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An oscillatory singular integral operator with polynomial phase
by

JOSEFINA ALVAREZ (Las Cruces, N.Mex.) and
JORGE HOUNIE (Sdo Carlos)

Abstract. We prove the continuity of an oscillatory singular integral operator T
with polynomial phase P(z,y) on an atomic space H}; related to the phase P. Moreover,
we show that the cancellation condition to be imposed on T holds under more general

conditions. To that purpose, we obtain a van der Corput type lemma with integrability
at infinity.

1. Introduction. In this paper, we consider a continuous linear operator
T:C§° — D’ defined as

(T(£),9) = (k(=,y), ¢V £ (1) g(z))
where k(z,y) is the distribution kernel of a Calderén—Zygmund operator,
P(x,y) is a real polynomial in 2,4 € R*, f,g € C§°, and (,) denotes the
(D', C§°) duality.

These operators appear, for instance, in connection with singular inte-
grals on lower dimensional varieties, on the Heisenberg group in relation to
twisted convolution, and as the model for operators occurring in the theory
of the singular Radon transforms (cf. [11]). Many authors have studied the
behavior of these and related operators on various function spaces. For ex-
ample, D. Geller and X. M. Stein [6] and D. H. Phong and E. M. Stein [11]
showed that if P is a bilinear form, the operator T is of strong type (p,p),
1 < p < oo; F. Ricci and E. M. Stein [12] showed that T' is of strong type
(7,p), 1 < p < 00; S. Chanillo and M. Christ [2] proved that T' is of weak
type (1,1); Y. Pan [10] showed that T' maps continuously an appropriate
atomic space Hp into L', He also showed that the result is false in general,
oven when P is a bilinear form, if the exponent 1 is replaced by 0 < p < L.
Y. Hu and Y. Pan [9] proved that if P = P(z — y), k = k(z —y), and
VP(0) = 0, the operator 1" maps continuously the weighted .Ha,rdy space
H into itself for w € A;. They also proved that the hypothesis VP(0) =0
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2 J. Alvarez and J. Hounie

is necessary. There are also weighted results on L? and H' due to Y. Hu
(cf. [7], [8]).

In this paper, we state an appropriate cancellation condition to impose on
T, so that T will map continuously the space H} into itself. When the phase
P is a constant, it is known (cf. [1]} that a Calderén~Zygmund operator T
maps the space H' into itself if and only if 7%(1) = 0 in the BMO sense. The
standard proof of this result involves showing that 7" maps H'-atoms into
H1-molecules. Following this model case, we first define in H} a suitable
notion of molecule and then we show that the operator under consideration
maps H}-atoms into Hh-molecules. As usual, a molecule satisfies the same
cancellation condition as an atom, but instead of having compact support, it
satisfies an additional size condition at infinity. When verifying that the im-
age of an atom satisfies the cancellation condition, the model case suggests
that the appropriate cancellation condition on T should be T*(e*F(=2)) =0
for each z € R, in some sense. More precisely, the (H%, L) continuity re-
sult proved by Y. Pan [10] implies that the operator T* maps continuously
L% into a BMO like space. It is in this sense that the above cancellation
condition on T can be understood. The (Hp, L) continuity requires assum-

ing that the distribution kernel k(z,y) defines an operator bounded on LY,
for gome 1 < ¢ < co.

Tt is interesting to observe, however, that the action of T* on the function
eP(#%) 5 € R fixed, can be made precise without assuming any continuity
condition. This is already true in the case of a constant phase. Indeed, it is
known that the pointwise condition

|V yk(z,y)| < o =gt

for some ¢ > 0, or the Hérmander condition:

(1.1) {

lz—zi>2ly—z|

(5, y) = k{y, 2)| + |k(y, z) — k(z, 2)|) dz < o0,

are enough to define the action of the operator on LNC%°. This observation
lIiejs at the heart of the celebrated T'(1) Theorem of G. David and J. L. Journé
47, .

It turns out that in the case of oscillatory singular integrals, to obtain
the integrability needed to make precise the action of T* on €F(%:%) a quite
more involved argument is required. We discuss these matters in the last
part of the paper. In particular, we obtain a van der Corput type lemma
with integrability at infinity. We believe that this result may be of interest
on its own.

We view these resulis as the main contribution of our paper.
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More precisely, following the model case we are led to consider the func-
tion

¥ o iP(y,x)
{y) T Se g(z) dx

where g is a C§° function. Then we prove that ¥ is integrable at infinity,
possibly imposing a cancellation condition on g. This is the result we refer
to as a van der Corput type lemima.

The notation we use in this paper is the standard one in the subject.
The symbols C§°, 5, D', LP, etc. indicate the usual spaces of distributions
or functions defined on R™, with complex values. Moreover, || f|, denotes
the LP norm of the function f, and ||/T|,,, denotes the operator norm of an
operator bounded on LP. We denote by x4 the characteristic function of a
set A, by |A| the Lebesgue measure of a measurable set A, and B(z,7) is the
ball centered at z with radius 7. As usual, the letter C indicates an absolute
constant, probably different at different occurrences. Other notations will
be introduced at the appropriate time.

2. Definition of the space H}. Y. Pan [10] introduced the atomic
space H} following the definition given by D. H. Phong and E. M. Stein
[11] in the case when the phase P is a bilinear form.

DEFINITION 2.1. Given 1 < ¢ < coa (1,g) atomis a g-integrable function
a satisfying the conditions: :

(i) a is supported on a ball B = B(z,r),
(ii) |lallg < |BI~YH9,
(iii) § e ¥)a(y) dy = 0.
DEFINITION 2.2. We denote by H};’q the family of tempered distributions
f that can be written as

f= Z Aja; in the sense of 5’
jz1
where a; is a (1,¢) atom, A\; € C, and 3.5, |[A;| < o0

Clearly, H};q is a complex vector space. It becomes a complete quasi-
normed space upon defining

I£] = . ind wal-

o=l
The proof starting on page 266 of J. Garcia-Cuerva and J. L. Rubio ile
Francia’s book [5], appropriately modified, shows that the definition of H 57

does not depend on g, for 1 < ¢ < 00, So, from now on we will denote the
space as Hi.
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As noted by Y. Pan [10] there is a BMO like space associated with Hp.
The definition of this space BMOp follows the cne given by D, H. Phong
and E. M. Stein [11] for the operator with a bilinear phase. More precisely,

DEFINITION 2.3. Given a locally integrable function f we say that f ¢
BMOpg if

1
Ifllemos = sup —=——= | |f(z)- fE(=z)|ds < oo
zTE>lRU IB(Z,’F)I Biz,r)
et‘P(z,m)

where fg(m) — zeml SB(z,r) e—’l:P(Zvy)f(y) dy.

It follows from Definitions 2.1 and 2.3 that given f € BMOp and given
a {1, c0) atom a, we have

|7 @)ata) da| < )f|mio,-
This shows that the spaces HL and BMOp are in duality.

3. A notion of molecule in the space H};

DEFINITION 3.1. Let 1 < ¢ < co and & > n(g—1). A g-integrable function
M is a (1, g, ) molecule if there exists a ball B(z,r) and a positive constant
(' such that the following conditions are satisfied:
() |14y — 2|/, < O|B|~/ra)+1/a-1,
(i) M|y < C| B+,
(iii) (P& M (y) dy = 0.

REMARK 3.2. A function M satisfying the first two conditions above is
integrable, thus giving a meaning to the third condition. Indeed,

1/
S |M ()| dz = (S | M (z}ie dm) q[B|1—1/q < C|B|1/q~1}3!1—1/q —C
B(z,r)

Moreover,
| M@= | |[M@)z- 2% - 2|~ dg
R*\B(z,r) RA\B(z,7)

1/'1 : 1/‘1{
< (§1M (@)l - 2 di) (| lo—aedre clw)
R \B(z,r)
< C|B|*/(ra)+l/a-141/d'~a/(na) _ (7,
M. Taibleson has pointed out to us that by defining a new parameter 3 = o /q
and rewriting the above conditions in terms of 3 one can allow g = o0.

PROPOSITION 3.3. Let M be a (1,q, o) molecule. Then M belongs to the
space Hp.

An oscillatory singular integral operator 5

Proof. Given a molecule M associated with a ball B = B(z,r), we want
to decompose it as an appropriate linear combination of (1, ¢) atoms. Let

o. - { B =Bo, 1=0
T Bz 2 \B (2,27 r) = B\Bj_1, j=12,...

Consider the complex vector space generated by e *F{%%). It becomes a
Hilbert space V; with the scalar product

_XCJ'
(f,9); =ng1—0;!~ dy.

For this space V; the function e~#(%) is an ON basis. Let P;{M) be the
projection of M onto V. That is,

—iP(z,x) —iP(z4)\ . __ em-iP(z,m) iP(z,9) 4
Pi(M){(z)=e M, e g = 1 X M(ye Y-
J O

Form =1,2,... fixed, consider

me

> (M - Py(M))xo; = Mxp.. — Y_ Pi(M)xc;-
j=0 =0

Let us write the sum on the right hand side differently:

m e—’iP(z,m)

ZP:'(M)X@ = Z _—|6|_(
i=0 7

=0

[ M(y)eTED dy)xe,
Bi\Bj-1
m e—iP(z,m)

=Z—|5;T—(

j=0

| M) dy)e
B~ \B;_1

m e—iP(z,;c)

- (§ M@t dy)x,
= G s,
m—1
_ Ze—iP(z,m) XCj1 S M(y)eiP(z,y) dy
i=0 |Gl R™\By
_ie—iP(z,m)m:%ci S M(y)eip(’=y)dy

j=0 1 ‘Tl IR'"‘\B_-,‘

m—1
1 i1 ch iP(z,
— Z e_qp(z,m)(?gw‘ — ré_l) S M (y)et* ¥) dy
— o~ iP(22) XCm S M(y)eip(z'y) dy.
m| B\ B

It is understood that B_; = B.
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Since M & L', we see that Mxp,, — M in I} as m — oo. Likewise, Moreover,
i ' i 1/q
—-zP(z,m) Xcm 'LP(z,y) _ . _
€ ICo] S M(y)e dym—::oo ||de“1 < S lﬂljlqdm !lel 1/q < 2 ila/a—ntn/q)
M gn\ B, .
J
also in L*.

L : b y . b of th Thus, Y 5, @; converges in L', by the condition o > n(g — 1).
et us now estimate the general term n each of the SUMS Let us now consider the general term of the second sum. Let

m
Z(M - Pj(M))XOj /6:]_ — g iP(z2) (ch-t-l _Xgy ) S M(,y)eiP(zsy) dy.
g=0 il 1031/ i,
d
- m—1 We have
—iP(z,e) [ XCitr _ XCs iP(2,y) ~ B
&° (&%) ) M0y 18115 5 2205+ |Gl
= 5 7
First, let x ( S |M(y)||y—z|°’/‘1|y-z|_°‘/qdy)
. Rn\Bj
—iFP(z,
oy = (1 - § M(y)een dy | xe 9(jc; 1=a ? *d
: [ < 29105 + (Gl (S M )1y — 2| dy)
4
+ /q’
Then y ( S l:u—zl“““/" dy)q
e—iP(z,z) . q B\ By
(31) g2\ M- ST | M) ay| do N . . N , N
C; oy The condition e > n(g — 1) is precisely the condition ~ag’/q < ~n s0 the
fef g last integral converges. We then have the estimate
< 2 M(z)|?de + i M) d . . ; Syl
(CSJ. | ( )| ]Cj|q (éy‘ (y)l y) ) Hzﬁ:i‘lg < C(Ol—q((Q_yr)n _ (2_1—17,)71)1—11 4 Cl—q((23+1,r)n _ (2_7,,,) )1 q)
! o/n+1— T n—1—cgq' a/d
524(5 1M ()| dy + |52 | 1M ()| dy |cj|q/q)_ « | B|/mH q( [ q/th)
Cs C; 23y

j - o 1- j —ag’ !
Since ¢/¢’ = g — 1, we can estimate (3.1} as = O/ )"0 g/t 9(ip)in—ad/de/q

2 | M@)ltdy <2 | M@y - 2%y - 2| dy
12 R"\Bj,_]_
< C(2ir)mepatnl=9 = gp—ie| B9 As before, this estimate shows that §; can be written as

= O(gj)n(l—q)Jrnq/rJ’"—a|Bla/ﬂ+1—4~ﬂ/ﬂ+q—1+l“q = C277*|B|* ¢
- Ozwj(a—ﬂ/qf{-n)lgﬂl—q_

Thus, N gile/g—ntnfq)

. ‘ 8; = C2—j(a/q—n+n/q Bi = pjb;
lleesil, < C2-ix/yp|t/et = Og—a(a/q—n+n/q)|3j|1/q—1‘

where b; is a (1, ¢) atom supported in the ball B(z,2r) and ), |1 < oo

9i{et/g—ntn/q) Likewise,
—1 — : ) » . .
oy = C2 J(ee/a n+n/q)—0———-aj = Aj0q Hﬁj”l < Ilﬁjltqlﬂmll 1/g <02 (i/a){a~n(g—1))

This means that we can write

where a; is a (1, ¢) atom supported in the ball B(z, 2/r) and Ej>1 1A;] < oo ‘ Thus, Ejzl f3; converges in I, due to the condition o > n{g— 13,
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Finally, we have shown that
M= Nag+ Y ugb
j21 izl
in the sense of L', with a; and b; (1,¢) atoms in H}; and -
Sl <o0 Sl <o
izl jz1
Thus, M € H}. This completes the proof of Proposition 3.3.
REMARK 3.4. The proof above shows that given a (1,q, a) molecule M,

we have || M| € ¢C, where ¢ is a positive constant not depending on M, and
C is the constant that appears in Definition 3.1.

4. H;-continuity of an oscillatory singular integral operator. We
first make precise the definition of the operator under consideration. For
completeness, we start with the definition of a Calderén—Zygmund operator
(cf. [3]}-

DerFINITION 4.1. Let T : C§° — D' be a continuous linear operator,
Following [3], we say that T is a Calderdn-Zygmund operator if

(i) the distribution kernel k(z,y) of T' is a locally integrable function
outside the diagonal, satisfying the conditions

C

-2
|k($ay) - k($3 .Z)l + |k(y1$) - k(Z,ﬂ?)l < Gwﬁu
for some 0 < 6 < 1,if 2|y — 2| < |z — 2|,

(ii) the operator T extends to a continuous operator from L?° to itself,
for some 1 < pg < o0,

(iii) given f, g € C§® with disjoint supports,
(T(£). 9) = k(. 1) (v)g(e) dy da.

In this paper, we consider a continuous linear operator T': C§° — D’
defined as

(4-1) (T(£), 9) = (k(z,9), €T f(y)g(x))

where k(z,y) is the distribution kernel of a Calderén-Zygmund operator,
P{x,y) is a real polynomial in z,y € R*, f,g € C§°, and (,) denotes the
(D", C§°) duality.

Under the above conditions, Y. Pan [10] proved that T maps continuously
H} into L. He also showed by means of a counterexample that there is no

An oscillatory singular integral operator 9

p-version of this result for 0 < p < 1, where H% is defined as the natural
extension of Hp at least for p small enough.

As we mentioned in the introduction, the (H},L') continuity result
proved by Y. Pan [10] implies that the operator T* maps continuously £
into the dual of Hp. This observation will allow us to state an appropriate
cancellation condition, which will extend the condition 7™(1) = 0 in the
BMO sense to the class of operators given by (4.1).

DEFINITION 4.2. Let T be an operator as in (4.1). We say that T* satisfies
the cancellation condition T*(e!F{#2)) =0, z € R™ fixed, if

SeiP(Z’E)T(a) (z)de =0

for each (1, c0) atom supported on some ball centered at z.

In a somewhat imprecise way, we then say that T* (¢'F (#2)} = ¢ for each
2 € " in the BMQp sense. In fact, we are using a subset of BMOp, given
as a centralized version for each z € R".

PROPOSITION 4.3. Let a be a (1,00) atom in HY supported in the ball
B = B(z,7) and let T be an oscillalory singular integral operator as (4.1)
such that T*(&F ™) = 0 for each z € R™ in the BMOp sense. Given
¢ >0andl < g < oo such that n(g — 1) < a < g(n +6) —n, there
exists a positive constant ¢ not depending on a or T such that T(a) satisfies
conditions (i)—(iii) in Definition 3.1 with constant c([|Tlq,q + C), where C is
the constant that appears in Defindtion 4.1(1).

Proof. It is known (cf. [12]) that the operator T is continuous on L2
Thus,

IT(@)llg < | Tlqllaliq < [ Tlgel BITH
This shows that condition (ii) is satisfied. Consider now
(42) - |T(a)le ~ 21/}

= | 7@~ 2*de+ |
B(z,2r) R\ B(z,27)

We estimate the first term in (4.2) as
o|BI#/™ | IT(a)? do < cl|Tllg,ql BI* 5/

T (a)|%|z — 2|* da.

For the second term we write
) g
(4.3) [ o - 4| |eF 0 ko, v) - ko, 2)alw) dy| 9
B\ B(z,27)

(4.4) + § lz-z
R\ B(z,2r)

. q
Se‘P(”*y)k(m, 2)ay) dy‘ dz.
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Using condition (i) in Definition 3.1 we can estimate {(4.3) as

(48 <C | le—a({ly - 2ffla(y) dy) do

Rn\B(z,2r)
oo
< cC|B|*t/n=uta | gamalnd)4n=i gy
2r

Under the conditions imposed on o and g, (4.5) converges and we obtain
the estimate

CCIBP‘Q/H_q+q+a/n_q(1+6/n)+l - CO‘BJa/n~q+1.
Finally, we estimate {4.4) as

<G | le—s(flaw) dy) dw < cO| B /o,
R*\ B(z,2r)
Thus, condition (i) is also satisfied.

In order to show that T(a) is a (1,q, &) molecule, it remains to prove
that T'(a) satisfies the cancellation condition (iii). That is to say,

(4.6) Ve PER T (o) () do = 0.

As observed by Y. Pan [10], by duality from his result on (H}, L*) continuity,
one deduces that 7™ is continuous from L® to BMOp . But this is exactly
the condition T*(e*F(*%)) = 0 in the BMOp sense, as stated in Definition
4.2. This completes the proof of Proposition 4.3.

COROLLARY 4.4. Let T be an oscillatory singular integral operator and

assume that T* (€’F(52)) = 0 for each z € R" in the BMOp sense. Then T
maps continuously HYL into itself.

Proof Given f € H} and € > 0 consider an atomic decomposition
f = 2 ;512je; such that Pt Il < I + &0 We can write T(fy) =

N
2_j=1 7T (a;) where fy = Z;V:l Ajaz. According to Proposition 4.3, we
have the estimate

N N
I < D2 Ml T (e < eI Tllge +C) S 1]

F=1 J=1
< (| Tllqq + CYNIFN + )

uniformly in N. This estimate implies that the sequence {T(fn)} is a Cauchy
sequence in Hp. Thus, we can take the limit as N — oo to obtain

| 17 < e(lTlgq + OHIF-
This completes the proof of Corollary 4.4.

icm

An oscillotory singular integral operator 11

REMARK 4.5. The cancellation condition imposed on T is necessary, in
general. Indeed, given ¢ ¢ C§°(R) and the real polynomial P(z,y) = (z —
y)2y(1 —y), z,y € R, consider the operator T' defined pointwise as

T(H)lz) = b(=}f(z), feCP(R).

Then T is an oscillatory singular integral operator defined by the phase
P(x,y) and the distribution kernel ¢{(z)é(x — y), as

($(2)5(z — v), e TEI f(y)g(2)) = | $(z) f(z)g(x) dz.

Given the (1,00) atom a = Xx(g,1/2) —X(1/2,1)» T () does not satisfy in general
the cancellation condition. _

Let us point out that when the polynomial phase reduces to a constant,
the continuity of T on H* implies the condition T*(1) = 0. Indeed, ifa is
a (1,00) atom, we can write an atomic decomposition for 7'(a) in the L*
sense, namely, T'(a) = 3.5, Aja;. Thus,

{r(@) () de =" 2 {as(z) dz =0,

521

or T*(1) = 0 in the BMO sense.

5. A van der Corput type lemma. As explained in the introduction,
the purpose of this section is to show that the cancellation condition imposed
on T in Corollary 4.4 still makes sense without assuming that the operator
associated with the kernel k(z,y) is bounded on some L* space. Let us first
specify our hypothesis on 7"

DEFINITION 5.1. We will consider a continuous linear operator T' : {g° —

D' given by
(T(F),9) = (k(z,v), eV F(y)g(e))
where P(x,y) is a real polynomial on R™ x R™, and the distribution kernel
k{z,y) is a locally integrable function outside the diagonal, satisfying the
conditions (cf. Definition 4.1(i), (iii)}
(i) |k(z,v)| < Cfle —yl™,

(i1) |k(z, y) — k(z, 2)|+ |k(y, 2) — k(z,z)| < Cly — 2|°/|z — z|**? for some
D<é<,if2ly—z <|z—2|

(iii) given f,g € CF° with disjoint supports,

(T(F),9) = T EVk(z, y) fy)g(2) dy dz.

Following the definition of T*(1) in the model case (cf. [4]}, we write, for
z € B™ fixed,
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(5.1) (T(eTE),4) = (7 Ep(e), TW)) + (P21 - p(a)), T(4))

where, in principle, ¢,% € Cf° and ¢ = 1 on a suitable neighberhood of
supp(y).

Since e*F(=®)p(x) € C° and T(y) € D, the first term in (5.1) is well
defined in the sense of distributions. Now, if z &€ supp(v), we can write

T()(z) = { PN k(z, )y (y) dy
= P@0 k(z, y) — k(z, 2)p(y) dy + | P @V k(z, 2)9(y) dy.

If 2|y—z| < |z—z], the integrand in the first term is bounded by C/iz— znte
which is integrable at infinity as a function of x.

In fact, to see that the double integral
1 PR = (@) PN k(z,y) - (e, 2)p(y) dy de

2|y—z|<|s—2z|
exists, it suffices to assume that the kernel k(z,y) satisfies the first half of

the Hérmander condition (1.1).
The second term is bounded by

C  {eiP () dy).

|z — 2|
We will prove that this function of  is integrable at infinity, possibly as-
suming that v satisfies a cancellation condition. Whether it is necessary to
impose some condition on % will have to do with how the polynomial P
depends on the variables 2 and y. More precisely,

PROPOSITION 5.2 (van der Corput type lemma). In the notation above,
let

¥(z) = { ey () dy.

|z — 2"
Then

(©) ¥ P(z,y) = Pi(z) -+ Paly), the function F(z) is integrable on R®
only when § eF2 Wi (y) dy = 0,
(i) f P(z,y) # Pi(z) + Pa(y), and if Oy, P is not identically zero for
J=1,...,n, the function ¥ is integrable ot infinity for any <,
(iii) if P(2,y) # Pi(z) + Paly), and if Oy, P is identically zero for some
7's, the function ¥ is integrable on R® when felf =gy dy = 0.

Let us point out that the condition on the phase used in Proposition 5.2
already appears in [12], p. 192, in connection with the I® boundedness of an
oscillatory singular integral operator. Part (i) in Propesition 5.2 is obvious,
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as well as part (ii) in the case when the phase P(z,y) is a non-degenerate
bilinear form. The other cases will follow immediately from Corollary 5.7 and
Lemma 5.8 below. Before going into these results, let us state our conclusion,
which is a clear consequence of Proposition 5.2.

CoOROLLARY 5.3. Let T be an operator as in Definition 5.1, Then

(i) if P{z,y) = Pi(z) + Paly), T*(F==)} is well defined for every
z € R™ as a continuous linear functional on

Dy = {@b e Cy° :Seip“(y)w(y) dy == 0},

(i) if P(z,y) # Pi(z) + Pa(y), and if Oy, P is not identically zero for
i=1,...,m T*(e"P(z'w)) is well defined for every z € R™ in the sense of
distributions,

(#8d) if Pz, y) # Pi(z) + Pa(y), and if Oz, P is identically zero for some
j’s, T*{eF#2)) is well defined for every z € R® as a continuous linear
functional on

Do(z) = {w & G : [P y(y) ay = 0}.
‘We will now state a version with parameters of the van der Corput lemma,
(cf. [13], p. 317).

LEMMA 5.4. Suppose ¥(y) € CF°, ¢(y,A) is real-valued and depends
smoothly on y, and for some multi-indez @ with k = |a| > 0, and positive
numbers Ao and K, |DZo(y,A)| = 1 for y € supp(¥), A = Ao. Moreover,
suppose also that

(i) if || = 1, i.e., if D = Dy, then D;Djip changes sign < K times as

a function of y;,
(i) if la| > 1, then |VyD2p(y, M) £ K for y € supp(%) and A = Xo.

Then
| Jeetr(y) dy| < O (oo + 1V 1)
for A = Ao, with positive constant C = C(K, k, p) independent of A and .
We will also need the following result (cf. [13], p. 183).

LEMMA 5.5. Let P(z) be a non-identically zero polynomial of z € R™.
Then the function log | P(z)| belongs to the space BMO .

We are now ready to state and prove our main results.

LEMMA b5.6. Let P(z,y), =,y € R*, be a real polynomial, let ¢ € Cg°,
and consider the fun¢tion

g(z) = [ E¥(y) dy.
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Let m = (i1,2"), &' = {22, ..., %n), and let I be the truncated cone defined
by the inequality max(|za, ..., |2a|) < |Z1| for 21 = 1. Finally, assume that
g, P is mot identically zero. Then there ewists a constant C' = C(P) >0
such that

§ 90N g < Cban + 111+ 991

2 =]
Proof We first parameterize the cone Iy using projective coordinates,
1 = L7, zj=mj/m1, _7:2,,n

Thus, It can be described as {z = (z1,2) : 1 2 1, 2’ € B'}, where B' is
the closed cube of side length 2 centered at the origin of R™—1. Since the
Jacobian determinant |(8z/82)| is 27" and |z| is comparable to 21 = 21 on
I, we get

oo
[ 19(z1, 212") o7t din de'.
1

’

(5.2) { ‘g("”?i dz < C |

£ 12"

To estimate the integral on the right hand side of (5.2), we fix 2’ € B
and integrate first in z,. Let P{x,y) in the coordinates z = (z1,%') be
P(z,y) = P(21, 1%, y). The assumption on P implies that P truly depends
on z. Let o be an n-tuple of maximal length so that D;‘ﬁ truly depends
on z;. Thus, we can write

Dg P(z,y) = a(z1,2) +b(=',1)
for some polynomials a, b with 9., a not identically zero. We have, for some
positive integer r,
(5.3) alz, 2') = A, (2] + ...+ Ao(&).

First assume that A,.(z') # 0 for our fixed 2’ € B'. This is indeed the
case outside a null subset of B’ because the polynomial A, does not vanish
identically. Thus, it follows from (5.3) that

a(z1,7) = 2[(Ar (') + Oz "))
uniformly in z' € B, which easily implies that

A2
179

la(z1,2')| > 2

for 23 > C/|A.(2")| with C independent of 2’. Since b(#', ¥} remains bounded
for ' € B' and y € supp(+), we can conclude that there exists M > 0,
independent of z', such that
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(5.4) D5 B(2,)| 2 lafen, 2)| - L) > A 2mE)

provided that z; > M/jA.(#')| and y & supp(y). Furthermore,
Vy D5 Pz,y) = Vybl('.y)

and we obtain

—~ i
(5.5) V,D5B(z0)] < € < Ko AL

for z1 = M/|An(2)| and y € supp(y). Estimates (5.4) and (5.5) show that
we can apply Lemma 5.4 to the integral

Sew‘(zi‘Ar(z')/4)[4Ar(z’)’lzf’"P(z1,z1z',y)1¢(y) dy
with A = 2T A.(2")/4, Ao = M/|A,(2)|, and
oly, A) = 4P(5, 212, )/ (21 Ar(2'))-
It follows that

lg(z1, 212")| € Gy AT ([ lleo + 1V [11)

for z; > Ag, with v = 1/]a.
On the other hand, it is clear that [|g(2)[lco < [|9[l2. Thus, writing

N() = oo + il + IV

we obtain
oo Ao 0o
d —(14r
(5.6) S lg(z1, z12") |z da < N(9) S zill + CN()A ()77 S 7 " dz
1 1 Ao

< CN@)(1n [ Ar ()] + |4 ()] "7,

Using Lemma 5.5 and the fact that r is a positive integer, we conclude that
(5.6) is integrable on B’. According to (5.2), this completes the proof of
Lemma 5.6.

COROLLARY 5.7. Let g{x) be as in Lemma 5.6 and assume that Og P is
not identically zero for j = 1,...,n. Then there ezists o positive constant
C = C(P) such that

T
(5.7 § 128 ao < Gplo + 0l + V1)
ReAQ
where ) is the cube centered at the origin with side length 2.

Proof. It is enough to decompose R™\Q as the union of the n truncated
cones
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Iy = {max(jz1), .- ., [zj—1l |24l - J2al) € |25, 25 2 1or 25 < —1}

for =1,...,n. On each of these cones I'; we may reason as in Lemma 5.6.
This completes the proof of Corollary 5.7.

We now consider an integral analogous to (5.7) but invelving an addi-
tional set of variables z = (z1,..., Zy) on which the function g(z) does not
depend.

LEMMA 5.8. Let g(z) be as in Lemma 5.6 and assume that Ox, P 15 not
identically zero for 7 = 1,...,n. If g{x) vanishes at a point xp € R, then
there exists a positive constant C = C(P) such that

[,
i T = g )

<O( |§:1§1<p1 [V Pz, )| [¥]leo + |l + [[V[|1)-
yesupp(y)

Proof. Consider polar coordinates (r,8) in R* centered at zg so that
g(D) = 0, and also polar coordinates (g, &) in R™. The proof of Lemma 5.4
shows that there exists a function 0 < A(8) < 1, 8 € ™1, two positive
constants «v and € and a positive integer j such that

(2) | lnA(6)dé < o,

Sn—1
(b) lg(z)| < N(@)r=VA(@)™ for r > A()7Y,
where

N(p) = o IVoP (2, ) [¥lle + o]l + IV 1.
yesupp(y)
We also have |g(z)| < C||#||1. Furthermore, since g is smocth and vanishes
at the origin, we obtain, for r = |z| < 1,

(c) lg{z}| < sup |[Vg(u)lr < sup  |ViP(z,y)! [4]lcor
lu|£1 || <1
yEsupp(¥)

Thus, we can estimate
6 | ol

Rﬂ+m i(‘w - "‘BO’ z)|n+m

o0 o0
< § dof {lglr™ o™t (r? + @)~ ™/2 dr dp.
Sn—l 00
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Introducing polar coordinates u = (r? + g2)*/? and 8 = arctan(g/r) in the
first quadrant of the (r, g)-plane, and taking into account estimates (b) and
(c) above, we see that the inner integral with respect to (r,¢) in (5.8) is
dominated by N (1) times the integral

/2 1/cos 8
(5.9) S dﬁ[ K cos B du
0 0
1 (A@)eag) 4 s g
+ S — + A S (peosB)™7 —”]
1jcosf # 1/(A(f) cos B) H

= Z(L+ /I AB)] + A(B)"9~).

This expression (5.9} is an integrable function of § € 57-1. s0 integrating
this with respect to & we obtain the desired conclusion. This completes the
proof of Lemma 5.8.
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On Sobolev spaces of fractional order and e-families of
operators on spaces of homogeneous type

by
A. EDUARDO GATTO and STEPHEN VAGI (Chicago, Il.)

Dedicated to Professor Carlos Segovia Ferndndez

Abstract. We introduce Sobolev spaces L5 for 1 < p < co and small positive o on
spaces of homogeneous type as the classes of functions f in L? with fractional derivative
of order ¢, D°#, as introduced in [2], in LP. We show that for small c, L%, coincides with
the combinuous version of the Triebel-Lizorkin space Fp” as defined by Y. 8. Han and
B. T. Sawyer in [4]. To prove this result we give a more general definition of e-families
of operators on spaces of homogeneous type, in which the identity operator is replaced
by an invertible operator. Then we show thas the family t*D%(x, y,t) is an z-family of
operators in this new sense, where g(z,y,t) = t% s(z,y,t), and s(z,y,%) is a Colfman type
approximation to the identity.

1. Definitions and statement of results. Let (X, d, u) be a space of
homogeneous type of infinite measure and such that u({z}) = 0 for every =
in X. Without loss of generality it can be assumed that (X, 4, ¢2) is a normal
space of order v, 0 <7 < 1. For 0 < e < 1 let

oo dt 1/(—a—1)
5—«1(50131) = ( S twas(miy:t) T)
0
where s(x,,t) is a Coifman type approximation to the identity. In [2] it is
shown that 6. (z,y) is a quasidistance equivalent to 4 (z,y)-

Let CF, 0 < 5 < v, be the space of Lipschitz functions of order n with
bounded support. The fractional derivative of order o of a function f be-
longing to CF, 0 < a < 7, was defined in [2] by the formula
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