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On a vector-valued local ergodic theorem in Lo
by
RYOTARQO SATO (Okayama)

Abstract. Let T = {T(u) : u € R} } be a strongly continuous d—dimenﬁonal semi-
group of linear contractions on Li(({Z, I, u)i X ), where (12, Z,p) is a o-finite measure
space and X is a reflexive Banach space. Since Ly ({2, 5phX)r :'Loo((ﬂ, E,' wy XY,
the adjoint semigroup T = {T™(u) c u € R}'} becomes a weak” -continuous semigroup Qf
linear contractions acting on Leo((£2, I, 1); X*}. In this paper the local ergodic theoreu} is
studied for the adjoint semigroup T™. Assuming that each T(u),u€ R}, hasa co:}tract?on
majorant P(u) defined on L1((2, T, p); R), that is, P(u) is a positive linear contraction
on Ly ((£2, £, u); ) such that |[T(u)f(w)|| < P(u)”f()“(w) almost everywhere on {2 for
every f € L1({2, %, ); X), we prove that the local ergodic theorem holds for T™.

1. Introduction. Define Py ={u=(u1,...,uq) 11 >0, 1 S < d} and
R = {u= (v1,..,%a) s 20, 1 €4 < d}, and denote by Zj the
class of all bounded intervals in Py and by Aq the d-dimensional Lebesgue
measure. Let X be a reflexive Banach space and (2,2, 1) be a o-finite
measgure space. We consider a strongly continucus d-dimensional semigroup
T = {T{(u) : u € Pg} of linear confractions on Lo (2, X) = L ((2, &, p1); X),
where L1 ({2, £, p); X) is. the usual Banach space of all X-valued strongly
measurable functions on {2 for which the norm is given by

17l = § 17 @)lidgs < o0,
n

Since X is reflexive by hypothesis, it follows (cf. Chapter IV of {4]) that
Ly (2, X)* = Lo (£2; X*), where Loo{f2; X*) is the Banach space of- all X™>-
valued strongly measurable functions on {2 for which the norm is given by

[ £llco = esssup{[|f (@) : w € £2} < co.

Thus the adjoint semigroup T* ={T™(u) : u € Py} becom’es a weak*—continu—
ous d-dimensional semigroup of linear contractions acting on Loo{2; X™).

1991 Mathematics Subject Classification: Primary 47A35. .
Key words and phrases: vector-valued local ergodic theorem, reflexive Banach space,

d-dimensional semigroup of linear contractions, contraction majorant.
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286 R. Sato

Following Emilion [6], for any I € Z, such that Az(I} > 0, we let

(1) Myf =2 D) fdu  for f € Lo ($;X),
I

and

(2) Mig= (Mp)'g for g € Loo(f2; X7).

In particular, for any positive real number o we put
(3) M, =M,y and M= Mj,, with I(a)=(0, o]
If f € In(2; X) and g € Loo(12; X*), then we set

(G 5) = | 9@)(Fw)) da = §(F(w), gw)) d
Q 2
{cf. Chapter IV of [4]). We recall that the mapping g — (-, g) is the canonical
linear isometry from L..(2; X*) onto Ly (£2; X)*. It follows that

(f: M;Q) = (Mff: g) = <Ad(1)_1ST(u)fdu: Q>
i

= \a(D) V(T (), g) du = 2a(D)7H§ (f, T(w)"g) du,
I I
and hence we have

(4) Mg = ha(D)™* { T* (w)g du,
I
where the last integral is a weak*-integral (cf. page 74 in [8]).
In this paper we study the convergence a.e. of the averages MZg as
a — 0. But this is meaningless if the M2g denote the equivalence classes
and « ranges through all positive real numbers, and so we either have to

select suitable representatives or let « range through a countable set. As
in [2], we introduce the notations

(5) g-lim and g¢-limsup
a0 a—0
which mean that these limits are taken as a tends to zero through a count-
able dense subset Q of the positive real numbers. Here we may assume that
Q) contains the positive rational numbers.
We are now in a position to state our main result.

THEOREM 1. Let X be o reflevive Banach space. Suppose each T(u),

u € Py, has o contraction majorant P(u) defined on L (f2;R). If T(0)
= strong-lim,, o T'(u) ezists then

(6) . Q-iijﬁj Mig=T*(0)g ae onf2
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for every g € Loo(£2; X*). Conversely, if g-limaoMog exisis a.e. on Q for
every g € Loo(£2; X*) then the semigroup T = {T'(u) : v € Pa} is sirongly
continuous ot the origin 0 € K} .

By the Chacon-Krengel theorem [3], if T' is a linear contraction on
L1(2; X), with X = R or C, then T has a contraction majorant P defined
on L1 (2;R). In this sense, Theorem 1 can be regarded as a generalization
of the (scalar-valued) local ergodic theorem of Emilion [6]. See also Chapter
VII in Krengel's book [7] for related results. But if X 3 R and C, then we
cannot expect in general that T has a contraction majorant P. An example
can be found in [9]. It is known that a necessary and suflicient condition for
the existence of a contraction majorant P is that for every 0 < h € L1 (12, R)
the function A* on 2 defined by

h* = esssup{[| (TN : f € Lo(& X), [IF()]] £ h{w) ae. on 2}
satisfies {|h*|lz < |IA[l1 (see [9]). Tt would be desirable to prove Theorem 1

without assuming the condition on the existence of a contraction majorant
P(u) for each T(u). But the author does not know whether the theorem
holds or not when the condition is not assumed.

Suppose for a moment that the semigroup T' = {T(u) : v € Pg} is
strongly continuous at the origin 0 € RY, ie., T(0) = strong-lim,.oT{u)
exists. Then T’ can be extended continuously to R}’ in an obvious manner
(ct. [1]), and hence we shall use the same symbol 7" for the extended semi-
group. Thus T = {T{(u) : v € R} }. If each 7'(u), u € Py, has a contraction
majorant P(u) defined on L;({2;R), then it follows that, for any u € R,
T'(u) possesses a contraction majorant P{u) (see the proof of Lemma 1
in [9]).

In order to prove Theorem 1 we need the following result, itself of inde-
pendent interest, which is a generalization of Theorem 3.1 of Emilion [6].

TaEoreM 2. Let X be a reflexive Banach space and (£2, X, u) be a finite
measure space. Suppose each T'(u), u € Pu, has a contraction majorant P(u)
defined on Ly (§2;R). Then for any g € Loo(2; X*) and u € Py we hove

(7) Jim |T*(H)g - T (w)gllza@:x) =0-

In particular, if T(0) = strong-limy,—oT(w) ezists then (7) holds for every
g€ Lop(2;X%) and u € IRY; in this case t Tanges over R

To prove these theorems we use the fact that, under the condition of
the existence of a contraction majorant P(u) for each T'(u), there exists
a sub-semigroup {7(u)} of positive linear contractions on L1(12;R) which
dominates the semigroup T = {T(w)}. That is, 7(s +1) < 7(8)7(t) for any
s,t € Py (or s,t € RY) and

(®) IT(w) f ) < ()] FOllw)

a.e. on {2
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for every f & L1(£2;X) and u € P4 (or u € R}). This is basic throughout
the paper. Since such a positive sub-semigroup has been used by Emilion [6]
to prove the {scalar-valued) local ergodic theorem in L., we can modify his
arguments in order to prove our Theorems 1 and 2. This idea is the starting
point of our paper. In the next section we establish some preliminary lemmas
which enable us to develop a method for proving Theorems 1 and 2, and
in the following sections we prove Theorem 2 and then Theorem 1 along
the arguments of Emilion [6]. In the last section we note that any bounded
additive process F : Ty — L. (2; X*) with respect to the adjoint semigroup
T* = {T*{u) : v € P4} has the form F(I) = {, T*(u)gdu, I € I3, for some
9 € Lo (1 X™).

2. Lemmas. Without loss of generality we may and do assume d =
2™ with m > 0. Indeed, if 2"~ < d < 2™, then we can let T'(u,%’) =
T(u) for (u,u) € Pom with u € Py. Let g € Loo(£2; X*). Then for any
v = (u,u) € Pon With u € Py, and any I x I' € Tom with I € Zy, we have
T*(v)g = T*(u,v')g and

Mpg=Aa(D)7 T (w)gdu = dom (I x I')™1 | T*(v)gdu.
I I'xIt
It is clear that T is strongly continuous at the origin if and only if T is. Thus

it is enough to prove Theorems 1 and 2 for T.
From now on, X will denote a reflexive Banach space.

LeMma 1. If g is an X™*-valued strongly measurable function on {2, then
to each £ > 0 there corresponds an X -valued strongly measurable function r
on £2 such that

(9) [r@)l =1 and Re{{r(w),g(w)) > llg(w)li — &

Jor almost all w € £2.

Proof. Since g is strongly measurable, there exists a set 4 € X, with
4(A) = 0, and a separable subspace ¥ of X* such that if w € 2\ A then
g(w) € Y. Hence we can choose a sequence (y,) of elements in ¥ and a
sequence (E,) of sets in X' so that

|JB.=0\4 and
n=1

lg(w) —ynl < €/2 for all w € E,.

Thus ||ya || > |lg(w)| — /2 for all w € E,. Since X is reflexive, there exists
an zn, € X with |z,]l = 1 and (@, yn) = |yl fw € E, then

|{2n; 9W)) ~ llynll | = [(2n, 9(w) —¥n)| £ lg(w) —wall < /2,

E,NEn=0 (n#m),
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and therefore

Re((zn, g(w))) > llynll — £/2 > [ g(w)]| - &
Thus the function r on 2 defined by

[+
= x5.(w) Z
n=1

where x4 denotes the characteristic function of a set A, satisfies (9) for
almost all w € £2. The proof is complete.

for w € £2,

LEMMA 2. Let T be a bounded linear operator on Ly (2, X). If 7 is a
positive linear operator on Li(2;R) such that | TF ()] < 77()|(w) a.e
on 2 for every f € L1{£2; X), then

(10) IT*g(w)l < 7*(|lg{)}i(w)
for every g € Loo (2, X*)

a.e. on §2

Proof. Since T*¢g € Ly (f2; X*), we can apply Lemma 1 to infer that
for any & > 0 there exists a function 7 € Ly (£2; X) such that

r@)l =1 and Re({r(w), T"g(w))) > [T"g(w)|| —¢
for almost all w € 2. Let 0 < h € Li(f2;R). Then

VR 1T glldp < | hw) - Re({r(w), T*g(w)) + ) du
N

2
= [ Re((h{w)r(w), T*g(w)) dp+ € | hdp
2 n

AN

[ {0 @), g(w)) du| + <Rl
2

tA

VIT Gy @) - llg(@)ll dp + el
£

S ) lgll dus + ellblly = § A~ (w*jlgll) dp + ellhlis.

!/\
Fe]

Since £ was arbitrary, this implies {, h-||T"g| du < §n b (gl dp for every
0< he Li(f;R), and consequently [T*g(w)|| < T*Hg( )| {w) for almost all
w € 2. The proof is complete.

LEMMA 3. Let T = {T(u) : u € Py} be a strongly continuous d-dimen-
sional semigroup of linear contractions on L1(£2;X). Suppose each T{u),
u € Py, has a contraction majorant P(u) defined on Li(f2;R). Then there
exists o strongly continuous one-dimensional semigroup U = {U(¢) : t > 0}
of positive linear contractions on L1(12;R) such that
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(i) for each & >0 and f €Iy

—

2, X),

IMaf@)] < Ca-a(FUIFIdt)(w)  ae. on @2,

& e Q)

where Cy is a constant depending only on d and loga = 27" loga with
— O
‘ b—(i) jfor each o > 0 and g € Lo (82, X™),
|29l < Ca- a7 ([T @)l dt) () ace on 2.
In particular, if T(0) = strong—lti]mu._,gT(u) exists, then so does U(0) =
strong-lim;_oU(t), and

(11) UOR

k k
— esssup { SITO 5O : i € L (2. X), S Nf:w)] € hw) ace. on !2}.

i=1 g1
for every 0 < h € L1 ({4 R).

Proof. Except for (ii), the lemma has been proved in [9], and (ii) is a
consequence of Lemma 2. The proof is complete.

3. Proof of Theorem 2. We first consider the case d = 1. Let U =
{U(t) : t > 0} be the one-dimensional semigroup in Lemma 3 which corre-

sponds to the semigroup " = {T{u) : u € P }. It follows from [9] that U
also satisfies

(12) I7() f (@) < UGN (w)
for every f € L1(2; X)) and ¢ > 0. Put

he={eU@®ldt (e LT {(R),
]
Then we have

a.e. on {2

C={w:hw) >0}, D=0\C

o0
(13) U(u)h = (g) et (u+t)ldt <e*-h foru>0,
xp Ulu)f =0 ae. on {2 for every f € L1(2;R).

Thus the adjoint semigroup U* = {U*(t) : t > 0} acting on Ly (2;R)
satisfies U*(t){xp-g) = O a.e.on 1 for every g € Lo (£2; R), and by Lemma 2,
(14) I1T*{#)(xp - Il < T*{E)(xp - [g()I}) =0
for every g € Loo{f2; X*). Now define

S()F = T)(fR) for f € L1((C, hw); X),

a.e. on {7

icm
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sothat § = {S(¢) : t > 0} becomes a strongly continuous semigroup of linear
contractions on Ly ((C, hdu); X), and the adjoint semigroup S* = {5*(t) :
t > 0} acting on Lo {(C, hdu); X*) = Ly (C; X*) satisfies
(15) S*(t)g = T*(t)g a.e on C for every g € Leo(C; X*).

Let f € Loo{C; X). Since Lo (C; X) ¢ L1 ({C, hdp); X), we then have

8@ ) = Ipw) ™ TR < hw)™H- TR )
< || Flloch(w)™ - Ut)h(w) < € flloo

for almost all w € 2, where the last inequality comes from (13). Hence
15(t)llec < €.

Similarly, if we set

V()f =h™t-UR)(FR)  for § € Li((C, hdu); B),

then V = {V(t) : t > 0} becomes a strongly continuous semigroup of positive
linear contractions on Ly((C, hdu);R) satisfying ||V (£)]e < & and
(16) V*(t)g = U*(t)g a.e. on C for every g € Loo{C; R).
Thus [|[V*(#)ll1 € € and |V*(t)[/eo < 1, and by Lemma 2,

I*@)ls <t and [S™(B)flec < 1.

Consider §* = {§*(t) : t > 0} to be alocally bounded semigroup of linear
operators on Ly ({C, hdu); X*). We then see that S* is weakly continuous.
Indeed, if f € Loo(C; X*) C Ly ((C, hdu); X*) and g € Loo((C, hdp); X} =
Lo (C; X)) then

(g, 5*(6) finap

{g(w), S* () flwhh(w)dp
(

gw), T*(#) f(@))h(w) du

(h(w)g(w), T* ()£ (w)) du

Tt follows that the mapping ¢ + (-, S*(£)f) is weakly continuous for each
7 € Lo (C; X*). Since Lo (C; X*) is a dense subspace of Ly ((C, hdp); X*),
this yields the weak continuity of the semigroup 5™ = {8*(t) : t > 0} by an
approximation argument. Thus, by the theory of semigroups of operators
(see e.g. Chapter VIII of [5]), §* is strongly continuous on the interval
(0, 00), so that for any g € Loo(12; X*) C L1 (12; X*) and u > 0 we have, by
{(14) and (15},

(17) ' lim { | T*(t)g — T" (w)gllhdps = 0.
‘ 2

!
:
é
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Letting ¢ = u/2 > 0, we then deduce that

lim { 17 (t)g — T (u)gl s
2

U(s)L- [ T*(t — s)g — T"(u — s)g| dps = O,

where the last equality comes from the fact that for any £ > 0 there exists
an N > 1 such that ||(U(s)1 - Nh)t|l1 < ¢, together with an approximation
argument.

Suppose, in particular, that T(0) = strong-lim,_oT'(u) exists. Then
U(0) = strong-lim;-.oU(f) exists by Lemma 3, and S* = {§*(¢) : ¢ > 0}
can be considered to be a strongly continuous semigroup of bounded linear
operators on Ly ((C, hdp); X*) which is strongly continuous at the origin.
Thus

(18)  lim 17 (®)g — T*(0)g|hdp =0 for every g € Loo(§2; X™).
2

Since
1T (2)g — T (0)g|| = |T*(OHT™ (t)g — T*(0)g)|
SUHOT*(t)g —T*(0)gl ae on 2,

we then apply (18) together with an approximation argument to infer that

(19) i § 7™ (0)g—T"(0)gl} dus < Lim, fU©17* (0)g~T*(0)gll dn =0,
iy 7

which completes the proof for the case d = 1.

We next consider the case d > 1. If w € Py is given, choose a sufficiently
large N > 1 and define

Tn(t) =Tt + s1/N,...,ta+ Sd/N) for t = (tu, .. ‘,td) € R} \ {0},
where
si=(t1+...+tg)—t; forl<i<d.
It is easily seen that Ty = {Tw () : £ € R} \ {0}} becomes a strongly con-
tinuous gemigroup of linear contractions on L1 (£2; X ), and we may assume
that « has the form
U= ('b]_ =+ Sl/N,. . +Sd/N)

for some ¢t = (t1,...,ta) € P4. Thus, without loss of generality, we can
assume from the start that T is a strongly continuous semigroup on ]R;i" \{0}.
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Let T; = {Ty(¢') : ¢ > 0}, 1 <1 < d, be the one-dimensional strongly
continuous semigroup of linear contractions on Ly (12; X) defined by
Tt =T &) fort >0
where €' is the ith unit vector in R} . By the case d = 1 we see that

(20) Jim § 177 ()9 ~ T7(s)glidp = 0
rd

for every g € Loo(42; X*) and &' > 0. If u = (u1,...,uqg) € Py is given, then,
since
T*(tl’ wAn 7i'd)g - T*(ulﬂ "’!ud)g
= [T*(tl, A ,td)g - T*(tl, - ,td_l,ud)g]
- IT*(tl, P ,td._]_,ud)g - T*(tl, . .,Ud_l,ud)g] + ...
+ [T*(tlau% e :Ud)g - T*(Ul, v 5“1‘1)9]7
we deduce that

VU™ (1, s ta)g — T (a5 ua)gll dps
2

d
< ST - T (- )T (Ba)gs — T (wa)galll dis,
a

qa=l
where
g if i = d,
gi:{ﬂﬁ_l(uwl)...Tg(ud)g fl<i<d—1. ‘
IfU; = {U;(¢) : t' > 0} denotes the one-dimensional semigroup in Lemma 3
corresponding to the semigroup T;, then we get

F T2 ) - Ty () [T (i) g — T3 (wi) il e
’ < [Ur) . Uy (i) (8)gs — T3 (uidgsll dpe
= ?U, 2(Eiea) - D)1 |T7 ()i HTE“(w)gill dp
< ?UM i) - Ur(wa)1 - 1T7 (8:)gs — T (ua)gsl) dus
i 2 gilion § NUimt (tim) - Ualta)l = Uimafusa) .- Ulua)tf dp

2
= I(t) + II(t),
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and by (20)
lim I(¢) = 0.
T+t

Further, since each U; = {U;{¢) : t' > 0} is strongly continuous on the
interval (0, c0), an easy induction argument yields

lim 11(t) = 0.

Hence the first half of the theorem has been proved. The second half can be
proved gimilarly. The proof is complete.

4. Proof of Theorem 1. Since there exists a finite measure on (£2, )
which is equivalent to p, we may and do assume without loss of generality
that p is finite. (Cf. e.g. (15).)

To prove the first half of Theorem 1, let 7°(0) = strong-lim,, .07 (). If g
is a function of Ly (42;X*) then, by Theorem 2, the mapping u — T™*(u)g
can be regarded as a strongly continuous function from R} to L (f2; X*).
Hence, as is easily seen, there exists an X*-valued function G'(u,w) defined
on Py x 12, strongly measurable with respect to the product g-algebra of the
Lebesgue measurable subsets of By and X, such that for each u € Py,

G(u,-) is a representative of T (u)g.
Then we have
Mig(w) = a_d( S T* (u)g du) (W) =a S Glu,w)du a.e. on 2,
I{a} I{ex)

where the integral { oy I {u)g du can be taken in the Bochner sense in place
of the weak”-integral. Since

1T ()Mo — Mgly = IT"(u)Mg — Mjllo =0 asu— 0€RY,

we obtain

(21) Jim | Mg Mg — Mgl = 0.

Now put
(22) G} = q~1irilj161p | MEg(w) — T*(0)g(w)| for w e £,
Then

F(w) £ ¢-lim sup | M [T*(0)g — Mggl(w)]
+ ¢-lim sup | MaMgzg(w) — Mzg(w)||
a—

+ | MEg(w) — T (0)g(w)|| ae.on 2.
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Since Theorem 2 implies limg_p |M3g — T*(0)gl z,(n:x-) = 0, it follows
that for each g > 0,

(23) Jm pl{w - | Maglw) - T{D)g(w)l| > =) = 0.
By this, together with (21), it is enough to show that
(24) q—hm {Gadu=0
‘ 04
where

9p(w) = gl sup [|M[T" (0)g — Mpgl(w)ll  for w e 2.

To prove (24), we use Lemma 3 as follows. Let U = {U(#') : t' > 0} be
the one-dimensional strongly continuous semigroup of positive linear con-
tractions on Lp(§2;R) in Lemma 3 corresponding to the semigroup T =
{T(u) : u € Pg}. By the scalar-valued local ergodic theorem in Loo (see e.g.
Theorem 7.1.14 in [7]), for every § > 0 the limit

hg = g-Jim & | U*(¢) (17 (0)g — Mgl at'
e+
0
exists a.e. on (2, and further

hg = U*(Q)(|T*(0)g — Mzg!]) =ae.on 2
Since Gz < Ci- hs a.e. on 2 by Lemma 3(it), it follows that
[ Godu < Ca{ hgdp = Ca | UO)1-17(0)g — Mpgll dus
a 2 7
and by (23),
lim § U(0)1-|77(0)g — Mgll du =0,
a

whence the proof of (24) is complete.
Next suppose that glim,..oMig exists ae. on (2 for every g €
Loo(£2; X*). Then for any f € L1 (£2; X),

¢-lim (Mo f, 9) = ¢Bim {f, Mzg) = ¢-im, S(f( ), Myg(w)) du

= | (f(w), a-lim Mig(w)) dps
el
by Lebesgue’s convergence theorem. Since X is reflexive, L1($2; X} is weakly
sequentially complete (cf. e.g. page 117 of [4]), and thus if (cn) is a sequence
with o, € Q for all n > 1 and lin, o = 0, then there exists a function f
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in Ly {2 X)) such that

(25) f = wealkelim Ma, f.

Then

(26) T(u)f = weak-lim T{u)M,, f = strong-lim Mo, (T(u)f) =T(u)f
for every u € Py, and further, by the Hahn-Banach theorem, f is in the

closed linear subspace of L1(f2; X) generated by the set {T(u)f : u € Py}
It follows from an approximation argument that

(27) f= stronguiimé T(u)fz strong~limb T(u)f,
U= =t
which completes the proof.

5. Additive processes for T*. We recall that a set function F : T; —
Lo ({2, X*} is an additive process with respect to the adjoint semigroup
T = {T*(u) : v € Py} if F satisfies the following conditions:

(i) T*(w)F(I) = F(u+I) for all «w € By and I € 7,
(i) If I1,..., fx € Iz are pairwise disjoint and [ = Ui'n=1 I; &€ Ty then
F(I) = S F(L).
F is called bounded if
K(F) = sup{Aa(D) " |F(D)loo : I € Tg, Aa(I) > 0} < c0.
In this section we prove the following theorem (cf. Theorem 4.1 in [6]).

TueoREM 3. Let X be a reflexive Banach space and F' : Ty— Lo (§2; X*)
be a bounded additive process with respect to the adjoint semigroup T* =
{T"(u) : v € Pa}. Then there exists a function g € Lo (£2; X*) such that
F(I) ={, T*(u)gdu for oll I €I,

For the proof we need the following lemma,

LeMMA 4. To any J € Lg, with Aq(J) > 0, and aneg > 0 there corrésponds
a7y >0 such that if I € Iy satisfies T C (0,7]* and Ag(I) > 0 then

HF(J) ~ | T* (W)[Aa(D)~1F (1)) du Hw <e.
J

P roof. This is an adaptation of the proof of Lemma 3.2 in [1]. Since
E(T) = T F{J)|co = IF(J) = Flu+ T)||ee < K(F)-Aa(J & (utJ)),
where AA B denotes the symmetric difference of two sets A and B, we have
lim || F(J) ~ T* (W) F(J) [oa = 0.
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Hence we can choose ay > 0sothat if I € Ty, I C
then

(28) |7~

0,v]¢ and Ag(I) > 0
(I { T ) F () du“m < g
I

and further there exists an I’ € T5 which is a disjoint union of intervals
a; + I with a; € Py, § = 1,...,m, and satisfies

I'cJ and Ad(J\I')<—~—3K€(F).
Then
(29) HST*(U)P\d(I) ()] du— | T* ) hal) D) e

]
= | T )R] dul| < Xa(T\IVE(F) < 3

JNI
and
| T @@= 30 | T PaD T ()] du
r J=1 aj-I
= f:ST* (a; +u)Aa(D) T F(I)] du
j=11T
= (D) T u)[ZF(a, +I)]
I j=1
= X() 7\ T* (W) F(1') du.
I
Since

“Ad 0" 1§T*(u VE(J) du— 2g(I) | T (W) F( ’)du”

j7
I

= [ratn e Een —raad <
I

we deduce that .
@) | § T @ Oa) T F @) du = Ae(DTH T @) F() au| <3,
I I

which, together with (28) and (29), completes the proof.
Proof of Theorem 3. For a positive number o let
Ale) = a~2F((0,a]%).

Since ||A{@)|e < K(F) < oo for all @ > 0 and since the closed unit
ball of Leo(f2; X*) is compact in the weak*-topology, we can choose a net
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{w, : + € D}, where D is a directed set and ¢, is a positive number for each
t € D, and a function g in Ly, (£2; X*) such that

(31) lime, =0 and g = weak"lim A{e,).
If J € Iz and f € L1{2; X) are given, then, by Lemma 4 together with (31),
<f, j 7w du> - ( |7 du, g> = lifn< {7 () f du, A(a,,)>
J J g

=tim (£, | T (w)lA(@)] du) = (£, F(J).

J
Hence F(J} = |, T*(u)g du for J & T4, and the proof is corplete.
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