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On Sobolev spaces of fractional order and e-families of
operators on spaces of homogeneous type

by
A. EDUARDO GATTO and STEPHEN VAGI (Chicago, Il.)

Dedicated to Professor Carlos Segovia Ferndndez

Abstract. We introduce Sobolev spaces L5 for 1 < p < co and small positive o on
spaces of homogeneous type as the classes of functions f in L? with fractional derivative
of order ¢, D°#, as introduced in [2], in LP. We show that for small c, L%, coincides with
the combinuous version of the Triebel-Lizorkin space Fp” as defined by Y. 8. Han and
B. T. Sawyer in [4]. To prove this result we give a more general definition of e-families
of operators on spaces of homogeneous type, in which the identity operator is replaced
by an invertible operator. Then we show thas the family t*D%(x, y,t) is an z-family of
operators in this new sense, where g(z,y,t) = t% s(z,y,t), and s(z,y,%) is a Colfman type
approximation to the identity.

1. Definitions and statement of results. Let (X, d, u) be a space of
homogeneous type of infinite measure and such that u({z}) = 0 for every =
in X. Without loss of generality it can be assumed that (X, 4, ¢2) is a normal
space of order v, 0 <7 < 1. For 0 < e < 1 let

oo dt 1/(—a—1)
5—«1(50131) = ( S twas(miy:t) T)
0
where s(x,,t) is a Coifman type approximation to the identity. In [2] it is
shown that 6. (z,y) is a quasidistance equivalent to 4 (z,y)-

Let CF, 0 < 5 < v, be the space of Lipschitz functions of order n with
bounded support. The fractional derivative of order o of a function f be-
longing to CF, 0 < a < 7, was defined in [2] by the formula
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‘We extend this definition to functions in L?, 1 < p < oo, as follows.

DEFINITION 1. Let f € IP, 1 < p < oo. If there exists g € LP such that
for all g € CJ, 0 < a <n <, (f,D%p) = (g,9), then we define D%f = g.

DEFINITION 2. Let 0 < @ < v and 1 < p < 00. The space L}, is the set
of functions in L? with fractional derivative of order ¢ in IP, with the norm

[ fllzz = [ fllze -+ [[D*Fllze.

The letter ¢ will denote a constant, not necessarily the same in different
occurrences, and the symbol ~ between two norms indicates that the norms
are equivalent.

Triebel-Lizorkin spaces on spaces of homogeneous type have been intro-
duced by Y. 5. Han and E. T. Sawyer [4]. Here we will use a continuous
version of their definition.

As before, s(z,y,t) will denote a Colfman type approximation to the
identity and

Bs(z, y,t)

Q(mh 1t) =t at

For the properties of s(z,y,t) see [2].
For f € L*? we denote by (J:, t > 0, the operator

Q:f(z) = — | al=z,4,1) (v} dp(y).

X

DEFINITION 3. For 1 < p < 0o and 0 < & < -y the space F? is the set
of functions f € L? for which

T —2c 2 dt 1z
(gt |Q:f] ?)

and the norm of f in F;"z is defined by
||f||1r,§*r2 = |Ifllce + ||f||ﬁ‘g”-

1Flege =

< 00,

P

DerFINITION 4. Let 0 < g9 < &1. We say that {@t}t)() is an e-family

of operators if each operator Cjtf(zv) = {qlz,y,t)f(y) duly) is given by a
continuous kernel g(x,y, t) which saiisfies the following conditions:

(2) |§(m,y,t)| < t(l * 6(.7:,y)/t)1+51

forallz,y € X and ¢t > 0, and
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— ~ 8y, v/t )E’ c
3 10 — glz, o, 1) <
0wt -2 0l< (5507)
for all £ > 0 and z,y,% € X such that
Sy,y) _ 1 8(z,y)
DACAL AV P St 2= A
t - 25(1+ t )

Here & is the constant of the “triangle inequality” of §, and c is a constant
independent of x,y,%',t. The e-families of operators in R® were introduced
by M. Christ and J. L. Journé [1]. We refer the reader to [3] where these fam-

ilies are studieg in the context of Triebel-Lizorkin spaces on R"®. Further, @}
is defined by @} f(z) = {5 (=, ¥, %) () du(y), where §'(z, v, t) = @y, =, 1)

THEOREM 1. Let 1 < p < oo, and let {@t}t>0 and {é;}bg be e-families
of operators such that (1= Q1 =0, for all t > 0, and

Tx dt
§@?=T

15 an invertible operator in Fg=2. Then there exists ay > 0 such that for
0<a<ar and p € Cf, a <7 <7, we have

oo o dt 1/2
[l fa = H( | £72%Qs0l? 7)
o P

THEOREM 2. Let 1 < p < co. Then there erists o > 0 such that for
0<a<ay, LB = F;’2, and the corresponding norms are equivalent.

Proofs

Proof of Theorem 1. Theorem 1 s an extension of Theorem 4.5 of [3]. The
main novelty is the replacement of the condition 3, De=1 by Sgo Qt % =T,
where T is an invertible operator in Fg“? The original proof can be adapted
to the continuous setting and the new hypotheses, and we refer the reader
to [3] for the details.

Proof of Theorem 2. Since L%, and F? are complete, and the space cy,
o < 1 %, is dense in both and 0 < & < g, it suffices to show that for
¢ € Cf,

D%pllze = ol a2,
where ag will be determined later. By the Littlewood—Paley theory on spaces
of homogeneous type [4] we have

. N co N 2% 1/2
@ ipeelin = | ({1000 7).
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In [2] it is proved that for f € Lip(n)nL*®, a<n<v,and g € O’g, we
have (D=f, g) = (f, D"g); therefore

(5) Q1(D%p)(z) = | alz,y, ) D) (y) duly)
X
= ;{(D?yﬂ(m, Y, )Ye(y) du(y)
= }S{t‘“a’(mgy; £)o(y) du(y) = t*Qup(a)
where §{z, y,t) = t"‘DE"y)q(m, y,t), and O, denotes the aperator whose kernel
is q.

Using (4) and (5) we have

(6) 1D%pllp =

o0 N dt 1/2
‘( S 2% |Quel* ?)
0 r

In order to apply Theorem 1 to the right hand side of (8) we must show that
ét and é; are e-families of operators and satisfy the hypotheses of Theo-
rem 1. In the lemma below we show that {Qy }es0 and {Q}es0 are s-families
of operators. To show that Qvtl = é;l == 0 observe that, as mentioned above,

for feLip{n)NL®, a<n<y,and g€ Co’a, we have (D*f, g) = (f, D*g),
and since D*1 = (), we have

0 = | (D*V)q(=,y,2) du(y) = | 1D¢)a(z, v, 1) dply) = t=Qu 1.
On the other hand,
~ — o , 2,5 — , Tt
Fiate) = Yt o0ty = oo (§ L2 A2 405} <0
“n (7 7)
because the double integral is absolutely convergent, and the integral with
respect to y is zero for all £ > 0.

By the representation formulas of Theorem 1.6 of [2], i.e. al,f =

fo t“Qe(f) % and —aD*f = {Pt7%Q(f) %, and by (5), for ¢ € CF,
0 < o <, we have

[~)

dt
Sap = Io(D%0) = | t°Qu(D%) -
G-
[= o] o0
= di = dt
I 2 oy —0 2 2 hoded
agtt Qt‘Pt ath(’ot'

The operator S, has been considered before in [2], where it was proved to
be invertible in L2. We will show now that S, is invertible in F®2 for small
o > 0. The proof is analogous to the L? case except for (7) below. As shown
in {2] we have the representation formula
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2 T o dt
(I+0°5,)p = S(l—t )W(p"t—,
0

where o
dt
Vig = | QuQatp —
0

On the other hand, the following continuous version of the estimates proved
in Lemmas (5.21) and (5.24) of [4] holds:

™ [Vagol oz < )l e
where
t?, 0<t<1
< ; =5
elt) < c{t‘ﬁ, t>1,
with 0 < 8 < «y. Therefore

T dt
1T+ 02803l g < § (1= 190e(®) Il g
0
To estimate the last integral we write it as the sum
i/N N o]

11—t %’3 £ -l % win-eeE=nsn+
0 1/N N

Using the estimate (7) for ¢(t) we can find N = Np sufficiently large so that

I, and I are less than 1/4 uniformly with respect to a for o in (0,+] and

fixed 4 < . Having chosen Np we can find cxg such that for 0 < e < g, :Z—g is

less than 1/2. Therefore ||+ o284/ pe2 < 1, and hence —a?8, is invertible,

and therefore so i8 S. Applying Theorem 1 with T' = —(1/a?)S, we see
that the right hand side of (6) is equivalent to ||e|l et 0<a< o and

consequently
[D%¢llze = |l -

To complete the proof of Theorem 2 we still have to prove the following
lemma.

LEMMA. Let §(z,y,t) = t"‘Df‘y)q(m,y,t) and 7'(z,y,t) = @y, z,t). Then
the corresponding operators Q. and é; are e-families of operators.

Proof We will use in the proof the fact stated before that d_. is equiv-
alent to & (see [2]). To estimate g(z, y,t) we need the following known prop-
erties of ¢{z,y,t):

() q(z,y,t) = qly, =,t) for all z,y in Xandt> 0.. ‘
(ii) glz,y,t) = 0 if 6(z,y) > bit, where by is a positive constant.
(i#1) lg(z,p,t)| S er/t for all v,y in X and t > 0.



24 A. E. Gatto and S. Végi
(iv) |g(z, y, t)—q(z’, y, D) < (co/ttt7)67 (z, &) for all z, x', y in X and £>0.
(v) §x g(w,v,t) dp(y) = O for all @ in X and ¢ > 0.

For computing the fractional derivative of g(z, y, ), we use formula (1),
and we have

Q(mayat) _ Q(ma zat)
$1E (. 2) ule)

To prove (2), consider first y € Bayp,:(2), and write a(z,y,t) =t Sa(z W<t
-+ SS(z,y))t = I+ II. By (iv) and (i),

cz8” (ys z)

Zf(mayat) =t S
X

m<t | Sosmar g )
+y§1+
sz 0 w2)
- Cfia { 1+d‘u(Z) (f £17%= 2
pow <
T Sy 7)<t & 7’(9,2) AT t
By (iii),
2¢; c .. c
<t | o dulr) St =
Byt tolte(y, 2} t t
Since ¥ € Bap, () it follows that
1)+ || < -

1+ 8(m, y) /)Mo
Now consider y & Bau,:(x); by (i) and (iii},
iz, y, by < £ la(z, z,1)| o £
q(z, y, )| < Bbl{(m) STva(y 2) du(z) <1t Bb}t(x) e z) du(z).
For z € By,1(z), 6(y, 2) > 6(z,y)/(2x), and the last expression is majorized
by ¢/}, this in turn can be easily seen to be less than or equal to
¢ 1
e e E
This proves (2) with &; = a.
We now prove (3). By Theorem 2 of [2] and property (iv) of ¢(z,y,1),
HDQQCwJ '7t)HLip(7—a) < C”Q(xa B t)”Lip(qf) < C'./tlu}w'
Therefore for y & Bap, g{x),

. . 4
|Q(wa U, t) - q(m:yfi t)| < ta"ﬁ_;__.y“é’y_w(ya :lf')
< (e YT

T E\1+6(zy)/t (1 +é(, y)/t)1+e
where £; is any positive number, and ¢’ depends on ;.
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For 4 € Bayp,:(x) and

8(y,y) _ 1 {z,y)
D ke
t T 2 I+ )’
we have g(z,y,t) =0, g(z,y,t) = 0, and hence

1 1
() 65y

i@,y 1)~ @y 1) St § oz, 20 dp(z)-

Bbl t [.’c)

It also follows that §{y,y") < exd(y, z) with ¢ > 1, and therefore

1 1 §(y,y)
o (zy) S (ny)| — 0ret(z,y)

(see e.g. Lemma 3 of [2]). Using this estimate and property (iii) of g(z,y,t)
we have

y !
Cp O (.9

E : 51+Q+’T(z:ty) d#(z)‘

Ia(ﬂh Y, t) - a(m,y'7t)| § ta S
By ifz)

For z € By,¢(x), we have 8(z,y) < 8(y, 2), and hence

~ ~ ! o 61(9:9’)
o,y t) - 3y 0] < i s

As in the proof of (2) it follows that this is less than or equal to

( 5y, )( 1

t\1+4(z, )/t 1+ 8(z,y)/t)Hre

because ¥ — @ < . This shows that {ét}t>0 is an e-family with £; = @ and
£ < min(a,y — ).

We now prove that the @} also form an e-family. Since &(z,y) =& (y,x),
(2) is already proved. Let 6(y,y’) =7 > 0. Then

|a(yama t) - ﬁ(‘y’,ﬂ:,t)! , )
5 (q(y,z,t) —qly,zt) gzt — 9z, t))d,u,(z)

X 6.]::1;&(:1:7 z) 61’;10[(:31 ,?J)
gtm‘ { l-|-t°“ | }=I+II.
§(z,z)<r §(x,2)>r

Both terms in the integrand of I are estimated the same way using properties
(iv) and (i) of g(z,y, t). For the first term we have
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9y, 2, t) - q(y,z, t)l o 262 &7 (z,a:) References
= | du(z) <t* 0= | e du(®)
1+ 14 ey ;
§{e,z)<r g D‘(m,z) [ §(z,z)<r J (Z,.D)
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To estimate II we rearrange the integrand and we have ) )
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Adding the estimates of I and II we have
_ _ ey, y )\
@y, 2,8) —aly', =, )] < < (—(—y—t’—?’—/—))
for all ¢y, € X and ¢ > 0. On the other hand, for
Sly,y') 1 8(=,y)
DAL IVI- G i [
t T 2s * t ’
estimating each term of the difference above using (2), we also have
2y, 2, 8) — 3, 2, 1) < [q(y, x, t)] + |§(y', z, )|
_ c ¢
H1+ 3z, /07" U1+ 8, g) B
J
< . c _
T 1+ 8z, y)/t) e
Finally, for 0 < A < 1, combining the two estimates we can write

< (e ) ¢
T\ (L y)/t) (14 6w, y) /) tE
where g1 = o — A(1 - ) and €2 = A(y — a). Taking X small enough one has
£p < E7.
This concludes the proof of the lemma, and hence also of Theorem 2.



