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Abstract. We characterize closed linear operators A, on a Banach space, for which the
corresponding abstract Cauchy problem has a unique polynomially bounded solution for
all initial data in the domain of A™, for some nonnegative integer n, in terms of fanctional
caleuli, regularized semigroups, integrated semigroups and the growth of the resolvent in
the right half-plane. We construct a semigroup analogue of a speetral distribution for such
operators, and an extended functional calenlus: When the abstract Cauchy problem has
a tnigue O(1 +1'.‘k) selution for all initial data in the domain of A™, for some nonnegative
integer n, then a closed operator f(A) is defined whenever f is the Laplace transform
of a derivative of any order, in the sense of distributions, of a function F such that
t e (14 #%)F(#) is in L ([0, 00)). This includes fractional powers. In general, A is neither
bounded uor densgely defined.

0. Introduction. Stone's theorem, for possibly unbounded linear oper-
ators on a Hilbert space, states that the operator A is self-adjoint if and only
if 24 generates a strongly continuous group of isometries. This is surprising,
in that the existence of f;(A) for the particular family of functions

fils)=e*  (s,teR)

(so that {fi(A)}ter becomes a strongly continuous group generated by iA4)
guarantees, via the functional calculus produced by the spectral theorem, the
existence of f(A) for J any everywhere-bounded Borel measurable function.
From a practical point of view, the strongly continuous group promises only
existence and aniqueness of solutions of the corresponding abstract Cauchy
problem, while a functional calculus may produce many explicit construc-
tions of the solutions.

On a general Banach space, one is not guaranteed such a large functional
calculus for the generator of a bounded strongly continucus group. How-
ever, equivalences similar to Stone’s theorem, between generating a bounded
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strongly continuous group, or, more generally, an O(t*) k-times integrated
group, and having certain functional calculi, still hold; see [Balab-E-J] and
[E-J]. The spectral measure of the spectral theorem must be replaced by the
more general notion of a spectral distribution.

For bounded strongly continuous semigroups, even on a Hilbert space,
the generator may have a functional calculus defined only for appropriate
holomorphic functions. For example, take A to be multiplication by z — 1
on the Hardy space H?(D), where D is the open unit disc in the coruplex
plane:

(Ag)(z) = (2~ )g(2)  (l2] <1, g€ H*(D)).
Then A generates the strongly continuous semigroup of contractions
(T(t)e)(z) = =g(z) (2| <1, g € H*(D)).

At Jeast if F is a Banach algebra of complex-valued functions on the spec-
trum of 4 in which the polynomials are dense, an JF functional calculus for
A must have the form

(f(ADg=fg (g€ H*(D)).
Clearly, the operator f(A) is defined only for functions f holomorphic in
D -1

A characterization of generators of bounded strongly continuous semi-
groups in terms of functional calculi appears in [d3], and is used there to give
simple proofs of standard resuits such as the Hille-Yosida~Phillips theorein.

Generation of a bounded strongly continous semigroup corresponds to
the existence and unigueness of bounded mild solutions of the abstract
Cauchy problem, for all injtial data. In this paper, we consider a much
larger class of operators, those operators A for which the abstract Cauchy
problem has a unique polynomially bounded mild solution for all initial
data in the domain of A™, for some nonnegative integer n. When the re-
solvent of A is nonempty, the existence of these solutions is equivalent to
A generating a polynomially bownded (A — A)~"-regularized semigroup or
n-times integrated semigroup. We give characterizations of such operators
in terms of functional calculi and in terms of the resolvent of A. As in [d3],
our characterizations do not require that the domain of 4 be dense.

We give preliminary material on functional calenli, integrated semigroups,
regularized semigroups and the abstract Cauchy problem in Section T. Char-
acterizations of operators A for which the abstract Cauchy problem has a
unique polynomially bounded solution, for all initial data in the domain of
A™, in terras of resolvent, functional calculi, regularized semigroups and in-
tegrated semigroups, are in Section II. Section III presents an analogue of
spectral distribution, that we call semispectral distribution, that plays the
same role for {integrated) semigroups that spectral distributions play for (in-
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tegrated) groups. Section IV extends our functional caleuli to a much larger
tamily of functions. As a special case of the extended functional calculus in
Section IV, we construct fractional powers in Section V.

I. Preliminaries. Throughout this paper, all operators are linear, on a
Banach space X. Denote by D{A) the domain of the operator A, by Im(A)
its image, by o(A) the speetrum of A, by o(A) its resolvent set. Denote by
B(X) the space of all bounded operators from X to itself.

See [d1], and the references therein, for basic material on regularized
and integrated semigroups, including their history. See [G] or [P] for basic
material on strongly continuous semigroups and their applications.

DEFINITION 1.1, Suppose F is a Banach algebra of complex-valued fune-
tions defined on a subset of the complex plane, not containing the constant
functions, and there exists complex A such that g)(z) = (A — 2)7! € F.
Then an F functional caleulus for A is a continuous algebra homomorphism
f— f{A), from F into B(X), such that A € g{A4) whenever g, € F and

o)y =A—4)"" (g€ F).

Note that when G, defined to Le the algebra (without unit) spanned by
g, I8 dense in F, then it is sufficient to show that

IF(AN < Mifllz, VS €O

where

m m
FA = oA - A7 when f= owlgn)
Tz ) k=0
the unique bounded extension of f - f{4), from Gy to F, will automatically
be an algebra homomorphism.
Strongly continuous semigroups correspond to the abstract Cauchy prob-

lemn

(ACP) %u(t,m) = Alu(t,2)) (=0), wu(0,2)=m,

being well-posed. By a mild solution of (ACP) we will mean u € C'([0, o0), X)
such that, for all £ =0, ¢ Sf)u(s,m) ds & D(A), with

t

ult,x) =2 + A(Su(mm) a".s) (t > 0).
0

For dealing with ill-posed abstract Cauchy problems, two generalizations
of strongly continuous semigroups have recently appeared.
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DEFINITION 1.2. Suppose n € N. An n-times integrated semigroup is a
strongly continuous family {S(¢)}i>0 G B(X) such that S(0) = 0 and

b1-ta

S(t1)S(ta)z = ﬁ[ [ (a4t =) S(ra dr
- Sz(tl +ty — VLS () dr] ,
0

for all £ € X and #1,£2 > 0. The algebraic propexties are precisely the

properties of the real-valued function ¢ — J™(e*t), where Jf(s) = §, f(r) dr.
The generator is defined by

n t
D(A) = {z ‘ Jy such that S{t)z = %m+§ S{r)ydr vt > O}, with Az = y.
oo

If w is a real number, then the strongly continuous Ofe*') family
{5(t)}s>0 C B(X) is an n-times integrated semigroup generated by A if
and only if {z € C | Re(z) > w} C p(A) with

o0
(z— Atz =2" S e ? St dt
0

whenever Re(z) > w, z € X.

DerFINITION 1.3. If C is injective, then the strongly continuous family
{W(#)}s>0 C B(X) is a C-regularized semigroup generated by A if W(0)=C,
W(s)W(t) = CW(t + s) for all s, > 0, and

t=0> ’

It is convenient to think of W () as €40, and ¢ — wu(t,s), the mild
solution of (ACP), as 'z

The generator of even a bounded C-regularized semigroup may have
empty resolvent; what is called the C'-resolvent plays a role analogous to the
resolvent. The complex number ) is in go(A), the C-resolvent of A, if A~ A
is injective and (A — A)~1C € B(X).

I {W(£) }is0 is O(e?), for some real w, then {z € C | Re(z) > w} €
oc(A) with

d
— -1
Azx=C (dtW(t)m

with maximal domain.

(z— A Cz = | e W)z dt
4]

whenever Re(z) >w, z € X.

The converse is true when g(A) is nonempty; that is, if p{A) is nonempty
and w is a real number, then the strongly continuous O(e*!) family
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{W(t) hizo € B(X) is a C-regularized semigroup generated by A if and
only if the Laplace transformation above holds.

When A generates a C-regularized semigroup, then (ACP) has a unique
mild solution for all & € Im(C). When o{A) is nonempty, the converse is true.
An n-times integrated semigroup corresponds to C chosen to be (A — A)™";
this is what we will focus on in this paper.

PROPOSITION 1.4. The following are equivalent, if X € o(A) and n is a
nonnegative integer.

(a) A generates an n-times integroted semigroup {S(t)}4>0.
(b) A generates o (A — A)™"-regularized semigroup {W (t)}i>0-
(c) (ACP) has a unique mild solution for all z € D(A4™).

Then for any x € D(A™), we have

u(t,z) = WA~ A"z and J(ult,z)) = Sz (¢ > 0).

In fact, under the equivalent conditions of Proposition 1.4, any mild
solution of (ACP) then has the form u(, z) = (A - A)"W(t)z.

It is clear from the representation of the solutions that {ACP) has a
unique bounded mild solution for all z € D(A") if and only if A generates
a bounded () — A)""regularized semigroup. It is not clear what type of
integrated semigroup would correspond to the existence of such solutions.

Omne may combine regularizing and integrating (see [L], [L-Sha] and [W]).
A once-integrated regularized semigroup turns out to be natural when the
domain of the generator is not dense.

DermiTION L5, If C € B(X) is injective, then the strongly continu-
ous family {W(t}}s>0 © B{X) is a once-integrated C-regularized semigroup
generated by A if W(0) =0,

iy
Wt )W (ta)z = SIW(T‘ +t)— W(r)|Czdr VzelX,
0

i
D(A) = {T ! 3y such that W(t)z = t0z + | W(r)ydr vt > 0},
0

with Az = y.

If {W(t)}ino is O(e¥?), for some real w, then {z € C | Re(z) > w} C
po(A) and
o0

(z~A)"'Om =z \ ¢ W{t)xdt whenever Re(z) >w, z € X.
0
The following is an immediate consequence of [L-Sha, Corollary 7.6].
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ProrosiTION 1.6, If A € Q(A) n s a nonnegative integer and A gen-
erates a once-integrated (A — A)~"-regularized semigroup {W(t)}iz0, then
(ACP) has a unique mild solution, for all x € DA™Y, given by

u(t,z) = W) (A — A)" Az + =
The proof of the following is in [Q-Liu, Lemma 6.1].
LEMMA 1.7. If o(A) is nonempty, then for any A € o(A) and n € N,
o(4) = g(r—ay-»(4).

II. Functional calculi and polynomially hounded regularized
semigroups. In this section, we characterize generators of polynomially
bounded (A — A)"-regularized semigroups (or Lipschitz-continuous once-
integrated (A — A)~"-regularized semigroups, if D(A4) is not dense) in terms
of functional calculi and resolvent. The connection with the abstract Cauchy
problem is in Propositions 1.4 and 1.6. The main results of this section are
Theorems 2.4, 2.6, 2.7 and 2.9.

We think of a C-regularized semigroup generated by A as {e4Chzo. -

We wish to construct f(—A4) for functions f of the form

oQ
(2.1) fls)y= e F(t)dt (s>0).
0
F is the determining function for its Laplace transform f.
Replacing s with —A and regularizing both sides of (2.1) with C' =
(1 — A)~™ gives us, informally,

(S — (lfiss))n>(—~A) = f(-_A)(l — A= S(etA(l _

0

AR dt.

Thus if A generates a bounded (1 — A)~"-regularized semigroup, we have a
functional calculus defined for functions in the set

{(S ” (11183))11) Fe Ll([O»OO))};

this equals the set of all Laplace transforms of functions in W,
(see Lemma. 2.3(2)).

Thus we are led to the following Banach algebras.

1 71((0 00)

DEFINITION 2.2. Define Wh?([0, 00)) = L*([0, 00)), and for n € N,
W ([0,00)) = {F € C"7([0,00)) | FY) € L}([0,00)) for j = 0,1,...,n}.

For n a nonnegative integer, we will denote by .4, the Banach algebra of
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Laplace transforms of functions in WH*([0, 00)). We topologize A,, by

ke

1 .
£l =3 FIED 22 0,000

J=0
for f asin (2.1).
LeMmMa 2.3, For any nonnegotive integer n,

(V) P={t—plt)e?|pisa polynomzal} is dense in W1 ([0, 00)),

(2) there cmist comples {oy,} 7y k o 50 that for any F € W1 (10, c0)) and
s> 0,

20 n—-1 n-l
e Fydt= S [Zaj,kF(ﬂ(O)] (1+3s)*
0 k=0 j=0

+(1+ s)-“ogoe““ [(1 + %)HF] (t) dt.

0

Proof. (1) Let D be the generator of left-translation on L{[0, cc)).
Then (1 — D)™ is a homeomorphism of W1"([0, c0)) onto L*([0, o0)). Since
1 — D maps P onto itself, it is sufficient to prove (1) when n = 0. So suppose
h & L*([0,00)) annihilates P; that is,

os
0= { theth(t)dt
0
By [Sho-T, Thecrem 1.10], A = 0 a.e., as desired.
Assertion (2) follows from integration by parts. m

fork=20,1,2,...

THEOREM 2.4. The following are equivalent, if o(A) is nonempty and
7 18 a nonnegotlive integer.

{a) (0,00} C o(A) and there exists o constant M such that
IM(A—A) (L~ A)"| <M, ¥A>0, jEN

(b) (0,00) € o{A) and for all z € X and o € X*, there exists T o+ €
L2 ([0, 00}) such that
(A=A

fe.v]
—~ Az, wt) = | e M T ()dt (A > 0).
0

(¢) —A has an Ay, functional calculus.
(d) A generates a Lipschitz-continuous once-integrated (1—A)~"-regular-
ized semigroup.
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We then have

(*) (f{-A)z,2%) =

]
|
e
1
_

]

(3 ciFD0)] (0~ 4) 72, a%)

(]

=
1l
=)

; f El + adz) nF] ()T oo (2)

Jor {7 wly asin Lemma 2.3(2), f € A, asin (2.1), 2 € X and 2* € X*
If D(A) is dense, then (a)-{d) are equivalent to the following.

(e) A generates a bounded (1 — A)™"-regularized semigroup {W(t)} o
(f) (ACP) has o unique bounded mild solution for all x € D(A™).

Then

OMS (=}

(W, z*) = T e (t), ¥Vt20,z2eX, 2¥eX™

Proof. The equivalence of (e) and (f) is Proposition 1.4. The equivalence
of (a) and (d), and their equivalence with (e) for D(A4) dense, is [d-H-W-W,
Theorem 4.6] and Lemma 1.7.

(a)=(b) follows immediately from Widder’s theorem.

(b)=>{c). Let G be the algebra generated by s — (1 +s)7. For f € G,
T € X and z* € X*, we claim that (*) holds true. To prove this, it is
sufficient to consider f,,(s) = (14 8)~™ for m € N, go that the determining
function is

tm——l

(m — 1)1

(- 4) 8] =0

for all ¢ > 0, thus the right-hand side of (x) reduces to

-t

Fnl(t) = e

If m < n, then

n—1 n-—1
Z {Z aj,kFr(r{) (0):] ((1 " A)——k:’n) z"),
k=0 ~ j=0
where, by Lemma 2.3(2),
n-1 n-1
P sFL @)1+ = (14, Va0,
k=0 =0
By the linear independence of {(1+ )7 | j=1,,..,n},
n-~1
[Z ozj,kF,S:f)(o)} = Bie;ms
i=0

thus the right-hand side of (x} becomes {(1 — A)~ "z, z*}, as desired,
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If m > n, then Fr(,a')(l)) = ( for § < n, thus the right-hand side of ()
hecomes

T Kl + gg)nFm} (t) T, 0- (t) dt

0

o0
= | By (8) T (t) dt
1]

B _M,_____M__;l_, - d m-n~1_cc _MT
T (m—mn—1) <— E[X) [ é e M, o (t) dt]

m=-n-1
st (2] - - e

(m - n — 1)!

A=l

A=1
= (1~ &)™, 5",

as desired.
If

n-] i
A= 3 IFD 1+ 1P 50,00
=0 =0

then ||| ||| is equivalent to || ||.4,. Thus agsertion () implies that

{{f(=Az,z")| [ f € G, flla. <1}
is bounded for any z € X and 2* € X*. By the uniform boundedness
theorem, there exists a constant M so that
IF(=A) € Mfl|la., VYFe§
By Lemma 2.3(1), G is a dense subalgebra of A,. Thus the bounded algebra
homomorphism f — f(—A) defined on G eéxtends to the desired algebra
homomorphism on A, (see the comments after Definition 1.1).
(¢)=>(a). Choose
B =0+ 1+8™  (A>0,jeN).
Using the fact that
23] el me L
. Lo . t
o8) == _‘-maf, - ew—)\b *
g2, (%) [S](, [(3_1)! (n— 1)1
a calenlation shows that {M||gx]l4, | A > 0, § € N} is bounded. Since
(A=A (1 - AT = gra{-A4),

e‘*] da  (s>0),

(a) follows. w
DEFINITION 2.5. If n and k are nonnegative integers, we define An’k1 to
be the set of all Laplace transforms of F' such that t — (L-+)*F(t) € W,
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with norm
n

1 .
(A, = ZD }“!Ht = (L4 8 FO ()] £1(0,00))
NS
for f asin (2.1). Note that A, g = Ap.
The same proof as that of Theorem 2.4, with [d-H-W-W, Lemma 2.2
replacing Widder’s theorem, gives the following generalization.

THBOREM 2.6. The following are equivalent, if o(A) is nonempty and n
is a nonnegative integer.

(a) (0,00) C 0{A) and there exists a constant M such that
. . i+ k- 1) .
IMOA—A)T7 (1 - A < ML+ ﬁ%—_—f},—)rk}, YA>0, jeN.

(b) (0,00) € o(A) and for oll x € X and z* € X, there exists T, ;-
such that

i— '(j__l_;tk)Tm,m" (t) € Loo([oﬂoo))
and
(A=) M1~ AT,z = [ e Mo (t)dt (A >0).
0

{¢) —A has an Ap i functional calculus.

{d) A generates o once-integrated (1 — A}™™-regularized semigroup
{W1(t)}i>0 such that

— 1
Jm WAt 4+ h) - W) < M(L +t8),  vi>0.

We then have (%) for {o;x}in2y as in Lemma 2.3(2), f € Any 08 in
(21),z € X and z* € X*.

If D(A) is dense, then (a)-(d) are equivalent to the following.

(e) A generates an O(1+t%) (1—A) " regularized semigroup {Wa(t)}iz0.
(f) (ACP) has a unique O(1 + %) mild solution for all x € D(A™).

Then
(Wa(t)z, o) =Ty pe (t), VE20, 2€X, "€ X"

It would be more desirable to give spectral characterizations involving
only {z— A)~! rather than all its powers. These do not seem possible; how-
ever, there are sufficient conditions for having an A, functional caleulus
or generating an O(1 4 t*) (1 — A)~"-regularized semigroup that are close
to a necessary condition. Note that A generating an O(1 + t*) (1 — 4)~"-
regularized semigroup {W(t)}s50 implies that —A4 has an A, 4 functional
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calculus, since
t
Witle = S Wis)zds (z€X)
0
clearly satisfies (d) of Theorem 2.6.

THEOREM 2.7. Suppose r > 0, 8 > 1 and n and k are nonnegative
integers.

(1) If {z € C | Relz) > 0} C o(4) and there epists o constant M such
that
(2= A)7H < M1+ 2] (Re(2)) ™ + (Re(2))™))

then A generates an O(1+#*) (1 — A)~ UMD pegularized semigroup, hence
—A has on Apyia,r functional caleulus for k any integer greater than or
equal to s.

(2) If —A hos an Ap g functional calculus, then {z € C| Re(z) > 0} C
o(A) and there exists a constent ¢ such that

(2~ 4)7| < e(1+ [4)"((Re(2)) ™ + (Re(z)~+)  (Re(z) > 0).
Proof. (1) Let n=[r]+2. For t > 0 and 1 > £ > 0, define

dz
2mi(l — 2)n

(Re(z) > 0),

wt)= | e *(z-4)"
iReke
Note that a calculus of residues argument shows that this definition is inde-
pendent of &,
By [dl, Theorem 22.10(e) and Corollary 22.12], {W(£)}s»0 is a norm-
continuous (1 — A)~"-regularized semigroup generated by A. For any 1/2 >
e>0andt>0,

For t > 2, choose € = 1/t and
L Me g (L4 y])”
K= w;w2 ISE (1 _}_yz)n/z
to obtain
Wil < K¢+ ¥i>2.

(2) Let Wy be as in Theorem 2.6(d). Then {z € C | Re( ) > 0} C o(A)
and for @ € X, 2* € X* and Re(z) > 0,
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{z—A)T1l- A "z2") =2 DSO e P (Wi (t)z, z%) dt
0

= (S) e“"“%(W](t)m,m*) dt;

the growth conditions on W imply that

(o= A) (1 — A)"m,0%) < Mja] 2] ] e~ R+ £ d
0

k!
= M1} ") sy * Ty

thus

e = A7~ ) £ (s + ) (Rel2) > 0)

A calculation using the resolvent identity n times shows that there exists a
constant K so that

[(z - A7 < K1+ |2)™||(z = A1~ A)™|| whenever Re(z) > 0. m

REMARK 2.8. Note that, in particular, (1) of Theorem 2.7 implies that
the abstract Cauchy problem (ACP) has a unique O(1 + t*) mild solution,
for all initial data = in D(Al112), For A densely defined, a result analogous
to this appears in [Nee-St, Theorem 0.3].

If we disregard the precise order of polynomial growth, we may get equiv-
alent conditions involving only ||(z — A)7.

THEOREM 2.9. If p(A) is nonempty, then the following are equivalent.

(a) There erist nonnegative integers n,k so that (ACP) has a unique
O(1 + t*) mild solution for all z € D(A™).

(b) There exist nonnegative integers n, k so that A generates an O(14-t%)
(1 — Ay~ -regularized semigroup.

(c) There exist nonnegative integers m,j so that —A has an An,; func-
tional calculus.

(d) There exist nonnegative integers n, g so that A generates an O(L-4+19)
n-times integrated semigroup.

(e) {z € C | Re(z) > 0} C ¢{A) and there exist r >
constant M such that

[1(z— )7 < M(1+]2)"(Re(2))™*  (Re(2) > 0).

Proof. (a) and (b) are equivalent by Proposition 1.4, The equivalence
of {c), (b) and (e} follows from Theorem 2.7.

0, s > 1 and a
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The equivalence of {d) and (a) will follow in turn from
J-1
tAJ = Jn J o JT] . t_ j—1—i
(*)  SHAz =T u(t, Az)] = J [(t,x) Z:i!AJ w]

when {S(t)h>0 is an n-times integrated semigroup generated by A z €

D(A™), (Jf)(s) = §; F(r)dr and t — u(t, z) is the corresponding mild solu-
tion of (ACP). First, given (d), (x) implies that (ACP) has a unique O (1+t*)
mild solution for all x € D(A™) if k = sup{q, n-1}. Conversely, given (a), it

follows that A generates an n-times integrated semigroup {S(¢)}1>0. Then
(*) implies that, for any 2 € X,

S(t)e =31 - A)(1- A"z
- n K] ] -n
mjz:;(j)(-l) SEAN (L~ Ay "z

= ;.}:—'% (?) (=1)d gn—d [u(t, (1—-A)""z) — j};; ;Aj‘l"i(l - A)‘”fﬂ] )

so that ||S(t}]| is O(1 +t"T%). w

REMARK 2.10. For A densely defined, results analogous to the equiva-
lence of (a), (d) and (e) in Theorem 2.9 may be found in [Nee-St].

1I1. Smooth semispectral distributions and integrated semi-
groups. A gpectral distribution (see [Balab-E-J] and [E-J]) generalizes the
spectral measure of the spectral theorem for self-adjoint linear operators
on a Hilbert space. In this section we introduce smooth semispectral dis-
tributions and show that they play the same role with certain integrated
semigroups that spectral distributions play with certain integrated groups.
Our main results in this section are Theorems 3.2 and 3.6.

Dermrtion 3.1, Let A be the space of all Laplace transforms of functions
in the Schwartz space, topologized by the seminorms

115 = 1t = 87 FP (€] 23 0,00,
where f is as in (2.1), 7 and k arc nonnegative integers. By a smooth semi-
gpectral distribution for A we mean a continuous algebra homoemorphism
S f(A), from A into B(X), such that
) {A € C | Re(A) < 0} C p(A), with ga(4) = (A — A)~! whenever
()\) < 0, and
(2 )fm( )mwxasm-—roo for all x € X, f € A such that f(0) = 1,

where fr,(s) = f(s/m).
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We think of an n-times integrated semigroup generated by A as J™ (et4),
where (Jg)(s) = {3 g(r) dr. In (2.1), apply integration by parts n times, and
replace s with —A, to obtain, informally,

o0
F=A) = (O § MO (8) dy
0
for this formula to be valid, we need Limy oo t/ FU)(t) = 0 for § < m.

Since a bounded solution of (ACP), after being integrated n times, will
be O(t"), it is natural to characterize O(t™) n-times integrated semigroups
rather than bounded n-times integrated semigroups; more generally, what
is needed to obtain a smooth semispectral distribution is O(£") behaviour
for ¢ near 0.

THEOREM 3.2. If D(A) is dense, n and k are nonnegative inlegers and
A generates an O(t"(14-tF)) n-times integrated semigroup, then —A admits
a smooth semispectral distribution.

Proof. Let {S(t)}+>0 be the n-times integrated semigroup generated by
A. There exists a constant M so that

IS®)|| < ME*(1+t5), Vt= 0
Define, for f € A4 as in (2.1),

(3.3) f(—Az = (wl)”?[S(t)m]F(”)(t) dt (zeX).

0

Since [|5(#)|| is polynomially bounded, f — f(—A) is a continuous map from
A into B(X).

For z € D(A™), the map ¢ — S(t)z is n-times continuously differentiable,
and we may rewrite (3.3) as

o

(3.4) F-A)z = {[S()z] W F (1) dt

0

(= € D(A™).

In fact, ¢ — S(£)(L— A)~(*t1) is n-times continuously differentiable in the
operator norm, with

[S(E)(1 = A) IS ()L - A) I = [§(t 4 r)(1 - 4) 2

for all m,¢ > 0.

To show that f +— f(—A) is an algebra homomorphism, it is sufficient,
since D(A2"+1)) is dense, to show that

(F)(-A)(1 — )72 = F(=A)g(~A)(1 ~ 4D

icm
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for f,g € A. The calculation follows, where F is the determining function
for f, and & is the determining function for g:

F(—=A)g(~A)(1—A)72+) o [F(—4)(1— Ay~ (" +D][g(— 4)(1— A)~ (D))

= T[S(t)(l — Ay~
0
[S(m)(1 = A~ FG(r) dr dt

= | {[S(r+t)(1 — 42N PG (r) dr dt
0

F(t) c3‘3{5‘(3)(1 — A2t m Qs — ¢) ds dt

i

[5(s)(1— A)~2(n+D1m) [§ G(s~H)F(t) dt|ds
0

[S(s)(1 — A)2 AU (F « G)(s) ds

it
St O f OB o X © e 8

(Fo)(=A)(1 - A)=2mD),

1

as desired.
For Re(A) < 0, note that the determining function for gy is t — —e
thus for © & X,

At
3

on(—A)z = (-1)" [ [S@)2](-X"eM db = ~(-0)" | e¥[S(t)e] dt
0 o]

—(-A-A) e = A+ A

Thus f — f(—A) satisfies (1) of Definition 3.1.
FormelN, zeX,

o

|(fm)(—A)z|| = S [S(t)x](t — mF(mt))(”’) dt”
0

oo

mmt Fm) (mt) dtH

0

JIs(
A,
sMIIwII?’“( (% )k)w(”)(vﬂ)]dr
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< M| § (1 + ) EW () dr
0
Thus, to satisfy (2) of Definition 3.1, it is sufficient to satisfy (2) for all 2 in
the dense set D(A™). For f(0) =1, we again use (3.4):

(fm)(=A)z = {[S(t)]mP (mt) dt
0
= (1802 ey P () dr = 18121 im0 | ()
0 0
= f(O).CE =&,

asm— oo, W
DEFINITION 3.5. Let 7, be the completion of A4 with respect to the norm
£z, = it e P ()] 22 g0,000)-

for f as in (2.1). We say that a smooth semispectral distribution is of degree
n if it extends continuously to a linear map from 7, into B(X).

THEOREM 3.6. Suppose n is a nonnegative integer and D(A) is dense.
Then the following are equivalent.

(a) (0,00) C o{A) and there esists a constant M so that
d\’ (n+ 1) _
(5) (An(f\ A)” ) SM(AHHH), YA>0, §-1eN

(b) (0,00) & g(A) and for all z € X ond x* € X*, there exisis Ty o
such that

1
t s t_nTw,m*(t) € L=([0,00))
and
(A= A7z, a®) =2 | e M ()dt (A>0).
0
(c) —A has a smooth semispectral distribution of degree n.
(d) A generates an n-times integrated semigroup {S(t)}iz0 that is O(t").
We then have, for f € T, asin (2.1), z € X and ¥ € X*,
o3
H=A)e = (1" | [S(#)a] FV(E) at
0
and
(S(t)z,2™) = Tom(t), VE20.

Proof. The equivalence of (a), (b) and (d) is [d-H-W-W, Theorem 4.9
and Lemma 2.3].
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(d)=+(c). Ff)r f € Ty, define f(—A) by (3.3). By Theorem 3.2, this defines
a smooth semispectral distribution. AU that remains is to show that f —

f(—A) is a continuous map from 7, into B(X). There exists a constant M
so that

ISl < Mi™,  wt>o,
thus for f € Ty, as in (2.1),
xQ
17 (=AM < § Mtn|FC ()] dt = M| f| .,
0
ag desirved.
(¢)=r(a). For any A > 0 and nonnegative integer j,

At 2 g NI /1
(n+)! (dA) (X’ﬁ"g“*) ..
Ny antitl £ g N/ Y (n)
=[G () o)
AnFi1
B H RRCE]

Thus
i+l d J
) (w0-07)

{
([ @) (o) [0 e

is bounded, as desired. m

L (]0,00))

tn+j ew—)\t = 1.

L(]0,00))

A>mj—1eN}

IV. An extension of the functional calculi. For operators A with
an Ak functional calculus, for some nonnegative integers 7, k (see Section
If for & characterization of such operators; for a partlcularly simnple resol-
vent characterization, see Theorem 2.9), we define f(A) for functions f in
the large algebra of complex-valued functions that we denote by By {see
Definition 4.1). Our main result in this section is Theorem 4.4.

DerNITION 4.1, For k a nonnegative integer, let
Bez | J{s— (L+8)™f(s) | f € Aol
meN
Note that this is an increasing union, thus By is an algebra.

By Lemma 2.3(2), for any nonnegative integer n,

- (4.2) Bi= |J{s— (L+)™F(s) | f € Anp}-

meN
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The algebra By is the set of all Laplace transforms of derivatives, of any
order, of functions in 11([0, cc)). More generally, for any nonnegative &, By
is the set of all Laplace transforms of derivatives, of any order, of functions
F such that

t s (1+)*F() € L'{[0,00)).
However, (4.2) will be the most convenient way to represent By.

DEFINITION 4.3. Suppose n and & are nonnegative integers and A has
an A, ;; functional calculus. If g € By, define

glA) = A+ A" (s> (A+35)""g(8))(4)
for any integer m and A > 0 such that
(s (A+38)"Tg(s)) € Ank-
(See (4.2).) By [d2, Definition 3.4], this definition is independent of m and A.

THEOREM 4.4. Suppose n and k are nonnegative integers and A has an

An i functional caleulus. Then Definition 4.3 defines a map g — glA), from

By, into the space of closed operators on X, estending the A, functional
calevlus, with the following properties.

(1) (s = (A4 8)™)(A) = (A+ A)™ for all A >0 and integers m.
(2) If f e Any and g € By, then
F(A)g(A) € g(A)f(A) = (fg)(A).
(3) For all f,g € Bx,
F(A)g(4) € (fo)(4), with D(f(A)g(A)) = D((79)(4)) N D(g(A)).
(4) For oll f,g € By,
F(A) +9{4) C (7 +9)(A).

(5) If f and 1/f are in By, then f{A) is injective and (f(4))™' =
(1/F)(A).

B If XeC, feByand (s— (A—f(s))™Y) € Ak, then A € o(f(A)),
with

(A= FAD™ = (s = (A= F() 7 HA).

(7) If 7 s a nonnegative integer less thann and f € A;y, then D(A™7)
C DIF(A)), with

(s = F(s)(1 +8)P ™) (AL + A)7
CCFA) =+ A s 514 8)TM)(A).
Proof. Assertion (1) follows immediately from Definition 4.3. Asgsertions

(2)—(6) are a special case of [d2, Theorem 3.7]. Assertion (7) follows from
Definition 4.3 and the fact that (s — f(s)(1+ 8)7"") € Ay 4. w
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Note that, as special cases of (1), fo(4) =T (fo(s) = 1), and
(s (A+8))(A)=(A+4) forr>0.

REMARK 4.5. Tt is interesting that the amount of regularizing required
in the regularized semigroup generated by —A (the n in Ap k; see Theorem
2.6) has no effect on Bi; we still have f(A4) defined for any f € By. The
effect of n is on how “unbounded” f(A) is (see (7) of Theorem 4.4).

It is only the rate of growth of the regularized semigroup that lmits our
extended functional calculus, by dictating the integer k in By see Theorem
2.6.

REMARK 4.6. For n = 0 = k and D(A) dense (that is, when — A generates
a bounded strongly continuous semigroup), a similar extended functional
calculus is constructed in [Balak] and [Nel], by different methods.

V. Fractional powers. As an easy application of Theorem 4.4, we will
now use our functional calculi to construct fractional powers, and prove ana-
logues of the usual desired properties for a. large class of operators, those with
an Ay, functional calculus for some natural numbers n, k, as in Theorems
2.7 and 2.9.

Since (s = (£ +8)") € Anx for £ > 0 and r < ~n, the A, ; functional
calculus will produce bounded fractional powers (e + A)” for £ > 0 and
r < —n. The extension of the A, , functional calculus, in Theorem 4.4, will
define (possibly unbounded) closed fractional powers (¢ + A)” for arbitrary
real r,g > 0,

More conveniently, we will assume that A — ¢ has an A, ; functional
caleulus for some positive g, so that, for » real, we may define

A= (s (s+))(A—e).

See [St] and [d-Y-W] for other constructions of fractional powers of
densely defined operators whose resolvent satisfies a polynomial growth con-
dition in a sector. Our construction in this section does not require that the
operators be densely defined.

It is interesting that A™ may be unbounded, even when r < 0 and 4 —1
has an Ay functional calculus, so that 0 € p(A4).

Examers 5.1, Suppose 2 —~ G gencrates a bounded holomorphic strongly
continuous gemigroup {ef2=%}5q on X, and G is unbounded. Define A,

on X x X, by
G G?
A= [0 G ] k
with domain

D(A) = {(z1,22) | w2 € D(G), G~lzy + 23 € D(GH);
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in other words, we write A as
Gt 1
2
“ { 0o Gt
Note that, since 2 — G generates a bounded strongly continuous semi-
group, 0 € o(&). Then —(A — 1) generates a bounded A~ regularized semi-
group, given by '

~H{G-1)  _p2e—t(G-1) e -
W(t)E[e 0 ot(G-1) [0 G_l] (t20),

so that 4 — 1 has an A; functional calculus. For any real r, the fractional
power A™ = (g — {1+5)"){4 —1), as defined by Theorem 4.4, may be shown
to be

. Gr rGHT
AT = [ 0 o ] :
Thus A” € B(X) only when r < ~1.

In general, we expect A" to be bounded, when A (or, to be more precise,
A —¢e, & > 0) has an A, functional calculus, only when r < —n, since
51— (e-+s)" is in Ay, for £ > 0, if and only if r < —-n.

In the following, note that we are not assuming that A is densely defined.

THEOREM 5.2. Suppose n and k are nonnegative integers ond A —¢& has
an An e functional calculus for some s > 0. Then there exists @ map r = A,
from the real line into the space of closed operators, such that

(1) A; = A7 for any integer j.
(2) Ar is injective and (A,)™" = A_, for any real r.
(3) For r < —n, A, € B(X).
(4) For any real v, s, Ay Ay C Arys, with

D(ApAg) = D(A) N D(Args).

(5) If s < —n, then ApAg = Apys for all real r.

(6) D(As) C D(A,) when s >r+n.

Proof. We may use the functional calculus of Definition 4.8 for 4 — ¢
to define A, = (s +— (s+ )"} (A~ ¢).

Assertions (1)-(4) follow immediately from Theorem 4.4, since, for
r<—n, s (e+8)"" € Ap, hence (s — (e 5)") € By, for any real 1.

Assertion (5) is a consequence of (3) and (4).

For assertion (6), note that (5) implies that

A-rAr—.s = A—sa
so that, by (2),
D(As) =Im(A_;) = Im(A_,A,_;) CIm(A_,) = D(A,). m
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Note that, for 7,8 > n, A" 4=3 = 4~(r+s) ¢ B(X).

. REMARK 5.3. When A has an Ap i functional caleulus for nonnegative
integers n and &, one may also define A%, for 0 < o < 1 as follows. For
alarg(z)| < 7/2, it may be shown that the map

zt (s 77

is & holomorphic map into A, j, thus

T = (s N (A) (farg(e)] < w/(20)

defines a holomorphic semigroup; we may define —A® as the generator, in
BOME SENSC.

Unless n = 0, this semigroup is not strongly continuous at zero, in gen-
eral. To make the domain of A% more precise, —A* may be defined as the
generator of the (1 + A)~"-regularized semigroup

W(t) = (s e (1+5)7™)(4) (¢ 0).
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A quasi-nilpotent operator with reflexive commutant, IT
by
V. MULLER (Praha) and M. ZAJAC (Bratislava)

Abstract. A new example of a non-zero quasi-nilpotent operator T with reflexive
commutant is presented, The norms ||T™( converge to zero arbitrarily fast,

Let H be a complex separable Hilbert space and let B{H) denote the
algebra of all continuous linear operators on H. If T € B(H) then {T} =
{4 € B(H) : AT = T'A} is called the commutant of T. By a subspace we
always mean a closed linear subspace. If A C B(H) then Alg.A denotes the
smallest weakly closed subalgebra of B{H) containing the identity I and A,
and Lat A denotes the set of all subspaces invariant for each 4 € A. If £ is a
set of subspaces of H, then Alg L ={T € B(H) : £ C Lat{T}}. T is said to
be hyperreficwive if {T'} = AlgLat{T}', i.e., if the algebra {T'}’ is reflexive.

It can be shown (see [1]) that if T' is a nilpotent hyperreflexive operator
on a separable Hilbert space then T == 0. This is not true for quasinilpotent
operators. An example of a non-zero quasinilpotent hyperreflexive operator
was given in [5] using a modification of an idea of Wogen [4]. The powers in
the example converged to zero slowly; more precisely, the following inequality
was true for all positive integers:

I/ 2 1/10g .

In [6] it was shown that the convergence of the powers of T to zero can be
faster, namely for each p > 0 there exists a non-zero hyperreflexive operator
T for which

”Tn”fl‘/n < l/np.

The aim of this note is to show that the convergence ||7™(|*™ — 0 can
be arbitrarily fast:
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