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On oscillatory integral operators
with folding canonical relations

by

ALLAN GREENLEAT (Rochester, NY.) and
ANDREAS SEEGER (Madison, Wisc.)

Abstract. Sharp LP estimates are proven for oscillatory integrals with phase functions
&(z,y), (z,7) € X x ¥, under the assumption that the canonical relation Cg projects to
T*X and T*Y with fold singularities.

1. Introduction. Let X and Y be open sets in B? and let 2 C X x Y
be a bounded open set whose closure is contained in X x Y. We consider
oscillatory integral operators T, - given by

(1.1) T, £1(2) = (7@ ay (2, 9) f (v) dy.

Here A > 1 and + is a parameter in a manifold I'. We assume that ax 4 €
C5°(£2) and that &(-,-,7) € C®(X x Y) is a real-valued phase function;
moreover, ay,y, H(-,-,7y) and their derivatives depend continuously on .

Tt may sometimes be convenient to admit some growth in A for the (z,y)
derivatives of the amplitude. Let 0 < § < 1. We shall say that the family of
amplitudes a = {ay} belongs to the class G5(£2) if supp ax,y C {2 and if
(1.2) sup |0200ax~(2,y)| < C pAS Ul D,

(my)ER
This definition is made in analogy to the standard symbol classes S, s, al-
though there is no parameter g since we do not impose differentiability con-
ditions with respect to the parameter A. If C,, g denote the best constants
in (1.2) then we define

lalle; = sup{Ca,s : |ax], 8] < N}
for some large V; the choice N = 10d is admissible and we shall make this
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128 A. Greenleaf and A. Seeger

choice. We shall often suppress the dependence on @ and ~ and then denote
by T the operator f — T 4[a, f].

Clearly, T is bounded on all L?(R?) but the interesting issue is the
dependence on A of the operator norm. As is well known the L? bdunds
depend on the geometry of the canonical relation

(1.3) Co={(z,P,,y,-P,): (z,y) € X xY¥}.

In. particular, if Cs is locally a cancnical graph (this being equivalent to
det &Y, # 0) and a € &, then the L? operator norm of T} is O(A~%/2); sce
Hérmander [11]. Hence the operator norm on LP is O(A~%2)\41/P~1/21) and
if p < 2 this is also a bound for the L? — L¥ operator norm. These bound-
edness properties can be extended to operators with amplitudes in &, /2, by
combining Hérmander's proof with arguments in the proof of the Calderén-
Vaillancourt theorem for pseudo-differential operators [2]; see also [9] for
related statements on Fourier integral operators associated with canonical
graphs.

In this paper we consider the case where the projections 7y, : Cg — T* X,
TR : Cg — T™Y may have at most two-sided fold singularities; that is, we
assume that 7 and Tg are Whitney folds where they are singular, Cp is
then called a folding canonical relation. L? estimates for operators with
folding canonical relations are well known. The singularitics cause a loss
of AY/€ for the operator norms; i.e. ||Th||p2mz2 = OA~Y2+1/6) Thig was

shown by Pan and Sogge [15] relying on the fundamental work of Melrose

and Taylor [12] on normal forms for folding canonical relations. Different
arguments and improvements have been given in a number of papers: see
Phong and Stein [18], [16], Seeger [21] for averaging operators in the plane,
Smith and Sogge [22] for Fourier integral operators and Cuccagna [8] for
general oscillatory integral operators.

Here we prove sharp LP-— LY inequalities except for the exponents (p, @)
= (3/2,3/2) or (p,q) = (3,3). We also prove a sharpened version of the
known L? inequality (cf. Theorem 2.1), which leads to sharp I? inequalities
in one dimension, including endpeint estimates.

THEOREM 1.1. Let {®(:,-,7)} be a family of phase functions defined for
(z,y) near a point (zo,y0) € R* x RY and near v = . Let Co be the
canoniecal relation for $(-,-,vo) and assumne that Cy is a folding canonical
relation. Then there is a neighborhood £2 of (xo,y0) and e neighborhood V
of Yo so that for oll y € V and all a € &y 5(12) ‘

H

[Taqla, Alllg < CA=*PDYg] s, | F]ls

here
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(14)  alpg)
a/p' fl<p<3/2andp<q=<p/?
(d—2/3)/p' +(3g)"" if 1<p<3/2andp//2<g<y,
=< (d—2/3)/3+(3q) ¥ p=3/2and3/2<gqg<y,
(d~2/3)/p"+(Bg)™" i 3/2<p<2andp<qgsy,
(d—1/3)/q fl<p<2andyp <q.
Moreover, if 2< p < g then a(p,q) = al¢’, p').

We conjecture that the missing endpoint L3/? inequality holds but we can
prove this endpoint inequality only in the case d = 1. In higher dimensions
we only prove a restricted weak type inequality, which still suffices to deduce
the other inequalities stated in Theorem 1.1. In the following theorem IF¥
denotes the familiar Lorentz space (see [25, Ch. V]).

THEOREM 1.2. With the same assumptions as in Theorem 1.1 the fol-
lowing holds.

(i) The operator Ty ~la,"] maps L3> boundedly to L3/%> and L'
boundedly to L>, with operator norm O(A~%3|al|s, ,)-

(ii) If d = 1 then T 4[a,-] maps L3/* boundedly to L¥? and L*® boundedly
to L3, with operator norm O(A"*/3||alls, ).

REMARKS. (i) Theorem 1.1 for 1 < p < 2 follows by interpolation from
the cases (p, @) = {1,1), (1,00), (2,2) and the restricted weak type (3/2,3/2)
inequality of Theorem 1.2. The first two cases are trivial, and the L? inequal-
ity is known at least for & amplitudes ([15]). In view of the symmetry of
our assumption the appropriate estimates for p > 2 follow by applying the
estimates for p < 2 to the adjoint operator 175 .

(ii) The estimates are sharp as one can see by considering the model
&(z,y) = (2',y") + (za — ya)®. In fact, our proof shows that the endpoint
inequality | Th||ps_ 2 = O(XA~%3) is true for this example.

(iii) If additional curvature assumptions are imposed on the projections
of the fold surface to the fibers T2 X, T;Y then the I — L? and L* — L¥
estimates can be improved (see Theorem 2.2 in [7]).

(iv) The L? estimates should be compared with analogous results on
Fourier integral operators F of order «, associated with folding cancnical
relations (here d > 2). Namely,  is bounded on I? for @ £ —(d — 1)
x|1/p—1/2|if3 <p < ooorl<p <3/2andfor e < —1/6—(d-2)[1/p—1/2]
if 3/2 < p < 3 (here equality is established if d = 2). This was proved by
Smith and Sogge [22]; see also the related results for Radon transforms
in [18], [21] and [19]. The analogy breaks down for the critical exponents
3/2 and 3, since the L%? or L? boundedness of F may fail to hold for
operators of arder —(d — 1)/6; cf. the translation invariant counterexample
by M. Christ [4].
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(v) We have stressed uniformity with respect to parameters since the I?
version of the theorem is applied in [8] to a family of operators with folding
canonical relations in order to prove estimates for Fourier integral operators
with one-sided simple cusp singularities.

(vi) It would be interesting to obtain sharp I? — L results for oscii-
latory integral operators with one-sided fold singularities (¢f. the sharp L2
estimate in [7] and L estimates for p > 3 or p < 3/2 in [21] for Radon
transforms in the plane).

2. Preliminary reductions. After affine linear changes of the coor-
dinates in X and Y we may impose some normalizing assumptions at a
reference point Py = (2o, %o, ) and we may assume that zg = g = 0.

In fact, if a canonical relation is of the form {u, ¢, v, —¢.} one can
argue as in (7] and replace ¢(u,v) by &(z,y) = ¢(zo + Biz,yo + Bay)
where By and Bj are suitable invertible linear transformation. Specifically,
if {e;} is the standard basis in R* and if a € Ker &, (20,50,%), b €
Coker &, (w0, yo,v0) are nonzero vectors one can arrange that Biey = a,
Bieq = a and that for 7 = 1,...,d — 1 the vectors Bae; are orthogo-
nal to {(a,®,),,b and the vectors Bie; are orthogonal to {a,®’,)" b. This
yields that with @ = (z',24), ¥ = (v',v4) we have By, (0, Yov0) = 0,
P (o, 50,%0) = 0, B0 (20,90,70) = O and &/, . (o, %0,70) = C.
Consequently, given small £ > 0 we may assume that the symbol is sup-
ported in a neighborhood 2 x V' of ((zg, %), 7o) so that

(2.1) 8 < e
(2.2) 185y < e,
(2.3) Byl < &
(2'4) . !@g:wdyd| <e

for (z,y) € 2 and ye V.

The two-sided folding assumption implies that for suitable choice of 2,
V we have

(2.5) det &, 5 0,
(2.6) qjg;yaw # 0,
(2.7) B ava F 0.
We may assume that the lower bounds for |det @g,y,|, |§Z5;f;ydy At o yd\

are large compared to ; more specifically, the C4 norm of ed in 2 x V is
assumed to be small compared to these lower bounds.
In what follows we shall use the formula,

(2.8) det (ﬁ g) = (d— c*'A"1b) det A.

icm
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In a neighborhood of (zy,y0,70) we have det @5, # 0 and in view of
{2.5)-(2.8) we can parametrize the variety given by det®;, = 0 either as
a graph ys = w(z',zq4,¥',7) or as a graph x4 = v(¥',ya, %', y), for v close
to vg. Let
(29) ap =¢:dyd —@gdy:
then by (2.8),

ooz, y) = 0 & ya = u(@',2a,¥, ) © 24 = v(y', ya, 7,7,
for -y close to «p. Moreover, in view of (2.6)—(2.7),
(210)  loolz,u,7)| = |det 85, (2, y,7)| = lya — w(z’, 54,7, )]
R tmd - 'U(yla yd}'w,?’Y)"

We fix ¥ and A and set T = 75 4[a,-]. From now on it is assumed that
all amplitudes o are supported in {2 and satisfy |ja]|e,,, < 1. All estimates
will be uniform in +v provided that {2 and V are chosen small enough.

Now, following [18], we shall make a decomposition of T according to
the size of |det®, | = |oo|.

Let n € C§°(—1,1) so that n(s) = 1 for |s| < 1/2 and let &9 be small. Set

Bz, y,y) = n(2oo(z,v,7)) — (2 oolz, v, 7))

CA:]-_ Z 4611

2l ceght/3
so that g & 27! in supp B; and o < nglA-1/3 in supp (1.
Define operators S and T by

(Fry) B

&'ya?

and

(2.11) Srf(z) = [N (@, v)ax , (m,y)f (y) dy
and
(2.12) T f(w) = [PV 6y (2, y, v)an (2, ¥) £ v) dy-

Qur main result is

TuEOREM 2.1. For f € L?(RY),

eag | X T, < a2 suple el 11
2155&)‘1/3

and

(2.14) I8, F 112 < CATE=R/2=273) £y,

Since the operators T*, Sy are bounded on both L' and L*°, with op-
erator norms O(27%), O(A~1/?), respectively, we can easily deduce by inter-
polation
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COROLLARY 2.2. Let 1 < p < 2. Then

(2.15) T2 flip < CAZHP'2H2=8/2) | £,

ond

(2.16) ISy Fllp < CATEREARY £,

Maoreover,

(2.17) |] T ol f‘ o S Cod ™ sup o] [ £] 1072

21 <epAt/?

Here (2.17) follows by an argument of Bourgain [1] (see also the appendix
in (3] for a more general version). Now all estimates in Theorem 1.1 follow
by interpolation of {2.17) with trivial L' — L' and IP — L estimates.

The stronger version in one dimension follows from (the proof of) a the-
orem by Pan ([13], [14]}, using a modification of Hardy space theory (cf. also
[17], [20] for related earlier results). To describe this let for every bounded
interval Q with center zg the function eg be defined by eg(y) = ei*®=a W),
Denote by F the family of functions {eg}. An E-atom associated with @ is a
bounded function supported in @ such that ||ale < |Q]™, and {aeq dy = 0.
A function f € L' belongs to Hy, if f = 3 Agag where 3, [Ag| < o0 and
where the ag are E-atoms. The norm in Hy, is inf 3, [Ag| where the infi-
mum is taken over all possible representations of f in the form 3 Agag. As
pointed out in [23], the proof of the standard interpolation theorem for the
pair {H', L?) carries over to Hp.

If d =1 the argument of Pan yields

(2.18) H 3 aﬂi@f“lgcpsa}lp2t,alu|f||%.

2tSEOA1/3

Now if 1 < p < 2 we can deduce the inequality

(2.19) | > Tl f| < O supla =By | £,

Q‘SED)\UH

from (2.18) and Theorem 2.1 by analytic interpolation. The proof of Theo-
rem 2.1 will be given in §3.

3. L? estimates. We shall only prove the inequality (2.13). The proof
of (2.14) is similar and in fact somewhat easier. As in [18], [21], [6] we need
finer decompositions motivated in part by the geometry of the situation and
in part by the proof of the Calderén—Vaillancourt theorem [2]. For the sake
of notational simplicity we shall omit the parameter v, but all our estimates
will be uniform in «y if chosen in a sufficiently small neighborhood of ~g.
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Let x € C°°(R?™1) supported in (—1,1)?% 5o that 37, cpa- X(s' — 1) =1
for all &' € R¥1, For (p,v) € Z4-1 « 741 Lot

T, f (@) = x(N32 — ) {220 6 (o, y)x (A Py — v)aa(w, y) F(y) dy.

We shall use the orthogonality lemma by Cotlar and Stein [24, pp. 279-
281] to deduce (2.13) from the following two propositions.

PROPOSITION 3.1. (a) (T}, )*T, e = 004f Jug — pi| > 2 for some i €
{1,...,d—1}.

(b) TL (T, =0 4f jvi—vi| = 2 for somei € {1,...,d—1}.

(c) Let m <1, 2" < ggAY/3. There is a constant A, independent of 1, m, A
and vy, such that for v — ' > ANY/83—m,

H( ur/) u’u'HLE_ﬂLz -+ “(T,Tl; 17 V’HLS‘—-PLQ
g ON2 (l+m)/2)\—~(d—1+N}/3ly _ VF!—N
and such that for |u — u'| > ANY/32—™,

I (T ) |22 sz + 1T (T 22—z
< Op2tm)/2\—(a-1+NY/3) y r =N

(d) There is a constant b, independent of I, m, X and vy, such that for
m<l—b, 2 <ept/3,
I(Zh Y Tl oz + (T Tl 22 22
< Cn 2(!+m)/2)\—~d2m~l(Qm)\—l/S)QN—2d~1,
W5 (T ) | 2msza + | T (T )l 2222
< ON2 l+m)/2)\—d2'm.—I(zmA—l/S)ZNu2d—l-
PrOPOSITION 3.2. The estimate
HT;,,HLZ_,Lz < ot/ 2\ /2
holds uniformly in ., p, v and v.

We now apply the Cotlar-Stein lemma in the following form: Let {5}
be a family of operators on a Hilbert space, indexed by j = (u,1,1) €
241 5 73-1 « 7, only finitely many being s 0. Then

HZS [0 30 mp USSHIM + 1815517
rEeZ2d—1

In order to apply this one checks that Propositions 3.1 and 3.2 with N = 10d
imply the weaker estimate
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TR (T Y pamssa -+ (D) Tl 2 pa
< 02(l+m)/2)\—-d2—|l—m|(l + EV _ V\")_Zd(l + ‘,’J. - ,ullr)-—?.cl
and now the Cotlar-Stein lemma clearly yields (2.13).

Proof of Proposition 3.1. Parts (a) and (b) follow immediately from the
definitions. Now notice that (T:];)*Té,,,, is the adjoint of (Tﬁy)*Tﬁ"[}y, and
T (T),)* is the adjoint of T.,(T7,)* . So it suffices to show the required
bounds for (T TL,. and Tpp(Th,,)* if m < 1. In fact, we shall only give
the proof for the boundedness of (T}, )* T, and in view of the symmetry of

(7%

our assumptions the corresponding estimates for T, ( i )" follow by the

same arguments, or by realizing that the adjoint of wa is essentially (™)), I
We now have to estimate the kernel K™, ., of (T7)*T},.. Here
Ky (,2) = XOM = 0)eW27 =) K (0, 2)
where
Kian;' (y, z) - SeiA(sp(m,y)—QS(w‘z))Qm, (a:,y,z) d
and
ol (= y, 2)
= (@ 9) B (2, )X (N30 — ) (2, 202, 2)x (N30 — ).
We shall use Schur’s lemma, by which the L? norm of an integral operator
Ty with kernel K (z,y) satisfies
Tlznoozn < (sup{ K eilay)” (supf (ool as)

The estimate in part (c) of Proposition 3.1 for (T3 )*T},.,. follows from

LEMMA 3.3. Suppose m <1 and 2' < ggA/3. There is a constant A such
that for |v — v'| > ANY/32—™

(3.1)  sup{|KU™ . (y,2)|dz < Cw27IA"(@-1HN/3) Ly =N
Y
(3.2) sgpg K, (g, 2) | dy < On2 A1+ N/8), =N,

Part, (d) of Proposition 3.1 follows from

LemMA 3.4. There is o positive constant b > 1 such thet for m <1 b,
2l < EQ)\I/S,

(3.3)  sup{|K}: (v, 2)] dy < O 2ma=d(2m)—1/2)2N-2d-1,
z

(3.4) SuPSle’,wf (y,2)|dz < ON22m—£)\—-d(ZmAﬁl/a)zN—Zd—]._ -
Y
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Proof of Lemma 8.8. We integrate by parts with respect to the z’ vari-
ables. Note that jy’ — 2/| = A"Y/3|v — /| > A27™ for the relevant ¢/, 2’ {for
which ¥(AY3y' — v)x(A\/32' — /) # 0) and that
(3.5) ya — 2a = u(z,y) —u(z,2) + 027 ™) =02 ™ + |y — 2'|).

Now @, = O(e) by (2.1) and therefore

2’ ya
B, (5,4) — Bz, ) = By (1, 2)(¢/ — ) + Oely’ — 2| =27+ o/ ~ )
so that with our assumption on », 1/,

B (2,y) - B (3,2 2 Aol v,
For any smooth F we see from (3.5) that
(e y) — Fla,2)| < O™+ Iy — 2] < GA Yy v

Since o € &3 and since g, € )3 uniformly in I,m, p, u (for 28, 2™
< A/3) we obtain by integration by parts

Gl <c ]

|2~ ALy gan YR
Imf_A—I/SMiSQA—«l/&
Izd—u(m,z')isc’Z_l

)\N/B()\Z/sli/ _ V.'D—N

x xqo(x, 2) dea dz’ deg d2’
< 02—1)\—2@—-1)/3(1\1/3'” _ yli)——N’
which is (3.1). Similarly we prove (3.2). m

In order to prove Lemma 3.4 and Proposition 3.2 we need to examine the
kernel of K7 . for lv—v'1 < AMY/327™: here we have to use more refined
integration by parts arguments. In the process we have to examine equations
of the form & (z,y) = @, (2, z) for fixed (z,2) or &, (z, y) = @y (w,y) for
fixed (w,y). In view of (2.5) we may solve in 3’ in the first equation and

define a function y' = 1y by
8 (2,9(Ya, T, 2), 4a) = Por (2, 2)
Implicit differentiation yields

Oy
!25”/ et '13’,: - 0
it ayd + vy (CE;Ua'Ud)
so that by (2.1),
Ié]
(3.6) G =00,

Furthermore with

8y Oy
aet) = (P )
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and = (@1,...,Qq4—1) we have
v 0%

)
Hr
z'y! ___(Byd)z + Q + 28

i _
mfydyfa_yd + P = {).

' YdYd
We expand
(3.7) &, (x,9,y1) — Fr, (2,2, 24)
= o0{@, 2)(ya — 24) + 01(#, 2)(Ya — 20)* + o2(z, ¥, 2)(ya — 24)°

where oy is as in (2.9} and

oy Oy Ay 8%y
20 = (e ) 43y B P

2,2)
it follows from (2.7), (2.2), (2.3) and (3.6) that, near (zg, yo),
(38) |0'1(SE,"Z_J)| Zcg> 0.

Next observe for later application that 2/ —b(ya, #, 2/, 24) = O(g|ya— 2a|)
by (3.6) and therefore

yl - U(ydrwa zfazd) = yl -2 + O(E‘yd - de.
From this we also see that

’U,(LL', U(ydxwa zr’ Zd)) - u‘(m: ZI) = O(Elyd - zdi)

and
(3.9) w(®@,y) —u(e, 2') = O(ly’ — n(ya, @, 2)| + elya — 24)).
Finally, observe that
o
(3.10) 2T = (@) (2,0, e}l (2, 2) = 4 4 O(e).

Proof of Lemma 8.4. Buppose that m < ! — b and that (z,y,2) €
supp gm., so C7M2™™ < |yg— u(z,y)] £ Co2™™ and Cp'27" < |24 —

u(z,2’')] < Cg2™™, and we may assume that 2~° < Cyt. Then by (3.7),
(3.8),

o (2,4) ~ B (2, 2)| ~ |y ~ 9(ya, =, 2)],

1@ (@) = B, (2, 2)] 2 eallya — 2al® ~ |y ~ 0(ya, 2, 2)]]
and, for our choice of y, z,
(3.11) [ta — 2 2 c27™ — Cly' — y(yg, 2, 2)|
(cf. (3.8)). Therefore

|@;($, y) - @;(m,z)l 2 02['2—2171 -+ ryr - U(yd)m: Z)”

icm
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Since 1(2q4,%, 2z) = 2’ we see that for any smooth function
|F'(z,9) = F(z,2)] < Cllya — 2za] + 1y’ — v(ya, z, 2)|],
which is used for F being a higher order derivative of &.
Now straightforward integration by parts yields

! l S AN/?)
IK;E’ (y7 z) s On —-2m ! 7 N dzx
(Do, ) M2 H Y = 0ye, @, 2, 2)])

with Dy, (2) = {z : (z,2) € supp oo}, and D,,,(y) is similarly defined.
We now estimate §| K17, . (y,2)|dz. For fixed ', zq let
glmu’,n(mlazd) = {(zlamd) : |)\1/3zl - V"i <2, g~i-1 < ‘O'O(E: zl)l < 2ml+1:

2—2m+n—-1 < iyl . lJ(yd,m, z)l < 2~2m—{—n}-

We claim that .
(3.12) Igimv’,n (m!,zd)l < C?,_lmin{2(n_2m)(d_l),A-—(d_l)/3}.

This is clear if 272" > A~1/3 gince Etmut (%, z4) 18 contained in the set
of all (2',mg) with |2/ — X7¥30} < 2A~/3 and |24 — (e, 2')] € C271 If
on=2m < A=1/3 ohserve that mg—v(z, ') = 24—v(A~Y3 24, 2') +O(AY/3)
so since 2! < AV/® we see that in this case Eymur,n (2, z4) is contained in the
set of all {2/, z4) with |2g —v(A~Y3, z4,2")| € C27' and |y’ —v{ya, 2, 2)| <
2-2m+4n+1 Note that by (3.10) the set {2 : (z,2a) € &mwt n } has measure
O(2(n—2m){d~1)) In either case {3.12) follows by Fubini’s theorem.
‘We obtain

S ]I{LT’,VM (ya Z)I dz < z S S

0<nE2m 7a | AL/ 3z —p| <2

AN/3(A2~2m+n.)“N

X |glmy",n(m’, Zd,)‘ dz’ dzg
< O‘;Vz—l22m(N—d+1)/\-—(2N+d—1)/3’

which is (8.4). The estimate (3.3) is slightly easier and follows by a similar
argument. w
Proof of Proposition 8.2. We need a finer localization with respect to
the xg4 variables. Denote by ;‘Ciw the kernel of TL,,, let § > g0 be small (not
depending on [) and n = (n1,n2) € Z?, and let Tf;,j‘ be the integral operator
with kernel
]Ci;,’j(:c, y) = leW(m, y)x(26 g ~ n1)x (24 yg — na)-

Tt is immediate that (T&;‘)*T&:’ = 0if |ny—n}| > 2 and THHTLM )* =0
if |ng — ny| > 2. Now if |yg — u(z, )| ~ 27! o |2g —u(:c’,z’)|, th}an |z’ —'g{’|
< 62+ forces |yg — za| = 274 This shows that T2 (T )* = 0 if [ny — ni|
> (61, for appropriate C independent of {. Similarly, since [ya — u(z, )|
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~ [za—~v(y, =')| we see that by the same argument T4 (TL * = 0 if [np—nj)|
>Cé L
Hence
T (T Y =0 if [n—n'|> '8
and by the Cotlar-Stein lemma it suffices to prove the uniform bound
(3.13) T35t zamre = O@'A™9),

We fix I, n, 4 and v and set R == TL’f}. To check (3.13) we need a finer
decomposition in the x4 variables, in order to handle &y,3 amplitudes. Let
K dencte the kernel of R. Given integers o and 7 we let R, be the integral
operator with kernel

)CG,T(J;:?J) = K(z, y)X()\l/Smd - U)X()‘l/ayd - T}
so that B = EG’T R, -. We shall show that

HRETRU’T’ ”L"—nf.v9 +“Rcr'r ;'r’ ”Iﬂ——rL2 < c2l)rd(1+|C""JI|)—2(I+IT“T’D"2‘

Observe that we only get a nontrivial contribution if |0 — o'| + |7 — 7] &
AM32-1 Moreover, Rt Ror = 0 if |6 — /| > 2 and R, R%,, = 0 if
|7 —7'| > 2.

The proposition foliows from almost orthogonality if we take into account
the following lemmata.

LemMa 3.5, For lr — 7| > 2,

(3.14) | Ry Rort|| pacpa < CRATHL 4 |7 — /]) 724,

(3.15) | RorReini|p2—p2 < O2A™H1 + |0 - o'))~24,
LemMA 3.6. We have

(3.16) | Ror||pamze < C2V/EN"42, o

Proof of Lemma 5.5. We shall only show (3.14), in fact a better estimate
involving decay factors of the form (2!A~1/3). By the symmetry of the
assumptions, (3.15) follows in the same way.

As before, we shall use integration by parts to estimate the kernel
Hyp ot of RE_Rpipi; to this end we have to examine the behavior of
P, (2,y) — B3, (x, 2) given that |y — A™Y3[ < 221/3 ) |5 — A~=1/3y] <
2ATHS, [l ATMSUL < 2AVB |y — AS137| < 2X Y3, gy — AT/ <
IAL/E, |34 — AL35] < 2018, h

In view of our previous localization we assume that {y;—zy| < A~1/8|7—r|
< 27" 50 that in the expansion (3.7} the first term is dominant and compa-
rable to 27!y — z4|. Arguing as in the proof of Lemma 3.4 we see that

|95 (. ) — B (2, 2)| = o2 ya — 2a] + lv' — b(ya, =, 2)|]
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and integration by parts yields

AN/3
H, l’ﬂ-r(y,zﬂ <C dex.
| ’ ])\1/3£§’S_M<2 )\N (2mliyd - Zdl + ly’ - U(yd: T, z)l)N
I35, g| <2

This is a favorable estimate for the range |yg — z4] > £2'A~2/3; in particular,
always when |7 — 7] > 2.
Tndeed, if &ypz0m = {7 ¢ |y = y(ya,2,2)| < 277" |yg — zal} then

1€ yarzan] S C(27M7yy — z4))4! and therefore, for |r —7/| > 2,

S tHcrcr’,T'r' (y: z)l dz

<C Z /\_(d+1)/3AN/3(A2/32—l+nI,T _ ,rfD—N(z—Hnl\—l/Ii!'r — T,Ddﬁl
n>0

(the x integration yields a factor of A~%3 and the z; integration yields a
factor of A7/3). As we chose N = 10d we may certainly sum in n and the
result is that

VHoor rrr (g, 2)| dz < O2A42IAT/H) N8 r — |93 0

Proof of Lemma 3.6. We shall estimate the kernel Hy r = Hgg,rr Of
R*.Ryr. Now if we argued as in the proof of Lemma 3.5 we would not be
able to get the favorable estimate if A=%/3 < |ya — za| < £2'A7%/3. Instead
we have to make a linear change of coordinates taking into account the
geometry of the fold surface.

Let

X=Xy = (.Un)rl/sao')\—l/s):

Let A = &, (Xpe, Yyur); then rank A = d — 1 and we may choose a unit

vector IV in the kernel of A. Let II;. be the projection to the hyperplane

orthogonal to U. .
Now for the relevant (z,z) we have |(z,2) — (Xor, Yiur}| £ €277 and

therefore
(3.17) ol (z,)U =0(27")

(improving the previous estimate O(g) in (2.2)). Also note that [Hy.eq
= O{e). ‘

We argue as in the previous proofs (taking the better estimate (3.17)
into account) and obtain

B, (2,y) — Bz, 2)| 2 ColHyr (y — =) — C127 yg — 24| — Caly — 217,
B (z,y) ~ &, (2,2)] 2 Co2 " ya — za ~ Crellly (v — 2)| = Caly — 2|2

Lt

Y=Y, = (,,)\—1/3’“()(#6, u/\*lfﬁ)).
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and consequently
|, (2, y) — Bl {2, 2)| = 127 [ya — za| + c2| Ty (y — 2)]-
Integration by parts yields
)\N/S
AN (27 ya — 2ol + [y {y — 2) DN
We use this if either |yq — 24| = 2°A~Y8 or [y (y — 2)| = A~ %/3.
If hoth |yg — 24| < 2A~2/% and |Ty.(y — 2)| < A~% then we just use

the trivial estimate |H, »(y,2)| £ CA~%%. Combining the estimates and
integrating we obtain

supS \Hor(y,2) dz+ supS |Hor(y, 2)| dy < C22A77. w
Y 2

|Ho - (y, 2)| < CA~43
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