L. Colzani and P. Sjögren

[SNW] E. M. Stein and N. J. Weiss, On the convergence of Poisson integrals, Trans. Amer. Math. Soc. 140 (1969), 35-54.

[TU] P. Turpin, Convexités dans les espaces vectoriels topologiques généraux, Dissertationes Math. 131 (1976).

Dipartimento di Matematica Università degli Studi di Milano via C. Saldini 50 20133 Milano, Italy E-mail: leonardo@vmimat.mat.unimi.it

124

Department of Mathematics Chalmers University of Technology and Göteborg University S-412 96 Göteborg, Sweden E-mail: peters@math.chalmers.se

Received June 5, 1995
Revised version June 22, 1998
(3481)

On oscillatory integral operators with folding canonical relations

by

ALLAN GREENLEAF (Rochester, N.Y.) and ANDREAS SEEGER (Madison, Wisc.)

Abstract. Sharp L^p estimates are proven for oscillatory integrals with phase functions $\Phi(x,y)$, $(x,y) \in X \times Y$, under the assumption that the canonical relation C_{Φ} projects to T^*X and T^*Y with fold singularities.

1. Introduction. Let X and Y be open sets in \mathbb{R}^d and let $\Omega \subset X \times Y$ be a bounded open set whose closure is contained in $X \times Y$. We consider oscillatory integral operators $T_{\lambda,\gamma}$ given by

(1.1)
$$T_{\lambda,\gamma}[a,f](x) = \int e^{i\lambda \Phi(x,y,\gamma)} a_{\lambda,\gamma}(x,y) f(y) \, dy.$$

Here $\lambda \geq 1$ and γ is a parameter in a manifold Γ . We assume that $a_{\lambda,\gamma} \in C_0^{\infty}(\Omega)$ and that $\Phi(\cdot,\cdot,\gamma) \in C^{\infty}(X \times Y)$ is a real-valued phase function; moreover, $a_{\lambda,\gamma}, \Phi(\cdot,\cdot,\gamma)$ and their derivatives depend continuously on γ .

It may sometimes be convenient to admit some growth in λ for the (x, y) derivatives of the amplitude. Let $0 \le \delta \le 1$. We shall say that the family of amplitudes $a = \{a_{\lambda,\gamma}\}$ belongs to the class $\mathfrak{S}_{\delta}(\Omega)$ if supp $a_{\lambda,\gamma} \subset \Omega$ and if

(1.2)
$$\sup_{(x,y)\in\Omega} |\partial_x^{\alpha} \partial_y^{\beta} a_{\lambda,\gamma}(x,y)| \le C_{\alpha,\beta} \lambda^{\delta(|\alpha|+|\beta|)}.$$

This definition is made in analogy to the standard symbol classes $S_{\varrho,\delta}$, although there is no parameter ϱ since we do not impose differentiability conditions with respect to the parameter λ . If $\widetilde{C}_{\alpha,\beta}$ denote the best constants in (1.2) then we define

$$\|a\|_{\mathfrak{S}_{\delta}} = \sup\{\widetilde{C}_{\alpha,\beta} : |\alpha|, |\beta| \le N\}$$

for some large N; the choice N = 10d is admissible and we shall make this

¹⁹⁹¹ Mathematics Subject Classification: 35S30, 47G99.

Key words and phrases: oscillatory integrals, Fourier integral operators, fold singularities.

Research supported in part by grants from the National Science Foundation.

choice. We shall often suppress the dependence on a and γ and then denote by T_{λ} the operator $f \mapsto T_{\lambda,\gamma}[a,f]$.

Clearly, T_{λ} is bounded on all $L^p(\mathbb{R}^d)$ but the interesting issue is the dependence on λ of the operator norm. As is well known the L^2 bounds depend on the geometry of the canonical relation

(1.3)
$$C_{\Phi} = \{(x, \Phi'_x, y, -\Phi'_y) : (x, y) \in X \times Y\}.$$

In particular, if \mathcal{C}_{\varPhi} is locally a canonical graph (this being equivalent to $\det \Phi_{xy}'' \neq 0$) and $a \in \mathfrak{S}_0$, then the L^2 operator norm of T_λ is $O(\lambda^{-d/2})$; see Hörmander [11]. Hence the operator norm on L^p is $O(\lambda^{-d/2}\lambda^{d|1/p-1/2|})$, and if $p \leq 2$ this is also a bound for the $L^p \to L^{p'}$ operator norm. These boundedness properties can be extended to operators with amplitudes in $\mathfrak{S}_{1/2}$, by combining Hörmander's proof with arguments in the proof of the Calderón-Vaillancourt theorem for pseudo-differential operators [2]; see also [9] for related statements on Fourier integral operators associated with canonical graphs.

In this paper we consider the case where the projections $\pi_L: \mathcal{C}_{\varPhi} \to T^*X$, $\pi_R: \mathcal{C}_{\varPhi} \to T^*Y$ may have at most two-sided fold singularities; that is, we assume that π_L and π_R are Whitney folds where they are singular. \mathcal{C}_{\varPhi} is then called a folding canonical relation. L^2 estimates for operators with folding canonical relations are well known. The singularities cause a loss of $\lambda^{1/6}$ for the operator norms; i.e. $||T_{\lambda}||_{L^2 \to L^2} = O(\lambda^{-d/2+1/6})$. This was shown by Pan and Sogge [15] relying on the fundamental work of Melrose and Taylor [12] on normal forms for folding canonical relations. Different arguments and improvements have been given in a number of papers: see Phong and Stein [18], [16], Seeger [21] for averaging operators in the plane, Smith and Sogge [22] for Fourier integral operators and Cuccagna [6] for general oscillatory integral operators.

Here we prove sharp $L^p \to L^q$ inequalities except for the exponents (p,q) = (3/2,3/2) or (p,q) = (3,3). We also prove a sharpened version of the known L^2 inequality (cf. Theorem 2.1), which leads to sharp L^p inequalities in one dimension, including endpoint estimates.

THEOREM 1.1. Let $\{\Phi(\cdot,\cdot,\gamma)\}$ be a family of phase functions defined for (x,y) near a point $(x_0,y_0)\in\mathbb{R}^d\times\mathbb{R}^d$ and near $\gamma=\gamma_0$. Let \mathcal{C}_0 be the canonical relation for $\Phi(\cdot,\cdot,\gamma_0)$ and assume that \mathcal{C}_0 is a folding canonical relation. Then there is a neighborhood Ω of (x_0,y_0) and a neighborhood V of V_0 so that for all V_0 0 and all V_0 1 and all V_0 2 so that for all V_0 3 and all V_0 4.

$$||T_{\lambda,\gamma}[a,f]||_q \le C\lambda^{-\alpha(p,q)}||a||_{\mathfrak{S}_{1/3}}||f||_p;$$

here

$$(1.4) \quad \alpha(p,q) \\ = \begin{cases} d/p' & \text{if } 1 \leq p < 3/2 \text{ and } p \leq q \leq p'/2, \\ (d-2/3)/p' + (3q)^{-1} & \text{if } 1 \leq p < 3/2 \text{ and } p'/2 \leq q \leq p', \\ (d-2/3)/3 + (3q)^{-1} & \text{if } p = 3/2 \text{ and } 3/2 < q \leq p', \\ (d-2/3)/p' + (3q)^{-1} & \text{if } 3/2 < p \leq 2 \text{ and } p \leq q \leq p', \\ (d-1/3)/q & \text{if } 1 \leq p \leq 2 \text{ and } p' \leq q. \end{cases}$$

Moreover, if $2 \le p \le q$ then $\alpha(p,q) = \alpha(q',p')$.

We conjecture that the missing endpoint $L^{3/2}$ inequality holds but we can prove this endpoint inequality only in the case d=1. In higher dimensions we only prove a restricted weak type inequality, which still suffices to deduce the other inequalities stated in Theorem 1.1. In the following theorem L^{pq} denotes the familiar Lorentz space (see [25, Ch. V]).

THEOREM 1.2. With the same assumptions as in Theorem 1.1 the following holds.

- (i) The operator $T_{\lambda,\gamma}[a,\cdot]$ maps $L^{3/2,1}$ boundedly to $L^{3/2,\infty}$ and $L^{3,1}$ boundedly to $L^{3,\infty}$, with operator norm $O(\lambda^{-d/3}||a||_{\mathfrak{S}_{1/3}})$.
- (ii) If d = 1 then $T_{\lambda,\gamma}[a,\cdot]$ maps $L^{3/2}$ boundedly to $L^{3/2}$ and L^3 boundedly to L^3 , with operator norm $O(\lambda^{-1/3}||a||_{\mathfrak{S}_{1/3}})$.

REMARKS. (i) Theorem 1.1 for $1 \le p \le 2$ follows by interpolation from the cases $(p,q)=(1,1), (1,\infty), (2,2)$ and the restricted weak type (3/2,3/2) inequality of Theorem 1.2. The first two cases are trivial, and the L^2 inequality is known at least for \mathfrak{S}_0 amplitudes ([15]). In view of the symmetry of our assumption the appropriate estimates for $p \ge 2$ follow by applying the estimates for $p \le 2$ to the adjoint operator T_{λ}^* .

- (ii) The estimates are sharp as one can see by considering the model $\Phi(x,y) = \langle x',y' \rangle + (x_d y_d)^3$. In fact, our proof shows that the endpoint inequality $||T_{\lambda}||_{L^3 \to L^3} = O(\lambda^{-d/3})$ is true for this example.
- (iii) If additional curvature assumptions are imposed on the projections of the fold surface to the fibers T_x^*X , T_y^*Y then the $L^p\to L^2$ and $L^2\to L^{p'}$ estimates can be improved (see Theorem 2.2 in [7]).
- (iv) The L^p estimates should be compared with analogous results on Fourier integral operators $\mathcal F$ of order α , associated with folding canonical relations (here $d\geq 2$). Namely, $\mathcal F$ is bounded on L^p for $\alpha\leq -(d-1)\times |1/p-1/2|$ if $3< p<\infty$ or 1< p<3/2 and for $\alpha<-1/6-(d-2)|1/p-1/2|$ if 3/2< p<3 (here equality is established if d=2). This was proved by Smith and Sogge [22]; see also the related results for Radon transforms in [18], [21] and [19]. The analogy breaks down for the critical exponents 3/2 and 3, since the $L^{3/2}$ or L^3 boundedness of $\mathcal F$ may fail to hold for operators of order -(d-1)/6; cf. the translation invariant counterexample by M. Christ [4].

- (v) We have stressed uniformity with respect to parameters since the L^2 version of the theorem is applied in [8] to a family of operators with folding canonical relations in order to prove estimates for Fourier integral operators with one-sided simple cusp singularities.
- (vi) It would be interesting to obtain sharp $L^p \to L^p$ results for oscillatory integral operators with one-sided fold singularities (cf. the sharp L^2 estimate in [7] and L^p estimates for p > 3 or p < 3/2 in [21] for Radon transforms in the plane).
- 2. Preliminary reductions. After affine linear changes of the coordinates in X and Y we may impose some normalizing assumptions at a reference point $P_0 = (x_0, y_0, \gamma_0)$ and we may assume that $x_0 = y_0 = 0$.

In fact, if a canonical relation is of the form $\{u,\phi'_u,v,-\phi'_v\}$ one can argue as in [7] and replace $\phi(u,v)$ by $\varPhi(x,y) = \phi(x_0+B_1x,y_0+B_2y)$ where B_1 and B_2 are suitable invertible linear transformation. Specifically, if $\{e_j\}$ is the standard basis in \mathbb{R}^d and if $a \in \text{Ker } \varPhi''_{xy}(x_0,y_0,\gamma_0)$, $b \in \text{Coker } \varPhi''_{xy}(x_0,y_0,\gamma_0)$ are nonzero vectors one can arrange that $B_1e_d=a$, $B_2e_d=a$ and that for $j=1,\ldots,d-1$ the vectors B_2e_j are orthogonal to $\langle a,\varPhi'_v\rangle''_{uv}b$ and the vectors B_1e_j are orthogonal to $\langle a,\varPhi'_v\rangle''_{uv}b$. This yields that with $x=(x',x_d),\ y=(y',y_d)$ we have $\varPhi''_{x'y_d}(x_0,y_0,\gamma_0)=0$, $\varPhi''_{x_dy'}(x_0,y_0,\gamma_0)=0$, $\varPhi''_{x_dy'}(x_0,y_0,\gamma_0)=0$ and $\varPhi'''_{x'x_dy_d}(x_0,y_0,\gamma_0)=0$. Consequently, given small $\varepsilon>0$ we may assume that the symbol is supported in a neighborhood $\varOmega\times V$ of $((x_0,y_0),\gamma_0)$ so that

$$|\Phi_{xy,i}''| \le \varepsilon,$$

$$|\Phi''_{x_dy}| \le \varepsilon,$$

$$|\Phi_{x_dy'y_d}^{\prime\prime\prime}| \le \varepsilon,$$

$$|\Phi_{x'x_dy_d}'''| \le \varepsilon$$

for $(x, y) \in \Omega$ and $\gamma \in V$.

The two-sided folding assumption implies that for suitable choice of Ω , V we have

$$\det \Phi_{x'y'}'' \neq 0,$$

$$\Phi_{x_d y_d y_d}^{\prime\prime\prime} \neq 0,$$

$$\Phi_{\mathbf{x}_d \mathbf{x}_d \mathbf{y}_d}^{\prime\prime\prime} \neq 0.$$

We may assume that the lower bounds for $|\det \Phi_{x'y'}''|$, $|\Phi_{x_dy_dy_d}'''|$, $|\Phi_{x_dx_dy_d}'''|$ are large compared to ε ; more specifically, the C^4 norm of $\varepsilon \Phi$ in $\Omega \times V$ is assumed to be small compared to these lower bounds.

In what follows we shall use the formula

(2.8)
$$\det \begin{pmatrix} A & b \\ c^{t} & d \end{pmatrix} = (d - c^{t} A^{-1} b) \det A.$$

In a neighborhood of (x_0, y_0, γ_0) we have $\det \Phi''_{x'y'} \neq 0$ and in view of (2.5)–(2.8) we can parametrize the variety given by $\det \Phi''_{xy} = 0$ either as a graph $y_d = u(x', x_d, y', \gamma)$ or as a graph $x_d = v(y', y_d, x', \gamma)$, for γ close to γ_0 . Let

(2.9)
$$\sigma_0 = \Phi''_{x_d y_d} - \Phi''_{x_d y'} (\Phi''_{x'y'})^{-1} \Phi''_{x'y_d};$$

then by (2.8),

$$\sigma_0(x,y) = 0 \Leftrightarrow y_d = u(x',x_d,y',\gamma) \Leftrightarrow x_d = v(y',y_d,x',\gamma),$$

for γ close to γ_0 . Moreover, in view of (2.6)-(2.7),

$$|\sigma_0(x, y, \gamma)| \approx |\det \varPhi_{xy}''(x, y, \gamma)| \approx |y_d - u(x', x_d, y', \gamma)|$$
$$\approx |x_d - v(y', y_d, x', \gamma)|.$$

We fix γ and λ and set $T = T_{\lambda,\gamma}[a,\cdot]$. From now on it is assumed that all amplitudes a are supported in Ω and satisfy $||a||_{\mathfrak{S}_{1/3}} \leq 1$. All estimates will be uniform in γ provided that Ω and V are chosen small enough.

Now, following [18], we shall make a decomposition of T according to the size of $|\det \Phi''_{xy}| \approx |\sigma_0|$.

Let $\eta \in C_0^{\infty}(-1,1)$ so that $\eta(s) = 1$ for $|s| \le 1/2$ and let ε_0 be small. Set

$$\beta_l(x, y, \gamma) = \eta(2^l \sigma_0(x, y, \gamma)) - \eta(2^{l+1} \sigma_0(x, y, \gamma))$$

and

$$\zeta_{\lambda} = 1 - \sum_{2^{l} < \varepsilon_{0} \lambda^{1/3}} \beta_{l},$$

so that $\sigma_0 \approx 2^{-l}$ in supp β_l and $\sigma_0 \leq C \varepsilon_0^{-1} \lambda^{-1/3}$ in supp ζ_l . Define operators S_{λ} and T^l by

(2.11)
$$S_{\lambda,\gamma}f(x) = \int e^{i\lambda\Phi(x,y,\gamma)} \zeta_{\lambda}(x,y,\gamma) a_{\lambda,\gamma}(x,y) f(y) dy$$

and

$$(2.12) T_{\gamma}^{l} f(x) = \int e^{i\lambda \Phi(x,y,\gamma)} \beta_{l}(x,y,\gamma) a_{\lambda,\gamma}(x,y) f(y) dy.$$

Our main result is

THEOREM 2.1. For $f \in L^2(\mathbb{R}^d)$,

(2.13)
$$\left\| \sum_{2^{l} < \varepsilon_{0} \lambda^{1/3}} \alpha_{l} T_{\gamma}^{l} f \right\|_{2} \le C_{p} \lambda^{-d/2} \sup_{l} \left[2^{l/2} |\alpha_{l}| \right] \|f\|_{2}$$

and

$$(2.14) ||S_{\lambda,\gamma}f||_2 \le C\lambda^{-(d-1)/2-1/3}||f||_2.$$

Since the operators T^l , S_{λ} are bounded on both L^1 and L^{∞} , with operator norms $O(2^{-l})$, $O(\lambda^{-1/3})$, respectively, we can easily deduce by interpolation

COROLLARY 2.2. Let $1 \le p \le 2$. Then

(2.15)
$$||T_{\gamma}^{l}f||_{p} \leq C\lambda^{-d/p'} 2^{l(2-3/p)} ||f||_{p}$$

and

(2.16)
$$||S_{\lambda,\gamma}f||_p \le C\lambda^{-(d-1)/p'-1/3}||f||_p.$$

Moreover,

(2.17)
$$\left\| \sum_{2^{l} < \varepsilon_{0} \lambda^{1/3}} \alpha_{l} T_{\gamma}^{l} f \right\|_{L^{3/2, \infty}} \leq C_{p} \lambda^{-d/3} \sup_{l} |\alpha_{l}| \|f\|_{L^{3/2, 1}}.$$

Here (2.17) follows by an argument of Bourgain [1] (see also the appendix in [3] for a more general version). Now all estimates in Theorem 1.1 follow by interpolation of (2.17) with trivial $L^1 \to L^1$ and $L^p \to L^\infty$ estimates.

The stronger version in one dimension follows from (the proof of) a theorem by Pan ([13], [14]), using a modification of Hardy space theory (cf. also [17], [20] for related earlier results). To describe this let for every bounded interval Q with center x_Q the function e_Q be defined by $e_Q(y) = e^{i\lambda\Phi(x_Q,y)}$. Denote by E the family of functions $\{e_Q\}$. An E-atom associated with Q is a bounded function supported in Q such that $||a||_{\infty} \leq |Q|^{-1}$, and $\int ae_Q \ dy = 0$. A function $f \in L^1$ belongs to H^1_E if $f = \sum \lambda_Q a_Q$ where $\sum_Q |\lambda_Q| < \infty$ and where the a_Q are E-atoms. The norm in H^1_E is $\inf \sum_Q |\lambda_Q|$ where the infimum is taken over all possible representations of f in the form $\sum \lambda_Q a_Q$. As pointed out in [23], the proof of the standard interpolation theorem for the pair (H^1, L^p) carries over to H^1_E .

If d = 1 the argument of Pan yields

(2.18)
$$\left\| \sum_{2^{l} \leq \varepsilon_{0} \lambda^{1/3}} \alpha_{l} T_{\gamma}^{l} f \right\|_{1} \leq C_{p} \sup_{l} 2^{l} |\alpha_{l}| \|f\|_{H_{\tilde{B}}^{1}}.$$

Now if 1 we can deduce the inequality

(2.19)
$$\left\| \sum_{2^{l} \leq \varepsilon_{0} \lambda^{1/3}} \alpha_{l} T_{\gamma}^{l} f \right\|_{p} \leq C_{p} \lambda^{-1/p'} \sup_{l} \left[2^{l(2-3/p)} |\alpha_{l}| \right] \|f\|_{p}$$

from (2.18) and Theorem 2.1 by analytic interpolation. The proof of Theorem 2.1 will be given in §3.

3. L^2 estimates. We shall only prove the inequality (2.13). The proof of (2.14) is similar and in fact somewhat easier. As in [18], [21], [6] we need finer decompositions motivated in part by the geometry of the situation and in part by the proof of the Calderón–Vaillancourt theorem [2]. For the sake of notational simplicity we shall omit the parameter γ , but all our estimates will be uniform in γ if chosen in a sufficiently small neighborhood of γ_0 .

Let $\chi \in C^{\infty}(\mathbb{R}^{d-1})$ supported in $(-1,1)^{d-1}$ so that $\sum_{n \in \mathbb{Z}^{d-1}} \chi(s'-n) = 1$ for all $s' \in \mathbb{R}^{d-1}$. For $(\mu, \nu) \in \mathbb{Z}^{d-1} \times \mathbb{Z}^{d-1}$ let

$$T_{\mu\nu}^l f(x) = \chi(\lambda^{1/3} x' - \mu) \int e^{i\lambda \Phi(x,y)} \beta_l(x,y) \chi(\lambda^{1/3} y' - \nu) a_\lambda(x,y) f(y) \, dy.$$

We shall use the orthogonality lemma by Cotlar and Stein [24, pp. 279–281] to deduce (2.13) from the following two propositions.

PROPOSITION 3.1. (a) $(T^l_{\mu\nu})^*T^m_{\mu'\nu'}=0$ if $|\mu_i-\mu'_i|\geq 2$ for some $i\in\{1,\ldots,d-1\}.$

- (b) $T_{\mu\nu}^l(T_{\mu'\nu'}^m)^* = 0$ if $|\nu_i \nu_i'| \ge 2$ for some $i \in \{1, \dots, d-1\}$.
- (c) Let $m \leq l$, $2^l \leq \varepsilon_0 \lambda^{1/3}$. There is a constant A, independent of l, m, λ and γ , such that for $|\nu \nu'| \geq A \lambda^{1/3} 2^{-m}$,

$$\begin{split} &\|(T^l_{\mu\nu})^*T^m_{\mu'\nu'}\|_{L^2\to L^2} + \|(T^m_{\mu\nu})^*T^l_{\mu'\nu'}\|_{L^2\to L^2} \\ &\qquad < C_N 2^{-(l+m)/2} \lambda^{-(d-1+N)/3} |\nu-\nu'|^{-N} \end{split}$$

and such that for $|\mu - \mu'| \ge A\lambda^{1/3}2^{-m}$,

$$||T_{\mu\nu}^{l}(T_{\mu'\nu'}^{m})^{*}||_{L^{2}\to L^{2}} + ||T_{\mu\nu}^{m}(T_{\mu'\nu'}^{l})^{*}||_{L^{2}\to L^{2}}$$

$$\leq C_{N}2^{-(l+m)/2}\lambda^{-(d-1+N)/3}|\mu-\mu'|^{-N}.$$

(d) There is a constant b, independent of l, m, λ and γ , such that for m < l - b, $2^l \le \varepsilon_0 \lambda^{1/3}$,

$$\begin{split} \|(T^{l}_{\mu\nu})^{*}T^{m}_{\mu'\nu'}\|_{L^{2}\to L^{2}} + \|(T^{m}_{\mu\nu})^{*}T^{l}_{\mu'\nu'}\|_{L^{2}\to L^{2}} \\ &\leq C_{N}2^{(l+m)/2}\lambda^{-d}2^{m-l}(2^{m}\lambda^{-1/3})^{2N-2d-1}, \\ \|T^{l}_{\mu\nu}(T^{m}_{\mu'\nu'})^{*}\|_{L^{2}\to L^{2}} + \|T^{m}_{\mu\nu}(T^{l}_{\mu'\nu'})^{*}\|_{L^{2}\to L^{2}} \\ &\leq C_{N}2^{(l+m)/2}\lambda^{-d}2^{m-l}(2^{m}\lambda^{-1/3})^{2N-2d-1}. \end{split}$$

PROPOSITION 3.2. The estimate

$$||T_{\mu\nu}^l||_{L^2 \to L^2} \le C2^{l/2} \lambda^{-d/2}$$

holds uniformly in l, μ , ν and γ .

We now apply the Cotlar-Stein lemma in the following form: Let $\{S_j\}$ be a family of operators on a Hilbert space, indexed by $j=(\mu,\nu,l)\in \mathbb{Z}^{d-1}\times\mathbb{Z}^{d-1}\times\mathbb{Z}$, only finitely many being $\neq 0$. Then

$$\left\| \sum_{j} S_{j} \right\| \leq C \sum_{r \in \mathbb{Z}^{2d-1}} \sup_{j-j'=r} \left[\|S_{j} S_{j'}^{*}\|^{1/2} + \|S_{j}^{*} S_{j'}\|^{1/2} \right].$$

In order to apply this one checks that Propositions 3.1 and 3.2 with N=10d imply the weaker estimate

$$||T^{l}_{\mu\nu}(T^{m}_{\mu'\nu'})^{*}||_{L^{2}\to L^{2}} + ||(T^{l}_{\mu\nu})^{*}T^{m}_{\mu'\nu'}||_{L^{2}\to L^{2}}$$

$$\leq C2^{(l+m)/2}\lambda^{-d}2^{-|l-m|}(1+|\nu-\nu|')^{-2d}(1+|\mu-\mu|')^{-2d}$$

and now the Cotlar-Stein lemma clearly yields (2.13).

Proof of Proposition 3.1. Parts (a) and (b) follow immediately from the definitions. Now notice that $(T^m_{\mu\nu})^*T^l_{\mu'\nu'}$ is the adjoint of $(T^l_{\mu\nu})^*T^m_{\mu'\nu'}$ and $T^m_{\mu\nu}(T^l_{\mu'\nu'})^*$ is the adjoint of $T^l_{\mu\nu}(T^m_{\mu'\nu'})^*$. So it suffices to show the required bounds for $(T^m_{\mu\nu})^*T^l_{\mu'\nu'}$ and $T^m_{\mu\nu}(T^l_{\mu'\nu'})^*$ if $m \leq l$. In fact, we shall only give the proof for the boundedness of $(T^l_{\mu\nu})^*T^m_{\mu'\nu'}$ and in view of the symmetry of our assumptions the corresponding estimates for $T^l_{\mu\nu}(T^m_{\mu'\nu'})^*$ follow by the same arguments, or by realizing that the adjoint of $T^l_{\mu\nu}$ is essentially $(T^*)^l_{\nu\mu}$.

We now have to estimate the kernel $K^{lm}_{\mu\mu',\nu\nu'}$ of $(T^m_{\mu\nu})^*T^l_{\mu'\nu'}$. Here

$$K^{lm}_{\mu\mu',\nu\nu'}(y,z) = \overline{\chi}(\lambda^{1/3}y'-\nu)\chi(\lambda^{1/3}z'-\nu')K^{lm}_{\mu\mu'}(y,z)$$

where

$$K^{lm}_{\mu\mu'}(y,z) = \int e^{i\lambda(\Phi(x,y) - \Phi(x,z))} \varrho^{lm}_{\mu\mu'}(x,y,z) dx$$

and

$$\varrho_{\mu\mu'}^{lm}(x,y,z) = \overline{a_{\lambda,\gamma}(x,y)\beta_m(x,y)\chi(\lambda^{1/3}x'-\mu)}a_{\lambda,\gamma}(x,z)\beta_l(x,z)\chi(\lambda^{1/3}x'-\mu').$$

We shall use Schur's lemma, by which the L^2 norm of an integral operator T_K with kernel K(x,y) satisfies

$$||T_K||_{L^2 \to L^2} \le \left(\sup_x \int |K(x,y)| \, dy\right)^{1/2} \left(\sup_y \int |K(x,y)| \, dx\right)^{1/2}.$$

The estimate in part (c) of Proposition 3.1 for $(T_{\mu\nu}^m)^*T_{\mu'\nu'}^l$ follows from

LEMMA 3.3. Suppose $m \leq l$ and $2^l \leq \varepsilon_0 \lambda^{1/3}$. There is a constant A such that for $|\nu - \nu'| \geq A \lambda^{1/3} 2^{-m}$,

(3.1)
$$\sup_{y} \int |K_{\mu\mu',\nu\nu'}^{lm}(y,z)| dz \le C_N 2^{-l} \lambda^{-(d-1+N)/3} |\nu - \nu'|^{-N},$$

(3.2)
$$\sup_{x} \int |K_{\mu\mu',\nu\nu'}^{lm}(y,z)| \, dy \le C_N 2^{-m} \lambda^{-(d-1+N)/3} |\nu-\nu'|^{-N}.$$

Part (d) of Proposition 3.1 follows from

LEMMA 3.4. There is a positive constant $b \ge 1$ such that for m < l - b, $2^l \le \varepsilon_0 \lambda^{1/3}$,

(3.3)
$$\sup_{z} \int |K_{\mu\mu',\nu\nu'}^{lm}(y,z)| \, dy \le C_N 2^m \lambda^{-d} (2^m \lambda^{-1/3})^{2N-2d-1}$$

$$(3.4) \quad \sup_{y} \int |K^{lm}_{\mu\mu',\nu\nu'}(y,z)| \, dz \leq C_N 2^{2m-l} \lambda^{-d} (2^m \lambda^{-1/3})^{2N-2d-1}. \quad \blacksquare$$

Proof of Lemma 3.3. We integrate by parts with respect to the x' variables. Note that $|y'-z'| \approx \lambda^{-1/3} |\nu-\nu'| \geq A2^{-m}$ for the relevant y', z' (for which $\overline{\chi}(\lambda^{1/3}y'-\nu)\chi(\lambda^{1/3}z'-\nu')\neq 0$) and that

$$(3.5) y_d - z_d = u(x, y') - u(x, z') + O(2^{-m}) = O(2^{-m} + |y' - z'|).$$

Now $\Phi_{x',u_{\varepsilon}}^{"}=O(\varepsilon)$ by (2.1) and therefore

$$\begin{split} &\varPhi_{x'}'(x,y) - \varPhi_{x'}'(x,z) = \varPhi_{x'y'}'(x,z)(y'-z') + O(\varepsilon|y'-z'| + \varepsilon 2^{-m} + |y'-z'|^2) \\ &\text{so that with our assumption on } \nu, \nu', \end{split}$$

$$|\Phi'_{x'}(x,y) - \Phi'_{x'}(x,z)| \ge c\lambda^{-1/3} |\nu - \nu'|.$$

For any smooth F we see from (3.5) that

$$|F(x,y) - F(x,z)| \le C[2^{-m} + |y' - z'|] \le C' \lambda^{-1/3} |\nu - \nu'|.$$

Since $a \in \mathfrak{S}_{1/3}$ and since $\varrho_{\mu\mu'}^{lm} \in \mathfrak{S}_{1/3}$ uniformly in l, m, μ, μ' (for $2^l, 2^m < \lambda^{1/3}$) we obtain by integration by parts

$$\begin{split} \int |K^{lm}_{\mu\mu',\nu\nu'}(y,z)| \, dz &\leq C \underbrace{\int \int \int \int \int \lambda^{N/3} (\lambda^{2/3} |\nu - \nu'|)^{-N}}_{\substack{|z' - \lambda^{-1/3}\nu'| \leq 2\lambda^{-1/3} \\ |x' - \lambda^{-1/3}\mu| \leq 2\lambda^{-1/3} \\ |z_d - u(x,z')| \leq C2^{-l}}}_{\times \chi_{\varOmega}(x,z) \, dz_d \, dx' \, dx_d \, dz'} \\ &\leq C2^{-l} \lambda^{-2(d-1)/3} (\lambda^{1/3} |\nu - \nu'|)^{-N}, \end{split}$$

which is (3.1). Similarly we prove (3.2).

In order to prove Lemma 3.4 and Proposition 3.2 we need to examine the kernel of $K^{lm}_{\mu\mu',\nu\nu'}$ for $|\nu-\nu'| \leq A\lambda^{1/3}2^{-m}$; here we have to use more refined integration by parts arguments. In the process we have to examine equations of the form $\Phi'_x(x,y) = \Phi'_x(x,z)$ for fixed (x,z) or $\Phi'_y(x,y) = \Phi'_y(w,y)$ for fixed (w,y). In view of (2.5) we may solve in y' in the first equation and define a function $y' = \mathfrak{h}$ by

$$\Phi'_{x'}(x,\mathfrak{y}(y_d,x,z),y_d)=\Phi'_{x'}(x,z).$$

Implicit differentiation yields

$$\left. \Phi_{x'y'}^{\prime\prime} \frac{\partial \mathfrak{y}}{\partial y_d} + \Phi_{x'y_d}^{\prime\prime} \right|_{(x,\mathfrak{y},y_d)} = 0$$

so that by (2.1),

(3.6)
$$\frac{\partial \mathfrak{n}}{dy_d} = O(\varepsilon).$$

Furthermore with

$$Q_i(x,y) := \left\langle \Phi'''_{x_iy'y'} \frac{\partial \mathfrak{y}}{\partial y_d}, \frac{\partial \mathfrak{y}}{\partial y_d} \right\rangle$$

and $Q = (Q_1, \ldots, Q_{d-1})$ we have

$$\Phi_{x'y'}^{"}\frac{\partial^2\mathfrak{y}}{(\partial y_d)^2} + Q + 2\Phi_{x'y_dy'}^{"}\frac{\partial\mathfrak{y}}{\partial y_d} + \Phi_{x'y_dy_d}^{"} = 0.$$

We expand

(3.7)
$$\Phi'_{x_d}(x, \mathfrak{y}, y_d) - \Phi'_{x_d}(x, z', z_d)$$

$$= \sigma_0(x, z)(y_d - z_d) + \sigma_1(x, z)(y_d - z_d)^2 + \sigma_2(x, y, z)(y_d - z_d)^3$$

where σ_0 is as in (2.9) and

$$2\sigma_{1}(x,z) = \left\langle \varPhi_{x_{d}y'y'}^{\prime\prime\prime} \frac{\partial \mathfrak{y}}{\partial y_{d}}, \frac{\partial \mathfrak{y}}{\partial y_{d}} \right\rangle + 2\varPhi_{x_{d}y_{d}y'}^{\prime\prime\prime} \frac{\partial \mathfrak{y}}{\partial y_{d}} + \varPhi_{x_{d}y'}^{\prime\prime} \frac{\partial^{2} \mathfrak{y}}{(\partial y_{d})^{2}} + \varPhi_{x_{d}y_{d}y_{d}}^{\prime\prime\prime} \bigg|_{(x,z)};$$

it follows from (2.7), (2.2), (2.3) and (3.6) that, near (x_0, y_0) ,

$$(3.8) |\sigma_1(x,y)| \ge c_0 > 0.$$

Next observe for later application that $z'-\eta(y_d,x,z',z_d)=O(\varepsilon|y_d-z_d|)$ by (3.6) and therefore

$$y' - \eta(y_d, x, z', z_d) = y' - z' + O(\varepsilon |y_d - z_d|).$$

From this we also see that

$$u(x, y(y_d, x, z', z_d)) - u(x, z') = O(\varepsilon |y_d - z_d|)$$

and

(3.9)
$$u(x,y') - u(x,z') = O(|y' - \eta(y_d, x, z)| + \varepsilon |y_d - z_d|).$$

Finally, observe that

(3.10)
$$\frac{\partial \mathfrak{y}}{\partial z'} = (\Phi''_{xy})^{-1}(x,\mathfrak{y},y_d)\Phi''_{xy}(x,z) = \mathrm{Id} + O(\varepsilon).$$

Proof of Lemma 3.4. Suppose that m < l - b and that $(x, y, z) \in \sup \varrho_{\mu\mu'}^{lm}$, so $C_0^{-1}2^{-m} \le |y_d - u(x, y')| \le C_02^{-m}$ and $C_0^{-1}2^{-l} \le |z_d - u(x, z')| \le C_02^{-m}$, and we may assume that $2^{-b} \ll C_0^{-1}$. Then by (3.7), (3.8),

$$|\Phi'_{x'}(x,y) - \Phi'_{x'}(x,z)| \approx |y' - \mathfrak{y}(y_d,x,z)|,$$

 $|\Phi'_{x_d}(x,y) - \Phi'_{x_d}(x,z)| \ge c_1[|y_d - z_d|^2 - |y' - \mathfrak{y}(y_d,x,z)|]$

and, for our choice of y, z,

$$|y_d - z_d| \ge c2^{-m} - C|y' - \mathfrak{y}(y_d, x, z)|$$

(cf. (3.8)). Therefore

$$|\Phi'_x(x,y) - \Phi'_x(x,z)| \ge c_2[2^{-2m} + |y' - \mathfrak{y}(y_d,x,z)|].$$

Since $\eta(z_d, x, z) = z'$ we see that for any smooth function

$$|F(x,y)-F(x,z)| \leq C[|y_d-z_d|+|y'-\mathfrak{y}(y_d,x,z)|],$$

which is used for F being a higher order derivative of Φ .

Now straightforward integration by parts yields

$$|K_{\mu\mu'}^{lm}(y,z)| \le C_N \int\limits_{D_{l\mu}(z)\cap D_{m\mu}(y)} \frac{\lambda^{N/3}}{(\lambda[2^{-2m} + |y' - \mathfrak{y}(y_d, x, z', z_d)|])^N} dx$$

with $D_{l\mu}(z) = \{x : (x, z) \in \operatorname{supp} \sigma_0\}$, and $D_{m\mu}(y)$ is similarly defined. We now estimate $\int |K_{\mu\mu',\nu\nu'}^{lm}(y,z)| dz$. For fixed x', z_d let

$$\mathcal{E}_{lm\nu',n}(x',z_d) = \{(z',x_d) : |\lambda^{1/3}z' - \nu'| \le 2, \ 2^{-l-1} \le |\sigma_0(x,z')| \le 2^{-l+1}, \\ 2^{-2m+n-1} \le |y' - \mathfrak{y}(y_d,x,z)| \le 2^{-2m+n} \}.$$

We claim that

(3.12)
$$|\mathcal{E}_{lm\nu',n}(x',z_d)| \le C2^{-l} \min\{2^{(n-2m)(d-1)}, \lambda^{-(d-1)/3}\}.$$

This is clear if $2^{n-2m} \geq \lambda^{-1/3}$ since $\mathcal{E}_{lm\nu',n}(z',z_d)$ is contained in the set of all (z',x_d) with $|z'-\lambda^{-1/3}\nu'| \leq 2\lambda^{-1/3}$ and $|x_d-v(z,x')| \leq C2^{-l}$. If $2^{n-2m} \leq \lambda^{-1/3}$ observe that $x_d-v(z,x')=x_d-v(\lambda^{-1/3}\nu',z_d,x')+O(\lambda^{-1/3})$ so since $2^l \leq \lambda^{1/3}$ we see that in this case $\mathcal{E}_{lm\nu',n}(x',z_d)$ is contained in the set of all (z',x_d) with $|x_d-v(\lambda^{-1/3}\nu',z_d,x')| \leq C2^{-l}$ and $|y'-\mathfrak{y}(y_d,x,z)| \leq 2^{-2m+n+1}$. Note that by (3.10) the set $\{z':(z',x_d)\in\mathcal{E}_{lm\nu',n}\}$ has measure $O(2^{(n-2m)(d-1)})$. In either case (3.12) follows by Fubini's theorem.

We obtain

$$\int |K_{\mu\mu',\nu\nu'}^{lm}(y,z)| dz \leq \sum_{0 \leq n \leq 2m} \int_{z_d} \int_{|\lambda^{1/3}x' - \mu| \leq 2} \lambda^{N/3} (\lambda 2^{-2m+n})^{-N} \\
\times |\mathcal{E}_{lm\nu',n}(x',z_d)| dx' dz_d \\
\leq C_N' 2^{-l} 2^{2m(N-d+1)} \lambda^{-(2N+d-1)/3},$$

which is (3.4). The estimate (3.3) is slightly easier and follows by a similar argument. \blacksquare

Proof of Proposition 3.2. We need a finer localization with respect to the x_d variables. Denote by $\mathcal{K}^l_{\mu\nu}$ the kernel of $T^l_{\mu\nu}$, let $\delta > \varepsilon_0$ be small (not depending on l) and $n = (n_1, n_2) \in \mathbb{Z}^2$, and let $T^{l,n}_{\mu\nu}$ be the integral operator with kernel

$$\mathcal{K}_{\mu\nu}^{l,n}(x,y) = \mathcal{K}_{\mu\nu}^{l}(x,y)\chi(2^{l}\delta^{-1}x_{d} - n_{1})\chi(2^{l}\delta^{-1}y_{d} - n_{2}).$$

It is immediate that $(T_{\mu\nu}^{l,n})^*T_{\mu\nu}^{l,n'}=0$ if $|n_1-n_1'|>2$ and $T_{\mu\nu}^{l,n}(T_{\mu\nu}^{l,n'})^*=0$ if $|n_2-n_2'|>2$. Now if $|y_d-u(x,y')|\approx 2^{-l}\approx |z_d-u(x,z')|$, then $|x'-y'|\leq \delta 2^{-l}$ forces $|y_d-z_d|\approx 2^{-l}$. This shows that $T_{\mu\nu}^{l,n}(T_{\mu\nu}^{l,n'})^*=0$ if $|n_1-n_1'|\geq C\delta^{-1}$, for appropriate C independent of l. Similarly, since $|y_d-u(x,y')|$

 $\approx |x_d - v(y, x')|$ we see that by the same argument $T_{\mu\nu}^{l,n}(T_{\mu\nu}^{l,n'})^* = 0$ if $|n_2 - n_2'| \ge C\delta^{-1}$.

Hence

$$T_{\mu\nu}^{l,n}(T_{\mu\nu}^{l,n'})^* = 0$$
 if $|n-n'| \ge C'\delta^{-1}$

and by the Cotlar-Stein lemma it suffices to prove the uniform bound

(3.13)
$$||T_{\mu\nu}^{l,n}||_{L^2 \to L^2} = O(2^l \lambda^{-d}).$$

We fix l, n, μ and ν and set $R = T_{\mu\nu}^{l,n}$. To check (3.13) we need a finer decomposition in the x_d variables, in order to handle $\mathfrak{S}_{1/3}$ amplitudes. Let \mathcal{K} denote the kernel of R. Given integers σ and τ we let $R_{\sigma,\tau}$ be the integral operator with kernel

$$\mathcal{K}_{\sigma,\tau}(x,y) = \mathcal{K}(x,y)\chi(\lambda^{1/3}x_d - \sigma)\chi(\lambda^{1/3}y_d - \tau)$$

so that $R = \sum_{\sigma,\tau} R_{\sigma,\tau}$. We shall show that

$$||R_{\sigma\tau}^*R_{\sigma'\tau'}||_{L^2\to L^2} + ||R_{\sigma\tau}R_{\sigma'\tau'}^*||_{L^2\to L^2} \le C2^l \lambda^{-d} (1+|\sigma-\sigma'|)^{-2} (1+|\tau-\tau'|)^{-2}.$$

Observe that we only get a nontrivial contribution if $|\sigma - \sigma'| + |\tau - \tau'| \ll \lambda^{1/3} 2^{-l}$. Moreover, $R_{\sigma\tau}^* R_{\sigma'\tau'} = 0$ if $|\sigma - \sigma'| \geq 2$ and $R_{\sigma\tau} R_{\sigma'\tau'}^* = 0$ if $|\tau - \tau'| \geq 2$.

The proposition follows from almost orthogonality if we take into account the following lemmata.

LEMMA 3.5. For $|\tau - \tau'| \ge 2$,

$$(3.14) ||R_{\sigma\tau}^* R_{\sigma'\tau'}||_{L^2 \to L^2} \le C2^l \lambda^{-d} (1 + |\tau - \tau'|)^{-2d},$$

$$(3.15) ||R_{\sigma\tau}R_{\sigma'\tau'}^*||_{L^2\to L^2} \le C2^l\lambda^{-d}(1+|\sigma-\sigma'|)^{-2d}.$$

LEMMA 3.6. We have

(3.16)
$$||R_{\sigma\tau}||_{L^2 \to L^2} \le C2^{l/2} \lambda^{-d/2}. \blacksquare$$

Proof of Lemma 3.5. We shall only show (3.14), in fact a better estimate involving decay factors of the form $(2^l\lambda^{-1/3})^M$. By the symmetry of the assumptions, (3.15) follows in the same way.

As before, we shall use integration by parts to estimate the kernel $H_{\sigma\sigma',\tau\tau'}$ of $R_{\sigma\tau}^*R_{\sigma'\tau'}$; to this end we have to examine the behavior of $\varPhi'_{x_d}(x,y) - \varPhi'_{x_d}(x,z)$ given that $|y'-\lambda^{-1/3}\nu| \leq 2\lambda^{-1/3}, \ |z'-\lambda^{-1/3}\nu| \leq 2\lambda^{-1/3}, \ |x'-\lambda^{-1/3}\mu| \leq 2\lambda^{-1/3}, \ |y_d-\lambda^{-1/3}\tau| \leq 2\lambda^{-1/3}, \ |z_d-\lambda^{-1/3}\tau'| \leq 2\lambda^{-1/3}, \ |x_d-\lambda^{-1/3}\sigma| \leq 2\lambda^{-1/3}.$

In view of our previous localization we assume that $|y_d-z_d| \leq \lambda^{-1/3}|\tau-\tau'| \ll 2^{-l}$ so that in the expansion (3.7) the first term is dominant and comparable to $2^{-l}|y_d-z_d|$. Arguing as in the proof of Lemma 3.4 we see that

$$|\Phi'_x(x,y) - \Phi'_x(x,z)| \ge c[2^{-l}|y_d - z_d| + |y' - \mathfrak{y}(y_d,x,z)|]$$

and integration by parts yields

$$|H_{\sigma\sigma',\tau\tau'}(y,z)| \leq C \iint\limits_{\substack{|\lambda^{1/3}x'-\mu| \leq 2\\ |\lambda^{1/3}x_d-\sigma| \leq 2}} \frac{\lambda^{N/3}}{\lambda^N(2^{-l}|y_d-z_d|+|y'-\mathfrak{y}(y_d,x,z)|)^N} \, dx.$$

This is a favorable estimate for the range $|y_d - z_d| \ge \varepsilon 2^l \lambda^{-2/3}$; in particular, always when $|\tau - \tau'| \ge 2$.

Indeed, if $\mathcal{E}_{l,y_d,z_d,n} = \{z': |y'-\mathfrak{y}(y_d,x,z)| \leq 2^{-l+n}|y_d-z_d|\}$ then $|\mathcal{E}_{l,y_d,z_d,n}| \leq C(2^{-l+n}|y_d-z_d|)^{d-1}$ and therefore, for $|\tau-\tau'| \geq 2$,

$$\int |H_{\sigma\sigma', au au'}(y,z)|\,dz$$

$$\leq C \sum_{n>0} \lambda^{-(d+1)/3} \lambda^{N/3} (\lambda^{2/3} 2^{-l+n} |\tau - \tau'|)^{-N} (2^{-l+n} \lambda^{-1/3} |\tau - \tau'|)^{d-1}$$

(the x integration yields a factor of $\lambda^{-d/3}$ and the z_d integration yields a factor of $\lambda^{-1/3}$). As we chose N=10d we may certainly sum in n and the result is that

$$\int |H_{\sigma\sigma',\tau\tau'}(y,z)| \, dz \le C 2^l \lambda^{-d} (2^l \lambda^{-1/3})^{N-d} |\tau-\tau'|^{d-1-N}. \quad \blacksquare$$

Proof of Lemma 3.6. We shall estimate the kernel $H_{\sigma,\tau} := H_{\sigma\sigma,\tau\tau}$ of $R_{\sigma\tau}^*R_{\sigma\tau}$. Now if we argued as in the proof of Lemma 3.5 we would not be able to get the favorable estimate if $\lambda^{-2/3} \leq |y_d - z_d| \leq \varepsilon 2^l \lambda^{-2/3}$. Instead we have to make a linear change of coordinates taking into account the geometry of the fold surface.

Let

$$X = X_{\mu\sigma} = (\mu \lambda^{-1/3}, \sigma \lambda^{-1/3}), \quad Y = Y_{\mu\nu\tau} = (\nu \lambda^{-1/3}, u(X_{\mu\sigma}, \nu \lambda^{-1/3})).$$

Let $A = \Phi''_{xy}(X_{\mu\sigma}, Y_{\mu\nu\tau})$; then rank A = d-1 and we may choose a unit vector U in the kernel of A. Let $\Pi_{U^{\perp}}$ be the projection to the hyperplane orthogonal to U.

Now for the relevant (x,z) we have $|(x,z)-(X_{\sigma\tau},Y_{\mu\nu\tau})|\leq C2^{-l}$ and therefore

(3.17)
$$\Phi''_{x_i y}(x, z) U = O(2^{-l})$$

(improving the previous estimate $O(\varepsilon)$ in (2.2)). Also note that $|\mathcal{H}_{U^{\perp}}e_d|$ = $O(\varepsilon)$.

We argue as in the previous proofs (taking the better estimate (3.17) into account) and obtain

$$\begin{aligned} |\varPhi'_{x'}(x,y) - \varPhi'_{x'}(x,z)| &\geq C_0 |\varPi_{U^{\perp}}(y-z)| - C_1 2^{-l} |y_d - z_d| - C_2 |y-z|^2, \\ |\varPhi'_{x_d}(x,y) - \varPhi'_{x_d}(x,z)| &\geq C_0 2^{-l} |y_d - z_d| - C_1 \varepsilon |\varPi_{U^{\perp}}(y-z)| - C_2 |y-z|^2. \end{aligned}$$

and consequently

$$|\Phi'_x(x,y) - \Phi'_x(x,z)| \ge c_1 2^{-l} |y_d - z_d| + c_2 |\Pi_{U^{\perp}}(y-z)|.$$

Integration by parts yields

$$|H_{\sigma,\tau}(y,z)| \le C\lambda^{-d/3} \frac{\lambda^{N/3}}{\lambda^N (2^{-l}|y_d - z_d| + |\Pi_{U^{\perp}}(y - z)|)^N}.$$

We use this if either $|y_d - z_d| \ge 2^l \lambda^{-2/3}$ or $|\Pi_{U^{\perp}}(y - z)| \ge \lambda^{-2/3}$.

If both $|y_d - z_d| \leq 2^l \lambda^{-2/3}$ and $|H_{U^{\perp}}(y - z)| \leq \lambda^{-2/3}$ then we just use the trivial estimate $|H_{\sigma,\tau}(y,z)| \leq C\lambda^{-d/3}$. Combining the estimates and integrating we obtain

$$\sup_{u} \int |H_{\sigma,\tau}(y,z)| \, dz + \sup_{z} \int |H_{\sigma,\tau}(y,z)| \, dy \le C 2^{l} \lambda^{-d}. \quad \blacksquare$$

References

- [1] J. Bourgain, Estimations de certaines fonctions maximales, C. R. Acad. Sci. Paris Sér. I Math. 301 (1985), 499-502.
- [2] A. P. Calderón and R. Vaillancourt, A class of bounded pseudodifferential operators, Proc. Nat. Acad. Sci. U.S.A. 69 (1972), 1185-1187.
- [3] A. Carbery, A. Seeger, S. Wainger and J. Wright, Classes of singular integral operators along variable lines, J. Geom. Anal., to appear.
- [4] M. Christ, Failure of an endpoint estimate for integrals along curves, in: Fourier Analysis and Partial Differential Equations, J. García-Cuerva, E. Hernandez, F. Soria and J. L. Torrea (eds.), Stud. Adv. Math., CRC Press, 1995, 163-168.
- [5] A. Comech, Oscillatory integral operators in scattering theory, Comm. Partial Differential Equations 22 (1997), 841-867.
- [6] S. Cuccagna, L² estimates for averaging operators along curves with two-sided k-fold singularities, Duke Math. J. 89 (1997), 203-216.
- [7] A. Greenleaf and A. Seeger, Fourier integral operators with fold singularities, J. Reine Angew. Math. 455 (1994), 35-56.
- [8] —, Fourier integral operators with simple cusps, Amer. J. Math., to appear.
- A. Greenleaf and G. Uhlmann, Estimates for singular Radon transforms and pseudo-differential operators with singular symbols, J. Funct. Anal. 89 (1990), 202-232.
- [10] L. Hörmander, Fourier integral operators I, Acta Math. 127 (1971), 79-183.
- [11] —, Oscillatory integrals and multipliers on FL^p, Ark. Mat. 11 (1973), 1-11.
- [12] R. Melrose and M. Taylor, Near peak scattering and the correct Kirchhoff approximation for a convex obstacle, Adv. Math. 55 (1985), 242-315.
- [13] Y. Pan, Hardy spaces and oscillatory integral operators, Rev. Mat. Iberoamericana 7 (1991), 55-64.
- [14] —, Hardy spaces and oscillatory integral operators, II, Pacific J. Math. 168 (1995), 167-182.
- [15] Y. Pan and C. D. Sogge, Oscillatory integrals associated to folding canonical relations, Colloq. Math. 61 (1990), 413-419.

- [16] D. H. Phong, Singular integrals and Fourier integral operators, in: Essays on Fourier Analysis in Honor of Elias M. Stein (C. Fefferman, R. Fefferman and S. Wainger, eds.), Princeton Math. Ser. 42, Princeton Univ. Press, 1995, 286-320.
- [17] D. H. Phong and E. M. Stein, Hilbert integrals, singular integrals and Radon transforms I, Acta Math. 157 (1986), 99-157.
- [18] —, Radon transforms and torsion, Internat. Math. Res. Notices 4 (1991), 49-60.
- [19] —, Models of degenerate Fourier integral operators and Radon transforms, Ann. of Math. 140 (1994), 703-722.
- [20] F. Ricci and E. M. Stein, Harmonic analysis on nilpotent groups and singular integrals I. Oscillatory integrals, J. Funct. Anal. 73 (1987), 179-194.
- [21] A. Seeger, Degenerate Fourier integral operators in the plane, Duke Math. J. 71 (1993), 685-745.
- [22] H. Smith and C. D. Sogge, L^p regularity for the wave equation with strictly convex obstacles, Duke Math. J. 73 (1994), 97-153.
- [23] E. M. Stein, Oscillatory integrals in Fourier analysis, in: Beijing Lectures in Harmonic Analysis, Princeton Univ. Press, Princeton, N.J., 1986, 307–356.
- [24] —, Harmonic Analysis: Real Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, 1993.
- [25] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton, N.J., 1971.

Department of Mathematics University of Rochester Rochester, New York 14627 U.S.A.

E-mail: allan@math.rochester.edu

Department of Mathematics University of Wisconsin Madison, Wisconsin 53706 U.S.A.

E-mail: seeger@math.wisc.edu

Received August 11, 1997

(3939)