether the restriction of a multiplier on LM9(R) is a
multiplier on L*4(T). However, in some cases it is impossible to extend &
multiplier on L14(T) to a multiplier on L¥4(R). The reason is the following.
A multiplier on LM9(IR) is the Fourier transform of a discrete and finite mea-
sure on R. Hence, the restriction to the integers of a multiplier on LYR) is
the Fourier transform of a discrete and finite measure on T. But on LY4(T)
there are multipliers which are the Fourier transforms of absolutely contin-

uous measures, and these multipliers cannot be extended to multipliers on
LY(R). '

1. Proof of Theorem 1. To prove (a), we observe that a function fis
in L1 if and only if [f|2is in L2941 and this last space is Banach; see also
{HU, p. 258]. Thus £7 is contained in the galb of L*9.

For the converse inclusion, let I =27 Xg; for 5 = 1,2,..., where the
sets f; are pairwise disjoint with |E;| = 277, Then [Y oy fill1,q > clall,
for any sequence o = {a;}%2,;.

Part (b) will be obtained from the characterization of the equidistribu-
tion galb given in [SJ-2, Theorem 2]. Ohserve first that a slight modification
of the simple Lemma 10 of [SJ-2] implies the equivalence of (i) and (iii).
Let, as in [SJ-2], forn=1,2,...,

Cn = > |-

2nga/ el g2t

Then (iii) is equivalent to

oo amtl_g g
Z 2(1_‘7)”‘( Z cn) < 0.
m=0 n=2am

Theorem 2 of [SJ-2] states that o is in the equidistribution galb of L9 if

icm

Operators on Lorentz spaces 1ar
and only if the operator
ca ktn
T: {a:j}_?;—oo - {yk}.'?;_oo: Y = Z Z mzjmj:
n=1 j=k

is bounded on £ for any nonnegative numbers my;, defined for integer &, j,n
withn > 1 and k£ < j <k 4 n, and satisfying Ei::j—n my; < cn for each j
and n.

To verify that (i) implies that 7" is bounded, we observe that for z; > 0,

2mt_1 ktm

& ktn oo
D= (N ) s (S Yombe)
k kn=lj=k m=0 k n=2m =k

We split the sum over % in the last expression into parts corresponding to
amtly < k < 2™+ (v 4+ 1), with v € Z. For each fixed m and v, we then
have the sum
27T w41)—1 g™t _jpyn 4
S (Y Y mn)
k=2m+lpy n=2" j==k
which by Hélder’s inequality is at most

g™t y41)—12mtl L] pap

q

oo ( ,czj‘;l,, ﬂ; ;cm;;jmj)
amt+l__q 2m+1(y+2)_1 § g
goatom( Ny N ey Y m; )

n=2m g=2m+ly k=j-n

gmtl_q 27+ (g )1

< 02(1—q)m( Z Z $jcn)q

n=2m Je=2mily

gm+l_q . 9™l (g 2)—1

502(1"‘1)7”( Z cn) Z zj.

n=2m Je2motly

Summing over v and m, we obtain

amtl g
Surzo s oY w) sy
[ m=0 n=2m 7

and so (iil) implies (i).
For the converse implication, we let mg, = 2'"™¢, for j =0, 2™ < n
< 2mtl 9™ < k< =271 with m = 0,1,..., and mg; = 0 otherwise,
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With 7o =1 and z; = 0if 7 # 0, for ~2™ < k < ~2™"1 we get

2m+l —1
> B,
n=2m
Thus
2m
g
Stz Yo F )’
m=0 n=2am

and (iii) follows from (i) via [SJ-2, Theorem 2].

Theorem 1 is now proved. We also give a proof of the implication (iii)=>(i)
which does not use [5J-2].

We can assume that o; > 0 and [je|1 = 1. It is enough to consider
nonnegative functions in L9, Let Aj;, 7 = 1, be measurable sets with equal
finite measure [A;| = a. We first give an estimate for the ZV¢ quasinorm of
a finite sum Zjv:l QXA

Observe that the set where Z‘jv 1¢;%4; # 0 has measure at most Na,

that SZJ 1 QA () do = az _; @; and that Z =1 05xa;(x) < E A
Hence,

a N adt N e N .
g( (ZQ’JXAJ) (t)) Y < (Zaj) (qutq““ldtm (Zlaj) a?,
j=1 Fe=1 i=
andN N .

¢ Soa) )" (; D71 (S 0

i=1

"
g(log N)*~ q(z%)

i=1

‘We thus have
N
C(l +log N)*~ Q(Zaj)qaq.

||Z =4 XA,
=1
For the correspondmg infinite sum we get, since L+ is g-normed,

oo
12 e
g=1

The number of a; exceeding 2'=2""" is at most 2-1+2""
just treated implies that

o0 q o0
[ a0 32
j=1 ’ naQ

q o q
Lg = ZH Z CiXd |y

ne=0 g1 -gntl <ay<i-am

, and the finite case

Z aj)qaq.

91—2n+tl <oy <pL-2n
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This gives the required estimate for 3" o; f; when the f; are eqmd1str1buted
characteristic functions.

In the general case, all the f; are equidistributed with some function I
We now assume that f is of the form f = ), ByXg,, where the Hj are
disjoint with |Ey| = 27* and the 8y, increasing. Here k ranges over Z or N
when the setting is R or T, respectively. Thus f; = >, 'BkXEi for each 7,
with sets E;’ﬁ like the Ej, just described. Since L} is g-normed, we have, in
view of the case treated above,

”Z oF ;ﬁkXEi :,q < zk:HZ anE’:; j ﬁ
7 )
< Oi g(l—q)n( 3

n=0 a1-2nt1 Loyl

q —
)" S A
k

Thus

Sl oS T o)

P T h s Eat i

This last inequality now follows in the general case, since any L9 function
can be majorized by an L9 function of the form 3" Brxm,, with equivalent
quasinorm. The implication (iii)=>(i) follows. m

2. Proof of Theorem 2. To prove (a), first assume that f = >k VeX B
where the sum is finite and each +yj is positive with finite dyadic expansion.
Then we can write f =3 _; 27x 4, where the sum is finite. Since S is linear

and LM? is g-normed, we thus have
I5F115 4 < D (2 )8xa; 110" S Cd? ) (2] 44))°
J 7
< quZ (2| : (=) = 2} < G-

I f = 5, YeXp,, Where the sum is finite and the . are positive _rteal
numbers, we can find an approximation g = S & BrXE,, with B, positive
with finite dyadic expansion and [y — By| suitably small. Then

15£1%, < 1189l ,q+§j (e — Brl 1Sxznlina)

< Odq(llglll,q S — el 1)) <GS
k

The general case, where fisa complex-valued simple function, now follows.
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To prove (b), assume that § is bounded on L*9. For any set E of finite
measure, one has
15xzl1 < |SxzllL,e < C|E|.
The boundedness on L' follows; cf. part (a).

Since a bounded operator on [} which commutes with translations is
given by convolution with a finite Borel measure, part (c) follows from {b). w

3. Proof of Theorem 3. In this proof we shall denote by |/z+|| the total
mass of a finite Dorel measure p on R. Suppose that g = § + v with 4
atomic and v continuous and not zero. We have to show that u is not a
convolutor on LM4(R). The idea is to construct a measurable set .A such
that the convolution g * v 4 is very different from a characteristic function
and has large LY? quasinorm. As an intermediate step toward this goal, we
construct characteristic functions x4, such that the convolutions p * x4,
take very different values.

LemMa 3.1. If n > 0 and 4f ¢ > 0 is small enough, we can find £
with 0 < & < m such that T = {z € R : £ < |u* x)pp,q ()| < n} satisfies
$7 16 xpo. 0 (=) [ dze 2 §lv]l.

Proof, Suppose for simplicity v~ is real, and decompose v into v — v,
with 11 and v positive and v, v_,§ mutually singular. Suppose also that
vy, v and & are different from zero. If any of these measures are zero, the
proof simplifies.

We can find disjoint compact sets K.., K.., D such that

vp(R\KL) + v (RN E-) + B(R\ D) < g min{|lv |, oI, |61l n}.
Then fore > 0,

7
Vo v xxpg () de > evy (Ky) > el
Ky +[0,e]

and moreover, if 2e is smaller than each of the distances between the three
compact sets K1, K. and D, then

3
| e+ 10D xio(m) do < e
K1 4[0,e)

Since v, is continuous, taking ¢ small enough we can also obtain v, *
X[0,e] (£) < 1/2 everywhere, and in view of the above inequalities it is clear
that for every x in K. 4-[0,£] we have (v + |6]) * xj0,1(2) < n/4.

Summing up, in Ky + [0,e] we thus obtain |y * xg.(z)] < 7, and
o 0,0 1 * Xi0.3(2) d 2 Self .

icm
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Combining this with the corresponding inequality for v and K., we
finally obtain

5
| |1 * X 10,61 ()| dz > gelldl-
{l*xq0,61(2)1<n}

It then only remains to select £ small enough, and the lemma follows.

LEMMA 3.2. Given 1 > 0, we can find o compact set A with | 4| = 1, and
Ewith0< & <n, suchthat if B={x € R : £ < |u=*xalz)!l < n}, then we
have g | * xa(z)|dz > §|v|.

Proof. Define A = U}f_fl (zj,z; + €], with 1/¢ a suitably large integer

and the sequence of points {z;} very sparse. Then we have u * xa(z) =
Z;f__sl 14 % Xjo,¢) (T — ;). It is clear that if the sequence {z;} is very sparse,
then the terms in the above sum interfere very little with each other. Hence

this lemma, follows from the previous one. =

TEMMA 3.3, Let the functions fr, —oo < k < 00, be supported on disjoint
sets C, let infyec, | fo(@)] = & ond supyee, |fr(2)] = n5, with & > 2011
Then |30k fellra = {208 Ilfh\l‘{,q}l’q-

Proof It can be easily verified that an equivalent quasinorm on the
Lorentz space LY is defined by

[e\e]

£ gm D FHe: 2 < If(=) <)Y

j=—o0

Hence,

ISl = 3 (e < IS s <2’
k ’ j=—00 k
=Y > @z Y <ifilp)l< PN | fell] g =

B £ /2520 S

We can now finish the proof of Theorem 3. By Lemma 3.2, it is possible
to construct a sequence 7y > & > mp > fo > ... with & > 8nk41, and
compact sets {Ag L, with |4x| = 1, such that if By = {z € R : & <
| % xa, ()] < i} then § g |x xa, ()| de > 5|V

Define A = Ui\;l {zy,+ Ay}, where again the points {zy} are very sparse,
and denote by Cy the mutually disjoint sets {z € R /2 < |pxxalz)| <
27 }. Then, if the sequence of points {z;} is suitably chosen, we have |A| =
N, and {;, |p*xa(2)|dz 2 L||v|. Hence {{xall1,¢ = N, but by the previous
lemma, ||p*xall1,q = cN/4||v||. Thus the measure y is not a convolutor on
I14(R), and Theorem 3 is proved. m
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4. Proof of Theorem 4. The proof of (a) is contained in Theorem 3 of
[8J-2]. To prove (b), we use a construction based on Rudin-Shapiro polyno-
mials. See [KA, Exercise 1.6.6, p. 33]. These polynomials are dafined recur-
sively by Pa(t) = Qo(t) =1 and

Pry1(t) = P (t) + exp(2mi2™t}Qum (t),
Qm+1{t) = Pr{t) — exp(2mi2™8) Q. (1),

One easily proves by induction that Pp(t) = Ej:(; !

g; = £1, and that ||Pple < 2(m+1)/2,

Let us consider the measure vy, = Ef_:; ' ¢£;6;. This measure on R has
2m—1
i=0

€5 exp(2mijt) with

Fourier transform o, (£) = >
fin LP(R), 0 <p<1,

£; exp(—2mijt) = Pp,(—~t). Hence for each

2™ —1

I x £l = | 32 e = |, <2721,
i=0

and for each f in L*(R),

[ % £l = [P - Fll2 < [P0l F]l2 < 207272 £]]2.
Thus, by interpolation, ||t * fll1,, < C2™ fl1,-

Conversely, ||lvm * Xi0,e1]l1,4 = 2™ X[0,¢)]1,¢ if £ i small. Hence the con-
volutor quasinorm on LV2(R) of the measure wy, is about 2™, which is the
total mass of /,.

Let {¢tm} be translates of {vy,} with pairwise digjoint supports. Define
1= om0 Pmbim = Y724 0585, for some coefficients B, and with a; deter-
mined by the Sy,. Since LM4(R) is g-normed, 3°00_ 27"(3,,|¢ < oo implies
that the measure u is a convolutor of L¥9(R). On the other hand, choos-
ing B, nonzero only when m is a power of 2, we can have {2™8,,} in £,

but {a;} not in the equidistribution galb of L2¢(R), because of the factor
272~4) in Theorem 1(b). u

5. Proof of Theorem 5. We begin by proving a version of this theorem
for the Lorentz sequence space £4(Z). _

Let the sequence {o;} be positive and summable, and lot {n;} be a
sequence of distinct integers. We want to give an estimate from below of the
convolutor quasinorm of =3 5 030, on £M9(Z),

LeMmMmaA 5.1. Let p = Ej‘;l i, with a; > 0 and Zj\;l aj; = 1, Also

let 16 Zj\; 103 < p < 1. Then, if M is large enough, there exists a sef

A CA0,L,..., M} with #A ~ Mp and such that p* x4 ~ p on a set of
cardinality at least c¢M.
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P roof. We shall use a probabilistic argument and write I for probability
and E for expectation. Let A C {0,1,..., M} be a random set such that the
events ] € A for 0 < § < M are independent and have probability p. Let
m = maxi<i<n |1, and let m < n < M — m. Then, since n —n; is in A
with probability p, we have

N

Elp + xa(n)] = Z o Elxa(n —n;)] = p,

i=1
+ @ Bx 4 (n — nidxa(n — ng)] — p*
1SiAT<N
N N
=p)_of+rt 3 ae—p=(p-r")) aof.
i=1 1ihi <N =1
By applying Chebyshev's inequality, we get
M-2m+1
P|#{n & [m, M —m]: juxxa(n) —p| > p/2} > —2—"""]
M—m
M-—2m+1,
D
=1

8 ) (4% xa(n) — p)z]
N

M—

= (M~2m+1p2E[§
o
1

N
Jj=
Since E[#A] = (M + 1)p, we also get Pl#A4 > 2(M + 1)p] < 1/2. Hence,
there exists a set A with #A4 < 2(M + 1}p and with

1 3 M-2m+41
#{n:§p£ prxa(n) < 513} 2 "

=8}~—:~£ ]

a; =

ta ks
by

[Nl o

P

oA
g loo

T,

: N
LeMMA 5.2. (a) Let p = Z;\T:l Qbn; with oy > 0 and 3. a3 =1, and
let v = [ log(1/ Ej.\;l a3)]. Then for some large a there evist sets {Ag}}_,
in 7, with #£4, = ... = #A, = a such that the convolutions {p = x4, }¥=1
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have mutually disjoint supports and u * x4, = 2 ®xp, for some sets By
with #By, ~ a2® fork=1,...,v.
(b) With p and {Ag};., as in (a), let A =|Jr_; As. Then

g

e xallne 2 o #807) 7 2 e fon () [
=1

k=1

(c) If the sequence {oy} is positive and the integers {n;} are distinct,
then the convolutor quasinorm of the measure = 3, &tj0n, on the Lorentz
sequence space £19(Z) is at least

c(; o) (1 +log (%)) 1/q_1.

3%
Proof. Part (a) is an easy consequence of the previous lemma. It is
enough to choose p &= 27% and Mp = a. To obtain disjoint supports, one
applies suitable translations.
Part (b) follows from (a), and (c) follows from (b). m

Let us go back to the problem of estimating the convolutor quasinorm

on LY(R) of a positive measure ;& = 225 00z, We assume this sum is

finite, u = E?’;l @8z, Since the convolutor quasinorm is invariant under
dilations, we can also assume that |z; — 2| > 3if 1 <1+ j < N.

Let [z;] = n;. We claim that the convolutor quasinorm of the measure
u= 2;11 0;0z; as an operator on L™9(R) is bounded from below by the

convolutor quasinorm of E;N;l a8y, as an operator on £49(7Z). To see this,
It is enough to convolve y with characteristic functions of sets A -+ [-1,1],
where A C Z.

The proof of Theorem 5 is complete. m

6. Proof of Theorem 6. If the sequence {a; }72.1 belongs to the equidis-
tribution galb of L1, then of course the measure p= Y eyl is a convolutor
on L4(R). What we need to prove is that if {0} is decreasing and if  is
a convolutor on LM4(R), then {cy} belongs to the equidistribution galh of
L', We shall prove this with R replaced by % Theorem 6 then follows if
one considers functions on R constant between the integers; ¢f. the end of
the preceding section. Since our setting is now Z, we write intervals as la, ],
meaning Z M [a, b].

For n > 0 define

3n+1

2 2

Hn = Z aj(sj-

F=227 ],
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Then 4 = meo L, and we need to prove that the convolutor quasinorm of
this measure is bounded from below by

(1 1/q
e 2 207 g J9)
n=0
The following lemma states the existence of a (characteristic) function
whose convolution with u has large level sets for many different levels. Let

n—23 1
Iy = 2UH" 2T s

LEMMA 6.1. There exists a natural number ng with the following property.
For each n 2 ny one can find a set F,, C [1,1,] with #F, = 2n-1+2"""
such that for oll m = n (mod2) with ng < m < n the inequality u *
X#, 2 277t || holds on o subset of Z of cardinality at least 29~ ™4LF, | for
2m-—3 < j‘ < 2m——2.

Before proving this lemma, we use it to complete the proof of Theorem 6.
Take a large n, and observe that Lemma 6.1 implies

(1) (1 XFH)*(WHm#Fn) 2 2~jH.’~Lm”a RS R
for those values of m described in the lemma, Tt is easily verified that the
open intervals (29-™1 29—™) R are pairwise disjoint for the values of 5
and m occurring here. Thus we conclude from (1) that
o0
N dt
1q=a §(tlerxr)"®)°

[l * x,

0
Ze) (7 uall#F)T = ey 200w U (# P
Fm ™m
here and in the next sum j and m are again as in the lemma. Since ||x#,{|1,4
= #tF),, this implies

lellfne 2z € 2070 i 1%,
m

where ¢ is independent of n. Combining the even and odd cases, we obtain

o0
Iulldn, Z e > 20D |,

m=mnq

Since it is easy to estimate the left-hand side here from below with

e | wm|)4 and hence with ¢ om0, 29| 4,. |1%, Theorem 6 fol-
lows. w

Proof of Lemma 6.1. To be specific, we take n even. It will be understood

below that ng and n are sufficiently large, and we can of course assume ng

even. We shall proceed by induction; assuming the existence of F,_», we
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shall construct F,,. In the starting case n = ng, we can use as F,_s any
subset of [1,,,_»] whose cardinality is 27—3+2"7",

The first part of the construction consists in placing, for each fixed 7, in
the interval [1, 21+2"") reanlarly spaced translates of F,, _». Together, these
translates will form a set Fg Then F,, will be defined as a union of translates
of these FJ.

Let 273 < j < 22, and define k; = 2/~ 4 F,_5/l._». Notice that k;
is an integer power of 2, and that

by > 92" —lgn—8+2" g1 gt > 1.
Further,
(2) hjloog = 2114k F,_y < 27 - ignma2t Tt o Lo2t
Now define, with j as above,

Fi = | Jwhjln-z + Faa),

where the union of translated sets is taken over those integer v with

Observe that since F,_p C [l,l,—z], the set FJ is the union of those
translates of F,_s by integer multiples of k;l,—» which are contained in
[1,2142"] The cardinality of FY is

21+2n+1

H$E,_, = 9l-iglt2™
kj ln—2

#F] =

Thus FJ is a subset of [1,2+2"""] of average density 2'~9.
We shall now estimate u ;. Take a point z with 22" « g < 21+2™*",
Writing (i) = a; for i > 1 and (i) = 0 for ¢ £ 0, we have

+1
2T b a1

(3) () =) alz-y) = >

yEFi =1

Z afz—vkil,—g—2).

2EF g

Notice that when vk;l,_» + l,—2 < z, the argument of o here is positive for
all z € F,,_5. For such z and v, it is clear that

—vkjlp o —2z2<g ~w

for any w with (v — 1)kjlp—2 < w < vkjiln_q.
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Because of the monotonicity of the oy, we get
s — vkily—o — 2) > alz — w)
for the same v, z and w. This inequality clearly remains valid if we take
mean values in z and w, so that
vhiln_a

#-Z n—2
E a(z — vkilp—2 — 2) P E

zeFn_g w=(r—1)k;ln.2+1

oz — w).

We now sum this inequality over all integer v with v > 1 and vkjl,_2 +
In_2 < 7. Notice that the largest value of v included here satisfles vk;la—o >
&= kjln_g = ln_o > & — 2k;lp_o. In view of (3), we conclude that
z—2kiln-2 n—1
prxp(@) =270 ST ale-w)=2"7 Y o)
w=1 =2k 12

Because of (2), the last expression here is at least

22" g

273 afi) = 24 il

22" .1
Summing up, we have proved that for 2773 < j < 2772
(4) woxxp 22 ] I (227,200

n—2__ . .
We now define F;, as a union of Ejzzn_;‘ 27 translates of the FJ by

distinct multiples of 212", More precisely, for each j with 2773 < j <
N . - n+1 .

2"—2 we take 2/ translates of FJ. Since F c [1,2!+2 ], this can be done

in such a way that

2n-2g '
Fcl, ¥ 209142 [1, 1],
jzzn—s
The cardinality of F, will be
n—¥_1
BF, = Y PHFL =Y 2T gl
j=2n—3 3

as claimed in the lemma. .

From (4) it follows that p* xp, = 277||ux| in a set of cardinality
9ig2™? _ oi-ntlAm with j as in (4). This implies the last claim of the
lemma in the case m = n. For smaller values of m, the last claim follows
from the induction assumption, since F, is a finite union of translates of
F,_» with sufficient spacing.

Lemma 6.1 proved. =
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7. Proof of Theorem 7
LeMmMa 7.1. If f is o function in L™= (T) and A is o measurable set, then

I7lles \ Y 27
nf*XA;ﬂsanmfh(-+bg<|ﬂ|)) '

Proof. For any & > 0,

O ca = £ 007 e < la » £ [t e < 1APIFIe?,
b 0
and
. 1 g /! 1—g
af 2 a x 19 a < o Ocar £ () ) (5 %)

< ¢l AP £11{(log(1/e))* .
Choosing € = || f||1/]/f]|oc, we obtain
1

g—1 % FIF(H)]2 )| 1|4 ) 1S leo - ™
qgt [(xa f)(@]dtﬁfﬂAinﬂl(l**‘g(ufnl)) ‘

In particular, when f = xg we have
bz * xall1q < CIAE|(L +log(1/|E) oY,
and Theorem 2(a) implies that the C*9(T) quasinorm of yp is at most
CIE|(1 +log(1/|E})) o1,

To prove conversely that the convolutor quasinorm of yg is at least
c¢lB|(1 + log(1/{EY))* 9! is more complicated. We can assume |E| to be
small, and start by approximating B by a set A which is the union of a col-
lection of intervals of the form [f/N, (7 + 1)/N],j € {0,1,..., N~1}.If N is
large enough, we can make the symmetric difference B /A A so small that the
convolutor quasinorm of x g — x4 s much smaller than |E|log(1/|E|)/ ¢
It is then sufficient to estimate the convolutor quasinorm of x4, and to do
this, we discretize the problem.

Let us associate the torus T with the cyclic group {0, 1 - 1}
and the set A with the corresponding subset A of 10,1,. - 1} Then
|A| = #A/N. We can assume both #4 and N /(#A) to bc large

LeMMA 7.2 Let v be the largest integer with ¢ < N/(#A) and take n

with 1 <n < v. Then we can choose distinct integers 0 < ki, ka,..., kon <
N — 1 such that

3 Zx~(A k)xz(k — k)<022n(§f AP

1<€0,5<2™ k=0
it
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Proof. The number of possible choices of ki, k2, ...,

.. (N = 2™ 4 1), so that for fixed 4,5 and &, we have the mean

1

NN-1)...(N-27+1) k1,k; x5k — k:)x 7 (k — kj)

119

kgn is N(N — 1)

_ FABA-HW - -3).. (N 2"+ 1)

NIN—1)...(N—2n+1)

N

:x#%%zmnm(ﬁgf_

N(N-1)

Hence,

1
NN=-1)... (N-22+1) 2 2

k1,kasee,

kan 1€45,j<2™ k=0
i#]

AN? 2
~ NO™(2" — 1) (%—) ~

N—-1
> xzlb — ka)xz(k — kj)

(#4)”

N

LEMMA 7.3. Let ki, ka,... ks be as in the previous lemma. Then

an _
#{k S xglh—E) 2 1} > 2 (#A).

Proof Let

Then S:{0,1,..., N -1} =K,

N-1

on
== Z X_Z(k - ki).

=1

> S(h) = 2 (#A),
k=0

and
N-1 N—-1 2" 2"
ST (5(k))* = ZZZX ik = ki)xz(k — kj)
fe=0 =0 i=] j=1
N1 2"

=ZZX (k —k; -I—E Z x 7k — ki)xz(k — kj)

k=0 i=1

<on(#d) +C

k=0 1<i,j<2"
W7

ZEAY < oyl
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becauge 2™ < 2¥ =~ N/ (#E) Thus, by Chebyshev’s inequality,

Bk S(k) > 1} < 02”(#’4)

and for a large but fixed m we have

D Sk SC Y Mk S(k) > 24}

Th:S(k)>2m} B>m

<O (#A) Y o<

hz>m

2" (#A).

[

Hence,

") = Y 500 2

k=0 {k:lgS(k)gzm}

S(k) <2m T4k S(k) 2 1},

and the lemma follows. =

Now we return from the discrete set {0,1,...,N
order to complete the proof of Theorem 7,

For each n = 0,1,...,v, let F,, be the set {k;,...,k»} defined in the
previous lemmas. With F), we associate the subset of the torus

i J+2™

E, = L el

U [#55
JEF,

— 1} to the torus T, in

Then |Fn| = 1/N, and since x4 * xF, is closely similar to 2“”xA * X5 =
27"N1 E;—l x5 (- = ki), we also have

an (4 A
Hz € T:xa*xr,(z)>2""/N} > c——%ﬁi} = 2" A|.
Define G = |J;,_; Fn. Then |G| < 330 |Fy| = v/N, and if 1 < n < v, we
have

HzeT:xa*xelr) >27"/N}| > c2™A|
Hence,

v

9-n ay /g
e ol 2 o 32 (% e € T xamxeto) 2 277 ) )

=]

v o e

Since 2” =~ 1/| A|, we finally obtain

s * xall1e = clAl(log(1/|A)Y 9 G
This ends the proof of Theorem 7. m
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8. Proof of Theorem 8. Part (a) of the theorem easily follows from
Lemma 7.1. Indeed, let us define

k) = {112) 1 < V(@) < G,
0 otherwise.
Then

wrn_omtl m1
Ifmlleo < £727577) <2477 frpa o
By Lemma 7.1, the convolutor quasinorm of f,, on L*»9(T) is at most

Ifmllos Y\ Y772
m g = O m
fmllons < O £ ;|1(1+1°g(1|fmnl))

(1/g-1)m I frmsalls o
<02 nfm|41+CHfmlh(1°g+( [Fmllx )) |

The last term contributes only when || fril1 < | fm+1ll1, and then it is
dominated by

lfmlls ( (nfmﬂul))”q-l
Olfmral 72 o+ L7 < Cllfmsla

Thus, by the g-additivity of the C19-norm,

| $OY Minlln £ €3 D flls 4 s )
ma=0 m=0

m=0

<C Y QMR fally)e,
m=0
Part (a) then follows. We now prove (b), and without loss of generality
we assume that the function f has support in the interval [0,1/2].
Let v be a large integer. We want to construct a measurable set £ C
[0,1/2] such that

r‘)*22':11
* ay1/q
1 xelle 2 B (270 | pwa))
m=0 p—a2m+l
Let §; = 2-2" and Mg = dop_18a = 27321 In particular, Ay = 2.

We shall construct inductively sets By = [0,27%] D E2 2 E3 2 ... Each Ej
will be the union of a collection of intervals of length Ay at mutual distances
at least Ag.

Assuming Ej_; already defined, we denote by I one of its components,
so that |I| = Ag..1. Divide I into intervals of length 28251, say I = [JA;,
i=1,2,..., g/ (202k-1) = 92"* ¥ -1 and divide again each of these in-
tervals *A; mto intervals of length Ak, say A; = U, Bis- In A we choose
Bio, Bia, Bis, ... and we discard Bj1, Bis, Bis,... In Ay and Ay we choose
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Bia, Bis, Bi1g, ..., i = 2,3. Ingeneral, let § = 1,2,. .., ji, with j = 2231,
Then in A;, 2771 < i < 2/, we choose only those B;, with s a multiple of
27, and discard the rest. Finally, we discard the last A4;, i.e., the one with
i = 2271 The B, chosen together form the part of B which is contained
in I. In this way Ej is defined.

Our goal is to estimate |Ex| lxg, * f. Since

[T N Ey| = 3|4 + 3(1A2] + |As]) + § (|Ad] + [As] + | Ae| + | Ar]) +
+ 274 (| Agsg-1] + .. + [Agin 1) = Judok-1,
we have
| Ex |IﬂEk| Sop—1
B I Sak—302p—2

Let A = A; be one of the above-mentioned intervals of length 28s_;
and assume 277 < ¢ < 27 for some 1 < j < ji. Then the distance between
the components of By, in A is (27 — 1)), and (27 — 1A, < 2560 < 2714y,
Also, the mean density of E), in A is 277, that is, |4 N Ex|/|A| = 277,

Since the function f is decreasing, for ¢ in the right-hand half of A we
have

1 |AﬂEk] dap -1 B o—i LY
| Bk X B *f(:c)“TE]_ET | f(t)dt"l_ﬁﬂ 5§k f(t) dt

Saic

Notice that one can obtain |Ey|~tx g, with A > k from |Ey|~1x 5, simply
by considering the mass of | Ex| ™ x g, within each interval B;,. Thus if z is
in the right half of A, we still have

. 9—i dag-1
[Brl ™ xm, + f(2) 2 == A | riyae.
day

The number of intervals A for which the above inequality holds is 2/-1
times the number of the components of Ex_;, and the number of these
components is [Ex_1|/Ap—1 = | Fy|/(jiudax-1). Hence,

9— FRLEUES

z) > A S f(t)dt}‘ zzj—ilg’—“l‘

Jk

{wE[O 1) ¢ |Ba| " xm, * £

We have thus proved that if 1 < j < jx,h > k, and ¢t < 27~ llEk|/Jk,
then

~j Gan-1

LA

dag

(1Br| " xe, « )*(®) = f(t) de.
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Comparing these values of ¢, we see that
EEkl < 1‘_27‘—1 Efijk“'llj
Je 2 Jr—1
provided that 1 < j < gp — 2k and 1 <7 < jp_1 — 2(k — 1).
Thus all the intervals [2772|Eg|/d, 271 Ex|/d], 1 < 5 < 4 — 2k,

2d-1

k= 1,2,..., are disjoint. This allows us to estimate the L9 norm of
|Br|"tx g, * f. Indeed,
1
dt
VIt BA  xm, * £)* (1)
0
2_ 521;: 1 q |,E l q
>c Z (_ ELG) dt) (23'_—’“)
B<h 1<i<ix ]Ekl fap Ik
Sak-1 a
2y i § rae)
k<h dax
Since || |Bn| " xz, [l1q = 1, je = 22*=% —~ 1, and since 6 = 272", we have

proved that

p—23k1
1£1%s.0 = e 270 q( i f(t)dt) .
k<h p—a2h

There is clearly a similar estimate involving the integrals between a2t

and 2-2°°, This ends the proof of part (b) of Theorem 8. m

References

[CO] L. Colzani, Translation invariant operoiors on Lorentz spaces, Ann. Scuola
Norm. Sup. Pisa CL 8Sci. (4) 14 (1987), 257-276.

[HU] R. Hunt, On L{p,q) spaces, Enseign. Math. 12 (1966), 249-287.

[KA] Y. Katznelson, An Introduction te Harmonic Analysis, Wiley, New York,
1968.

[DLE] K.de Leeuw, On Ly multipliers, Ann. of Math. 81 (1965), 264-379.

[SH] A. M. Shteinberg, Translation-invariant operators in Loreniz spuces, Funk-
tsional. Anal. i Prilozhen. 20 {1986), no. 2, 92-93 (in Russian); English transi.:
Functional Anal. Appl. 20 {1986), 166-168.

[8J-1) P. 8jégren, Translation-invariani operators on weak L', J. Funct. Anal. 80
(1990), 410-427.

[37-2] —, Convolutors on Lorentz spaces L(1,q) with 1 < q < vo, Proc. London Math.

Soc. 64 (1992), 397-417.

E. M. Stein and G. Weiss, Iniroduction {o Fourier Analysis on Buclidean

Spaces, Princeton Univ. Press, Princeton, 1971.

SGW)



124 L. Colzani and P. Sjégren

[SNW] E.M. Stein and N. J. Weiss, On the convergence of Poisson integrals, Trans.
Amer. Math. Soc. 140 (1969), 35-54.
[TU] P. Turpin, Convesitée dans les espaces vectoriels topologiques généraugz, Dis-
sertationes Math. 131 {1976).

Dipartimento di Matematica
Universith degli Studi di Milano

via C. Saldini 50

20133 Milano, Italy

E-mail: leonardo@vmimat.mat. unimi.it

Department of Mathematics
Chalmers University of Technology
and Gdteborg University

5-412 96 Giteborg, Sweden
F-mail: peters@math.chalmers.se

Received June 5, 1995 {3481)
Revised version June 22, 1998

icm

STUDIA MATHEMATICA 132 (2) (1999)

On oscillatory integral operators
with folding canonical relations

by

ALLAN GREENLEAT (Rochester, NY.) and
ANDREAS SEEGER (Madison, Wisc.)

Abstract. Sharp LP estimates are proven for oscillatory integrals with phase functions
&(z,y), (z,7) € X x ¥, under the assumption that the canonical relation Cg projects to
T*X and T*Y with fold singularities.

1. Introduction. Let X and Y be open sets in B? and let 2 C X x Y
be a bounded open set whose closure is contained in X x Y. We consider
oscillatory integral operators T, - given by

(1.1) T, £1(2) = (7@ ay (2, 9) f (v) dy.

Here A > 1 and + is a parameter in a manifold I'. We assume that ax 4 €
C5°(£2) and that &(-,-,7) € C®(X x Y) is a real-valued phase function;
moreover, ay,y, H(-,-,7y) and their derivatives depend continuously on .

Tt may sometimes be convenient to admit some growth in A for the (z,y)
derivatives of the amplitude. Let 0 < § < 1. We shall say that the family of
amplitudes a = {ay} belongs to the class G5(£2) if supp ax,y C {2 and if
(1.2) sup |0200ax~(2,y)| < C pAS Ul D,

(my)ER
This definition is made in analogy to the standard symbol classes S, s, al-
though there is no parameter g since we do not impose differentiability con-
ditions with respect to the parameter A. If C,, g denote the best constants
in (1.2) then we define

lalle; = sup{Ca,s : |ax], 8] < N}
for some large V; the choice N = 10d is admissible and we shall make this
1991 Mathematics Subject Classification: 35530, 47G99.
Key words and phrases: oscillatory integrals, Fourier integral operators, fold singula~

rities.
Research supported in part by grants from the National Science Foundation.

[125]



