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Transitivity for linear operators on a Banach space
by
BERTRAM YOOD (University Park, Penn.)

Abstract. Let & be the multiplicative group of invertible elements of 5(X), the
algebra of all bounded linear cperators on a Banach space X. In 1945 Mackey showed
that if z1,...,2n and y1,...,yn are any two sets of linearly independent elements of X
with the same number of items, then there exists T € G so that T(z) = yr, k=1,...,n.
We prove that some proper multiplicative subgroups of G have this property.

1. Introduction. Throughout, X is an infinite-dimensional Banach
space and E{X) is the algebra of all bounded linear operators on X. A
subset S of E(X) is called L i. {rensitive if, given two sets z1,...,2, and
Y1,...,yn of linearly independent elements of X, there exists T € § such
that T(zk) = yg, k = 1,...,n. In [5, Theorem II-3] Mackey showed that
the set G of invertible elements of E(X) is 1. i. transitive. Our results show
that smaller subgroups of the multiplicative group G suffice. We show the
following in §2.

THEOREM 1. Let A be any closed subalgebra of E(X) containing the
identity I and oll T € E(X) with finite-dimensional ronge. Let & be the set
of invertible elements of A. Then any open multiplicative subgroup $ of &
is L. 1. transitive.

As is well known, & is open.

Next let 1 be the set of all elements of & of the form I + 1" where T" has
finite-dimensional range. If we write its inverse as I +V, V & E(X), we see
that 7'+ ¥V + TV = 0 so that V also has finite-dirnensional range. It follows
that 1) is a multiplicative subgroup of &, and

THEOREM 2. 1) is L 1. transitive.

2. On transitivity. Qur aim is to prove Theorems 1 and 2 given above.
We shall use an easy lemma.
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LEMMA 1. Given fwo sets zi,...,Tn ond y1,...,Yn of linearly inde-
pendent elements of X there is a set z1,...,%n 0 X s0 that =1, ..., %y,
Z1ye .oy 2n 00d Y1,y Yns By -0, B GTE SELS of 2n linearly independent ele-
ments each.

Proof. Let I be the lncar subspace of X generated by z1,...,Zn,
Yi,-..,Yn- As X/L is infinite-dimensional we can choose a linearly indepen-
dent, set 2 4 L, ..., zn + L, where each z, € X, in X/L. Then @1,...,2x,
Z1,-.., 2y is a linearly independent set.

We turn to the proof of Theorem 1. Let . be any fixed positive integer.
Let K denote the cartesian product of X with itself for n factors. Let I’
be the collection of all n-tuples (v1,...,v,) in K where v1,...,v, is a lin-
early independent set in X. We fix £ = (z1,...,2,) in I' and consider the
continuous linear mapping @, of A to K defined by

¢e(T) = (T(z1), ..., Tzn))-
We claim that the image of ¢ is all of K. For let (z1,...,2:) € K. AsE €T
we can choose z¥,...,z} in X* so that z}(z;) = &5, 4,7 =1,...,n If we
set T(z) = 3 po; zi(z)z, we see that ¢¢(T) = (21,. .-, 2a)-

We invoke Banach’s open mapping theorem (see, for example, [4, p. 215)
to see that ¢ ($) is an open subset of K. As each T & § is one-to-one, ¢¢{9)
is contained in I'. As I € §, & € ¢o(9) for each o in I'. Thus I' is the union
of all the sets ¢ (). We will have established Theorem 1 if we show that
pe(H) =T

To this end we show first that I" is a connected set. For let (v1,...,vn),
{w1,...,wy,) be two elements of I'. By Lemma 1 we have (#1,...,2,) € I'
Where v, ...,Un, 21, - -1 2n a0d Wi, ..., Wn, 21,. .., 2 are linearly indepen-
dent sets. Consider the set of elements of K of the form

(bur + (1= )21, b + (1 — )za)
for 0 <t < 1. Each of these Yes in I". For if, for some 0 <t < 1,

i Ck[t’uk +{1- t)zk] =0

k=1

we would have each Cit = 0 and Cy(1 —t) = 0 so each Cp = 0. Thus we
have a connected path in I" joining (v1,...,v) and (z1,...,2,) as well as
one joining (21, ...,2,) to (wy,..., wn)-

Suppose we had some n = (y1,...,yn) in I' which i3 not in ¢¢(%).
We claim that ¢¢(H) N ¢,(H) is empty. For if (z1,...,20) = ¢e{T1) =
¢q(T>), where T1,Ts € £, then z; = Ty(zk) = To(ys), k= 1,...,n. Hence
Ty 'Ti(zk) = v, k= 1,...,n, contrary to 7 & ¢¢($)-

So, assuming that n & ¢¢(5) exists, we see that I" is the union of two
non-empty disjoint open sets, namely ¢¢(f) and the union of the sets do($)
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where o € I' and o & ¢¢(H). This contradicts the connectivity of I'. Conse-
quently, given £ € I', we have ¢¢()) = I" and so $ is 1. i. transitive.

Lemma 2. To each set xq,...,%, of linearly independent elements of X
there corresponds € > 0 with the following property. If y1,. .., un is a set of
elements in X where ||zp—wm|| <, k=1,...,n, then, for some V € 1), we
have V(zk) = yp, k=1,...,n.

Proof. Choose z},...,2} € X* so that z}(z;) = &y, 4,7 = 1,...,n.
We choose £ so that 0 < & < 1/(nmax|z}|). Suppose ||yr — =] < &,
k=1,...,n. We define U &€ E(X) by U(z) = 3 p—1 2}(2)(yx — z&). Then
(I+U)(xk) = yr, k = 1,...,n. Inasmuch as [[U|| < Yp_; fzklle <1 we
have I+ U € 1.

Of course, #1,...,Yn is also a linearly independent set. Also, as ¥ is a
group, there is V € ¢ so that V(ye) = o, k=1,...,n.

We now turn to the proof of Theorem 2. We use the notation employed
in the proof of Theorem 1. By Lemma 2, for each {z1,...,%,) in I" there
is a neighborhood I in I' so that if (z1,...,2,) € I we have some T' €
where T(zp) = 2, k = 1,...,n. If also {wy,...,w,) € Ip and V € ¥
with V(zx) = we, k = 1,...,n, then VT (z) = wy, & = 1,...,n, with
VTt eaq.

Now let (v1,...,v,) and (wi,...,wn) be in I'. As in the proof of
Theorem 1 there is a connected linear path P joining (vi,...,7n) and
(wi,. .., wy). For each (z1,...,2,) in P we have a neighborhood as de-
scribed above. As P is compact a finite number of these neighborhoods
I,..., I cover P. By listing these so that each I M I} is non-empty we
can find Wq,..., W, in v so that (W.... Wil{vg) =we, k=1,...,n.

3. On semigroups in E(X). The arguments of Theorem 1 applied to
A can be readily adapted to show the following generalization of that result.
We omit details.

THBEOREM 3. Let $ be an open multiplicative semigroup in A where each
T € § is one-to-one. Then $ is L. i. tronsitive if and only if given T € H and
a set m1,. .., %, of linearly independent elements there exists V € § such
that VI'{(xy) = 2, k= 1,...,n.

We shall point out that there are non-trivial examples satisfying Theo-
rem 3 which are disjoint from @, the set of invertible elements of E{X).

For an infinite-dimensional Banach space X an open problem of Banach
[1, p. 245] is whether X and the null-space of a non-zero linear functional
must have the same linear dimension. In [6, p. 502] it is pointed out that this
is the case if and only if there exists T' € E(X) which is an isomorphism of
X onto a proper closed linear subspace. We consider X where such T' exist.
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Let $ be the multiplicative subgroup of E(X) of all T € E(X) which are
isomorphisms of X onto a proper closed linear subspace. By [2, Th. 2.5.6],
$ is open in E{X). We check that $ is 1. i. transitive and so see that
satisfies all the requirements of Theorem 3.

Let 21,...,2y and y1, . . ., Yn De two sets of linearly independent elements
of X. Take T € §. Then T'(21),...,T(zx) is a linearly independent set. By
Mackey’s theorem there exists V, an invertible element of E{X), where
VT (k) = yg, k = 1,...,n. But one sees that VT is an isomorphism of X
onto the proper closed linear subspace V'I'(X). Hence VT € 5.

4. Banach spaces as Banach algebras. In this section we apply a
special case of the Mackey theorem cited above. Let X be a Banach space
and let A be the set of all * € X™* such that 2* # 0 and ||z*| < 1. For each
z* € Awe define a multiplication in X via z-y = z*(z)y. This multiplication
makes X into an associative algebra and, as ||z - y|| < ||z|| ||ly||, & Banach
algebra as well. We say that this is the Banach algebra induced by z*.

THEOREM 4. Suppose that X is reflexive. Then the Banach elgebras in-
duced by any two elements of A are equivalent Banach algebras.

Proof. Let 2] and «5 be in A and set ¢ -y = z{(z)y and z# y =
xz3{z)y. Let V' be a continuous isomorphism of X onto X. We seek now
the requirement for V' to be an algebra isomorphism of the Banach algebra
induced by z] onto that induced by x3. We must have V(z - y) = V(z) #
V(y) for all z,y € X or z}(z)V(y) = zi[V(z)]V(y}. As V(X) = X this
requires that 27 = V*(z}) in terms of the adjoint operation T' — T* of
E(X) into E(X*). For X reflexive the mapping T' — T is a conjugate-linear
isomorphism of E{X} onto BE(X*). If G {G") denctes the set of invertible
elements of F(X) (E(X*)) then G maps onto G* via T — T™*. We then apply
Mackey’s theorem to G* to see that for some V € G we have V*(z}) = 7.

In [3} an example is given of a Banach algebra with no involution. This
example is semisimple and commutative but is rather complicated. The Ba-
nach algebras of this section furnish simpler examples at the expense of
the loss of semisimplicity and commutativity. We assume that X is at least
two-dimensional.

THEOREM 5. The Banach algebra for X induced by z* € A has no
involution.

Proof. Suppose that £ — z’ is an involution on X. Let - y = 2*(2)y
be the multiplication for X. Then (z -4)' = z*(z)y’ and ¢’ - z' = z*(y/)o’
for all z,y € X. Setting z = y we see that z*(z') = z*(z) forall z € X. We
select g so that x*(xe) = 1. This says that y' = 2*(y)z} for all y, which is
impossible as X is not one-dimensional.
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