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On the directional entropy for Z*-actions on a Lebesgue space
by
B. KAMINSKI (Torud) and K. K. PARK (Suwon)

Abstract. We define the concept of directional entropy for arbitrary Z2-actions on a
Lebesgue space, we examine its basic properties and consider its behaviour in the class of
product actions and rigid actions.

1. Introduction. The concept of directional entropy was defined by
Milnor [10] and applied to investigate the dynamics of cellular automata.
Examples of the computation of this entropy are given in [11].

The directional entropy (topological and metric) was used by Boyle and
Lind in [2] to study expansive Z*-actions.

We extend this concept to the class of arbitrary Z2-actions on a Lebesgue
space. We are mainly interested in the properties of the directional entropy
hy(P) as a function of & and &, where 7 € R? and & is a Z*-action.

The second author has shown in [13] that the function 7 — hg(F) is
upper semicontinuous for Z2-actions ¢ generated by two automorphisms,
one of which has a finite entropy and the second has a finite expected code
length. In this paper we show that for product Z*-actions this function is
Lipschitz and, on the other hand, it is not continuous for a certain rigid
Gaussian Z*-action. In the class of product actions this function is also
convex.

In the next section we show that the function & — hy(®) shares some
properties of § — h(P) where h(F) denotes the usual entropy of @ (cf.
[3]). Among other things we show the analogue of the Kolmogorov—Sinai
theorem. It appears, however, that the well known continuity property of
the mean entropy h(&, P), where P ig a countable measurable partition of X
with finite entropy, does not hold for the mean directional entropy function
hy (P, P).
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We also show, using Walters’s idea, that for actions with discrete spectra
the directional entropy hg(®), similarly to entropy, equals zero for every
7 € B2, On the other hand, in contrast to entropy, the directional entropy
can be nonzero for rigid Gaussian Z*-actions.

We are also interested in applying the directional entropy to the compu-
tation of the relative entropy of automorphisms with respect to their factors
determined by Z*-actions. More precisely, an automorphism T" is said to be
a factor of an automorphism 7' acting on a space (X, B, p) determined by
a Z?-action @ if the fiber antomorphisms of T with respect to T have the
form &%), z € X, where ¢ is a measurable function from X to Z°.

It is shown in [14] that for & generated by cellular automata we have
MT) = h(T) + hg(®) where ¥ = (|{; @1dul,|§y w2 dul), ¢ = (p1,p2). In
this paper we show that this equality also holds for product actions and in
this case it is an immediate consequence of the Newton formula [12] (see
also [1]).

The second author has shown in [15] that the equality fails to be true in
general.

2. Directional entropy of a Z*-action. Let (X, 3, u) be a Lebesgue
probability space and let Z be the set of all countable measurable partitions
of X with finite entropy equipped with the Rokhlin metric

o(P, Q) = H(P|Q) + H(Q|F).
Let & be a Z*-action on (X, B, ). For aset A CR* and P € Z we put
P(A)= \/ &P
gEANZ?

Let ¥ = (z,y) be a fixed vector of R? and let I" denote the family of
all bounded subsets of R2. Let (7,5) be an ordered pair of commuting
automorphisms of X which generate @, i.e.

@ =T"cS" g=(mn)eZ.
For a partition P € Z we put
B
hg((T, 8), P) = sup lim ~H(P(B + [0,t)7)).
Bel t—eo i
It is known (cf. [16]) that in fact
1
ha((T, 8), P) = sup lim —H(P(B + [0,t)7)).
Ber t—roo t

If we pass in this definition from the pair (T, S) to another pair (7%, 51)
of commuting generators of ¢ such that

T=T858, §=188¢
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then it i3 easy to see that

ha((T,8), P) = haz (11, 81), P)
where P € Z and 4= (§9).
In the sequel we use the notation

ha(®, P) = hg({Tp, Sp), P)

where Tp = &1 and Sy = $©@1), The quantity hz(®, P) is said to be the
directional mean entropy of & with respect to P in direction #.
It is not hard to show that

. 1 -
ha(8,P) = lim_lim ~H(P(R(7,m,1)))
where
R(%,m,t)

_ 6,5 eZ? 0 < <ty], ~m+jz/y <i<m+jzfy} fy#£0,
{6, ) eZ? —m<j<m, 0<14<[te]} if y = 0.

The quantity
hiy(®) = sup ha(P, P)
PEE
is said to be the directional entropy of @ in direction 7. We assume in the
sequel that ¥ {0,0).

Basic properties of directional entropy. Using classical arguments, one
easily shows that

(i) If @ and ¥ are Z2-actions and ¥ is a factor of @ then hy($) > hy(¥).

This yields at once

(ii) The directional entropy is an isomorphism invariant of Z*-actions.
As a direct consequence of the definition we have

(iii) For every o € R?, '

hai(®) = |oha{®).
Now we prove the analogue of the Kolmogorov—Sinai theorem.
THEOREM 2.1. If P € Z is a generator of & then hy(P) = hg(P, P).

Proof We consider only the case ¢ # (,0), z € R. The proof for
# = (z,0), € R, is similar. We may assume that ¥ = (z,1). Let Q € 2.
‘We need to show that
(1) ha(@, Q) < ho(@, P).

Let & > 0 and let m bea positive integer. Put QU™ = Vis a1 @G0 =
V::’;Hm-}-l TLQ
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Since P is a generator, there exist finite partitions P= ﬁm,s, @ = ém,s
and a positive integer { == I, o with
QM <PvQ, P<P,
P([-1,1] [—l l}) We have
m+{je] o
HQR(Em. 1) = H v Vs
J=0i=—m+[iz]+1

[t] n .
= H( \/ T[Jm]SJQ(m)) <
j=0

H(Q) <e

where P!*! =

0
H(\/ 70959 (Fv §))
F==0

<H( {t} 751 B) + B {i} Tl 54

]
< H( VARV T[jm]‘H’SHqP) + ([f] + e

J=0-I<p,g<l
Dividing by ¢ and letting ¢ — oo and then m — oo, we get
ha{®,Q) < hy($,P) +&.
Since € > 0 is arbitrary we obtain (1).
From Theorem 2.1 it follows that, for Z?-actions determmed by cellular
automata, our definition reduces to that of Milnor.

The following result says that directional entropy is an interesting in-
variant only for Z2-actions with zero entropy.

PROPOSITION 2.1. If & is a Z?-action with h($) > 0 then hy(P) =

Proof. Although it is not hard to prove this directly, for clarity we use
the generalized Sinai theorem (cf. [8]) which says that there exists a partition
P € Z such that the partitions 9P, g € Z?, are independent.

We have

hs(®) > ho(®, P) = lim_lm lH(P(R('E,m,t)))

= Jlim lm (2m+1)——= [ty] 1

i i HP) =20
Proposition 2.1 yields at once -
COROLLARY 2.1. For every 7 € 7% we have h(®) < hy(d).

It is well known ([3]) that for every Z?-action & the function P —
h(®, P), P € Z, is continuous. The following result is an easy consequence
of Proposition 2.1.
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COROLLARY 2.2. If h(®) > 0 then the function P — hy{(@, P) is not
conlinuous.

Indeed, take an arbitrary sequence (P,) C £ convergent to the trivial
partition v of X' and such that P, # » for n > 1. In view of Proposition 2.1
we have hz(9, Pp) = oo for n > 1 and hg(®,v) = 0.

We show in the next section that there are also Z2-actions & with i($) =
0 for which the function cousidered in Corollary 2.2 is not continuous.

ProOPOSITION 2.2. If & is ergodic and (P,) C Z is such that P, /B
then

lim hg(#, Pr) = hy(8).
Proof. If h(#) > 0 then Proposition 2.1 implies
nli_{r;) ha(®, Po) = oo = hg(P).
Now consider the case h(®) = 0. Suppose ¥ = (z, 1). Let P be a generator

for @ and let £ > 0. It follows from the definition of hz(®, P) that there exists
a positive integer . with

hg{P) = hg{d, P) < hm H(P(R('v m,t))) +¢&

= lim H( \/ Tl SjP(m)) +e

f—+oo f

where

m
Pm = \/ TP
i=—m-1
Let By =V g2 @9 Pn, n > 1. Our assumption implies B, / B. Arguing
as in the proof of Theorem 2.1, we see that for sufficiently large n there
exists a partition Qn € Z measurable with respect to B, with

lim H( \/ T”]SJP(T”)) < hm H( \/ TlizlgiQ, )

t—too t
=0

Therefore, for the factor action &/B;, we have
hol®) < ha(D/Bn) + 2,
where gﬂ is the rgeasura,ble partition of X determined by B,. Since P, is a
generator for /8, from Theorem 2.1 we obtain
ha(®) < hy(B, Pn) + 2e.
Letting n — oo, we obtain the desired result.

The following result is an easy consequence of Proposition 2.2.
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COROLLARY 2.3. If 7 € 72 then hz(®) = h($7).
COROLLARY 2.4. For any ergodic Z?-actions @ and ¥ we have
hg(@ x ) = hg(P) -+ hg(F).

Proof. It is enough to use classical arguments, Proposition 2.2 and the

equality
H((P x Q)(R(¥#,m,t))) = H(P(R(T,m,t)) + HQ(R(W,m,1)})

where P and Q are arbitrary partitions with finite entropy of the Lebesgue
spaces on which & and ¥ act, respectively, m € Z and ¢ > 0.

In [9] Krug defined and investigated the sequence entropy for Z%-actions,
d > 2. We recall the definition of this notion in the case d = 2 for convenience
of the reader.

Let now A = (A{n)) be a sequence of elements of Z2. For a given partition
P € Z we put

1 n—1 AGR)
ha(®,P) = Tm EH(k\_/oqﬁ P).
The quantity
ha(P) = sup{ha(®.P):Pc 2}

is said to be the sequence entropy of & along A.

The following result is given in [9].

ProrosiTION 2.3. If (P,) is o sequence of partitions from Z such that
P, / B then

ha(®)= lim ha(®,F,).
n=-—r00

Our present gpal is to give a relation between sequence entropy and

directional entropy.

If ¥ = (2,0), z € R, then taking A(n} = (n,0) for n > 1 one obviously
obtains
hy(P) = |z|ha(P).
Let us now consider the case 7@ = (z,y) € R* where y 3 0.
ProrosiTiON 2.4. If A(n} = ([nz/y],n) then
h(®) = |y|ha(P).
Proof We may assume that y = 1. Fix P € Z and ¢ > 0, We have
[l 2l .
(@Y TiEgip) < B(\/ Twwlsfptm)) = H(P(R(#,m,1))), m>1
F=0 F=0
Dividing by ¢ and letting first t — oo and then m — oo we get ha(%, P) <
hy(®, P). Hence ha(P) < hz(P).
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Let now (Py) be a sequence of partitions from Z such that P, ./ B. We
have

[
H(Py(R(%,m,1))) = H( \/ Thielgi Pém))
j=0

[t]
< H( \/ TfjmJSJ'P,TXm), m > 1.
=0

Since the o-algebra o(P;**™,m > 1) coincides with the factor o-algebra
(Pr)& generated by P for k > 1, the above inequality and Proposition 2.3
imply

ha(@,P) < ha(®/(Pu)s) < ha(B),
Taking the limit as & — oo and applying Proposition 2.2 we get hz(@&) <
ha(®), which gives the desired equality.

If ©/y is irrational then one obtains the same formula as in Proposi-
tion 2.4 if one takes

A(n) = ([[lnz/yllin), n2=1,
where [[]] denotes the nearest integer to t € R\ Q.

3. Directional entropy for product Z*-actions. The following class
of Z?-actions was introduced in [5] to give, among other things, examples of
actions with a given rank, covering number and simple spectrum.

A 7Z?-action @ on a Lebesgue space (Y, C, /) is said to be a product action
if there exist automorphisms 51,9z acting on Lebesgue spaces (Y71,C1,14)
and (Y3, Cs, 13) such that

(Y-: C: V) = (Ylic].) !}1) X (Y'Z> CZ; U2)
and
B (y;, o) = (STy1, Spe),  (m,m) € 22

Tt was shown in [5] that A(®) = 0 and P is ergodic (resp. wealkly mixing)
iff 8y, ¢ = 1,2, is ergodic (resp. weakly mixing).

PROPOSITION 3.1. If & is ergodic then for every @ = (,y) € R? we have
hy(®) = |z|h(S1) + |y|h(S2).

Proof Let P and @ be finite measurable partitions of ¥1 and Y3, re-
spectively. We may assume that z > 0 and y > 0. For fixed m, ¢ > 0 we have
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H((P x Q)(R(F,m,1))) = H( V

(i,4)ER(¥F,m,t)

Sip x ng)

fty] ' m+[zt]
=H(\/ng)+H( Vo osip).
i=0 i=—m-+{zt]

Hence, for every m > 0 we have

Jim %H((P x Q)(R(#,m, 8))) = yh(Sa, Q) + zh(S1, P).
Letting m - oo we get
2) he(P x Q,8) = 2h(S1, P) + yh(55, Q).

Let (P} and (Q) be sequences of finite partitions of ¥; and V5, respec-
tively, such that P, /' C; and \/7_, @, / Co. We have P, x @, 7 C.

Substituting, in (2), P, (resp. Q) for P (resp. @) and then letting
n — oo we obtain, by Proposition 2.2, the desired equality.

COROLLARY 3.1. If h(5;) < 00, i = 1,2, then the function 7 — hy(P) is
convex and satisfies the Lipschitz condition.

Let now T be an automorphism of a Lebesgue space (X, B, 1) and @ be
a Z2-action on a Lebesgue space (Y,C,v). Let

Tle,y) = (Tz,8°9y), (5,y) e X x Y,

where @ = (@1, 92) : X — Z? is a measurable function and p; € L1(X, ),
i=1,2. . ‘

COROLLARY 3.2. If & is a product 72 -action then
WT) = b(T) + hs()
where 0 = (| § p1dul, | {5 @2 dui).
Proof. By assumption, T acts on X x Y1 x Y5 and
T(z, 0, ) = (Tx, gy, SE2Eyy,
Consider the automorphism U of X x Vi defined by
Ulz,yn) = (Tz, Sfl(m)yl), (z,1) € X x V7.
Hence,
T(@,v,0) = (U2, 32), 85°a),
Applying the Newton formula [12] (see also [1]), we obtain

PT) = (V) +| | padul- n(S,).
X
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Applying it now to the automorphism U, we get
WU) = W(T) + | § o2 dua| -B(S0),
X .

and so, by Proposition 3.1,
AT) = M) + | § ord] - h(S0) +| | wada] - 1(S2) = W(T) + (@)
X '¢

where ¥ = (||, 1 dul,| {5 vadp).

4. Directional entropy for rigid actions. A 72-action & is said to
be rigid if there exists a sequence (my, ng) C Z? such that for every A € B,

Jim p(@e ) AN A) = pu(A).
—h X

ExaMmpLE4.1. A Z*-action @ on a Lebesgue space (X, B, 1) is said to have
discrete spectrum if there exists an orthonormal basis in L2(X, 1) consisting
of eigenfunctions of &. It is shown in [6] that any such action is isomorphic
to a rotation action defined as follows.

Let X be a compact abelian group equipped with the normalized Haar
measure and let a,b € X be independent over Z. The Z*-action &, de-
fined by

@g’;’")m =a"b"z,
is called the rotation Z? -action.

Applying classical arguments (cf. [18]), one shows that & is ergodic i
the set {a™b" : (m,n) € Z} is dense in X

Hence, in particular, there exists a sequence (myg,ng) such that ™"+
-+ 1. This property forces the rigidity of $,; and so the rigidity of an
arbitrary action with discrete spectrum.

FEXAMPLE 4.2. Let X be the set of all real-valued functions defined on
72, and let B denote the product o-algebra of subsets of X. Let £; : X — R
be the projection omto the gth coordinate for g € 7. For a given finite
symmetric measure ¢ on the two-dimensional torus T? we denote by p the
(unique) probability measure on B such that the family (5,9 € Z2) forms
a stationary Gaussian random field with covariance function R : 72— C
given by

(m,n) € 2%, z€ X,

R{g) = S ™" p(dzdw), g = (m,n) € 7%
T2
The Z*-action & on (X, B, 1) defined by
(#9z)(h) =z(g+h), g heZ,

is called the Gaussian Z2-action with spectral measure o.
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Proceeding in a similar way to the one-dimensional case (cf. [17]), one
shows that @ is rigid iff there exists a sequence (myg,nz) C Z2 such that
lim { [z™w™ — 1]? p{dadw) = 0.

k—oo

T2

Tt is easy to show that every rigid Z*-action has zero entropy.
We show in the sequel that this result fails for directional entropy.

THEOREM 4.1. If & is an ergodic Z2-action with discrete spectrum then
hs(®) = 0 for every ¥ € R?.

Proof. It follows from our comment in Example 4.1 that it is enough
to show the above equality for rotation actions on a compact abelian group.

First, assume that ¢ is a rotation action on the one-dimensicnal torus
T = {2z € C: jz| = 1} determined by algebraically independent numbers
a,beT.

We consider the two-element partition P = {P;, P,} of T where P| =
{e*™: 0 <t <r}and P, = {e*: 7 <t < 27}, The density of the set
{akb*: (k,1) € Z°} implies P is a generator. It is easy to see that for every
finite subset A C Z? the partition P(A) has at most 244 elements.

Fix now m > 0 and ¢ > 0. From the above remark it follows that

H(P(R(7,m,1))) < log(4m([t] + 1)).
Therefore,
. 1 —
Lim ZH(P(R(v,m, ) =0

for every m > 0 and so hy(®,P) = 0. Since P is a generator we have
ha(®) = 0.

Further, we proceed similarly to [18], p. 101. Below we only give the
necessary comments concerning the two-dimensional situation.

The next step is to show the result for rotation actions on the torus T¢
where s is an arbitrary positive integer. In this case the action has the form

Mz, sz} = (@B, B 2),
e
P=P) x...%x b,

where cﬁ,(cm’”)zk = apbzr, 1 <k < 5. Now, the desired property follows
from the previous case and from Corollary 2.4,

Let now @ be a rotation Z2-action on a compact abelian group G deter-
mined by algebraically independent elements a,b e G. Let H, and F., be
the groups defined in [18], p. 101.
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We consider a Z*-action &,, on G/H,, generated by two rotations T, and
8., defined as follows:

Tn(an) = agH,, Sn(an) = ban
Hence, as in [18] we have T, = T, ; x Tag, Sn = Sn1 X S, Le. &, =
D1 X @5 where &, ¢ is generated by Lo and Sp 1,k = 1,2, From the

previous two cases and Corollary 2.4, we have h(®,,) = 0. The desired result
now follows from Proposition 2.2,

THEOREM 4.2. There exists a rigid Goussian Z2-action & such that
_J0 ifv=(z,0) forzeR

ho() = ) ;

#(®) {oo otherwise.

Proof. Let A denote the Lebesgue measure on T and o a continuous
symmetric finite measure concentrated on a set D U D~ where D is a
Kronecker subset of T (cf. [7]). We put g = o x A.

Let & be the Gaussian ZZ-action with spectral measure p. Let T and &
be the standard generators of @, i.e.

(Tx)(m,n)=z(m+1,n), (Sz)(m,n)==z(mn+l), (mn)cZ?
For a fixed n € Z we denote by A, the o-algebra generated by &m,n, m € Z.
It easily follows from the definition of g that
(3) the o-algebras A,,n € Z, are independent and o(A,,n € Z) = B.

It follows from Theorem 14 of [17] that for every n € Z, T is rigid in
(X, A, u). Using (3) and Theorem 6 of [17] we conclude that T is rigid.
Hence & is rigid.

Let a € R and let @ = @, be the natural two-element partition of R
determined by a:

Q = {leQZ}v Ql = (—00,0,), Q2 = [G‘;,OO).
Let P=PF, = g(-olo) (@), i.e. P is the zero-time partition of X determined
by @. Fix m > 0 and ¢t > 0. It follows from (3) that the partitions

\/ TS8P, j=0,1,...,[t,
—mje<i<mtin
are independent. Hence,
[ mtlil [t mt[iz] ‘
BPR@mN ="\ TsiP) =Y H( \/ T‘P)
§=0 {=—m4-[ia]+1 =0  i=-—m-+[jz]+1

2] m

=EH( \/ TiP)z([t]+1)H( \7 T'P).

=0 i=—m-t1 i=—m+1
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The automorphism 7' is Gaussian in the space {X, Ap, 1), n > 1, and its
spectral measure is o. Since o is continuous, T is weakly mixing (cf. [4]).
Applying again (3) we see that T is weakly mixing. Hence,

lir H( \7 TiP) = 0.

M —r00
f== L

Therefore, for i 5 (z,0), z € B, we have

ha(8,P) = lim_Jim %H(P(R(ﬁ, m, 1)) = oo
and so hy(®) = oco. Since ¢ is singular, for ¥, = (1,0) we have hg (P) =
R(T) = 0. Therefore the property (iil) implies hy{®) = 0 for ¥ = (z,0),
zec R

REMARK. Let & be the Gaussian Z2-action defined above. The function
P — hy(®,P), PeZ 7#(z,0), veR,

is not continuous.

Indeed, if we take a sequence (a,} C R such that a, " co then the
corresponding sequence (P,) = (F,,) converges to the trivial partition v.
The desired result follows at once from the equalities

hf;(@, Pn) =0 ('I’L > 1), hg(@,u) =0
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