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Examples of A(4) sets £ and a graph structure in F x £
by

IVO KLEMES (Montréal, Qué.)

Abstract. We construct examples of 4(4) sets B C Z. The construction uses certain
families of thin intervals {I} = £ = E. The A(4) property for E is obtained from the
stronger result that [|flls < e||(3|£1,1%)!/%||a where f is supported on (1) N Z and f1,
is defined by ?I;: = X7, :f The proof of the latter involves a graph structure defined in
terms of £ x £ (which is essentially E x E).

0. Introduction. A set of integers E is called a A(4) set if there exists
a constant ¢ > 0 such that for any trigonometric polynomial f on the circle
with f supported on F we have

(0.1) 1Flla < €fl F1la-

In this paper we construct examples of such sets E for which the proof of
inequality (0.1) seems to require a new combinatorial method and therefore
may be of interest. This topic and the examples are motivated by previous
work of K. E. Hare and the author on lacunary intervals in [H1} and [H2].
The main new feature here is the following. First let us recall a well-known
sufficient condition for a set E to be A(4), which was given by W. Rudin
in [R]:
(0.2)  If there is a constant M &€ N such that every nonzero n € Z has at
most M representotions es n = ny — ny, where (nl,nz) € B x E,
then B is a A(4) set.

It is a fact that any examples of A{4) sets B which can be recovered from
the results of [H1] or [H2] are essentially of type (0.2). This is because (0.2)
was simply the backbone for that work, which, as we should point out, is
concerned with the more difficult problem of Littlewood-Paley inequalities
and arbitrarily supported f, instead of merely the basic A{p) property.

On the other hand, the present A({4) examples E will be such that
condition (0.2) does not always hold. Moreover, the version of (0.2) us-
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102 I. Klemes

ing n = n; + ng also does not hold for our E, and there does not appear
t0 be any easy way to decompose E via finite unions, or via other methods
such as the Marcinkiewicz—Zygmund Theorem, so as to reduce the prob-
lem to (0.2). Therefore, the examples may possibly provide a backbone for
new Littlewood-Paley inequalities in the same sense as (0.2} was a back-
bone for the new Littlewood-Paley inequalities of [H1] and [H2]. In any
case, the proof of (0.1) for our examples already demonstrates a combi-
natorial method more general than (0.2), at the basic level of the A(4)
problem.

Let us not disrniss (0.2) though. In fact, we do conjecture that our present
examples F (to be constructed in Jection 1 below) can be decomposed as a
finite (uniformly bounded to be precise; we actually work with a family of
examples F of arbitrary but finite cardinality) union of sets, each satisfying
(0.2) (with a uniform constant M; again for the same reason). Nevertheless,
we shall prove (0.1) for our E’s without this decompaosition, by using a
different combinatorial method. To give at least some hint of this different
method here, we could roughly say that instead of trying to decompose E,
it is sufficient to decompose E x E in a certain sense.

At this point we should recall a simple remark about finite A(4) sets in
comparison with infinite ones. Any finite set B C Z is of course A(4). But a
“nontrivial” finite A(4) set E is one such that the cardinality of E is large
while the constant ¢ in (0.1) is fixed. For example, our constant will turn
out to be ¢ = 4/ for all of our E’s, which shall however have arbitrarily
large finite cardinalities. It is well known that given any infinite family of
finite E’s for which a fixed constant c holds in (0.1), there exists one big
A{4) set F' which contains all of the E’s as translates. To prove this, one can
use standard Littlewood-Paley theory to paste together translates of E’s in
lacunary intervals. We shall not perform the formal step of translating and
pasting together our E’s.

In the next section we define the new examples of A(4) sets E. We first
construct some tree-like families of dyadic intervals on the real line &, be-
cause these actually play the important parts in the proof of {0.1). The only
reason why we do this on R is for convenience—at any time we can exhibit
examples of sets E in Z by choosing integer elements from various real in-
tervals, if they contain any integers. (If not, then one can either magnify the
whole picture until the intervals on a desired scale do contain integers, or one

can simply remember to begin the construction process with a sufficiently
large interval.)

' 1. Definition of the examples. Consider any sequence of integers g,
J=0,1,..., satisfying n; 4 > n; + 3. (We are usually interested in the case
where ng is large and negative). For each 7, let lj = 2" and let M7 be the
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family of intervals in R given hy
M= {[U,ij] + 4kl k€ Z},

where [a,b] + 1, ¢ € R denotes the translated interval [a + t,b + ¢]. (Note
that if ng is large negative then lg is a large positive integer power of 2,
and I;41 < 1;/8. Also, if we fix § then the intervals in M7 are not merely
disjoint—they are in fact separated by gaps of 3 times their length I;. Not
surprisingly, our choice of the specific base 2 and the specific gap length 3
times [; is only one of many other choices which would serve our purposes
equally well.) Let us call the sequence {M’ %2 the frame determined by
the sequence {n;}52;. ,

Next, given a frame {M?}, define a forest in {M} to be a sequence

{£7}32, where each £7 is a family of real intervals and the properties 1.1
to 1.4 below are satisfied:

11 £F ¢ MY for all § > 0.

1.2. If I € £9F then I C J for some J € £7.

1.3. For all § > 0 and for all I € £/, I satisfies exactly one of the following
two alternatives, 1.3.1 or 1.3.2:

1.3.1. (Alternative 1) There is exactly 1 element J € £7+* such that J C I.
We say I is of Type 1.

1.3.2. (Alternative 2) There are exactly 2 elements J, K € LIt (J # K)
such that J < I and K C I. We say I is of Type 2.

1.4. (The Sparseness Property) For each j > C, the number of Type 2
intervals I € £7 is at most 2.

For each § > 0, we call £7 the level j of the forest {£7}. An interval
I ¢ £F will be called an interval I on level 7. Furthermore, various objects
which we shall construct later, using only intervals on a fixed level 7, will be
called objects on level §. ‘

Notice that the definition of a frame {AM7} guarantees that each I € M
contains at least 2 elements of MIt1. It follows that one can construct
many kinds of forests {£7} inductively. We can take any nonempty subset
of MY and call it £°. Proceeding inductively, given £7, construct £77* by
considering cach I € £7. We can decide arbitrarily which I wili be of Type 1
or of Type 2, except that by 1.4 we may only designate at most 2 of the
I to be of Type 2; the others will all have to be of Type 1. Then, if [
was to be of Type 1, choose any one of the available intervals J € M +1
such that J < I. If T was to be of Type 2, choose any two such intervals
J K € MItL(J 5 K) such that J, K C I. Put all of these chosen intervals
J and K into £, thus completing one induction step. Notice also that the
choice of the sequence {n;}32, (which determined the frame {M’ }) need
not have been specified at the start; it can be chosen inductively, during the
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above induction steps. In fact, at the start of the above induction step we
can assume that n; already exists, and we can choose n;4; to be any integer
satisfying njy1 = ny + 3, as we like.

To define our examples E, let {£/} be any forest such that £° consists
of exactly one interval I, so that £° = {Iy}. We may think of such a forest
{£7} as being a “forest consisting of exactly one tree”. Then fix any index
j 7z 0 and let E be any set such that

EcCZn ( U I),
IeLs
and such that FMJI has at most one element for each I € £7. In other words,
we choose one integer (if any) from each interval ! of some fixed £7 and call
the resulting set E.

THEOREM A. There exists a constant ¢ > 0 such that for any of the
ezamples E just defined we have (0.1) with this constant c.

Theorem A is an immediate consequence of the following result, Theo-
rem 6.2, which we reproduce here from Section 6 of this paper. The notation
is fully explained in Section 6.

6.2. THEOREM. Let {L£*}22, be a forest such that £° consists of exactly

one interval Iy, i.e. LO = {Lh}. Fiz j > 0 and suppose that the trigonometric
polynomial f satisfies

Spec(f)C [J I, e f=3 fr.

Tefd TeLd

. 2
Jirit<af (30 152)
T T Iegd
where the integrals are with respect to normalized Lebesque measure on T,

Then

To conclude this section we remark that in [H2), a very similar inductive
process was used, but with one crucial limitation. This was that at rost
one Type 2 interval I was permitted in the Sparseness Property 1.4, Here
we permit two Type 2 intervals.. This is crucial becanse having only one
Type 2 interval actually implies the difference condition (0.2) for the set F,
whereas permitting two Type 2 intervals allows examples of sets E which
fail to satisfy the difference condition (0.2) (i.e. with a uniform constant M
for all such E). We leave these assertions as an exercise for the interested
reader—they can be seen geometrically by drawing a few examples of one-
tree forests, beginning with one (big) interval. In particular, to see how (0.2)
can fail, the main point is that if n = ny — ny (where n; and ng are, say,
the left endpoints of some two distinct intervals I and J at some level 2% of
the inductive construction process), then we can create an additional pair
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(mu,ma) such that n == m; — my on the next level £¥+! by using 2 copies
(translates) of the same Type 2 subdivision, one inside a neighbourhood of
n1 (namely inside I) and the other inside a neighbourhood of ny (namely
inside J). It follows that we can create as many such pairs as we wish, all
having the same difference n. Moreover, we can do this for any number of
n’s that we like. Thus (0.2) fails in a very strong sense. We can also do a
similar construction regarding the equation n = ny + ng, with some other
values of the variables, to obtain many pairs in E which have the same sum.

2. The definition of some structures in R x R. Qur one and only
aim now is to prove Theorem 6.2. Why then have we bothered to define
general forests ingtead of just forests with exactly one interval Iy € £97 The
answer is convenience and uniformity of notation: If {£7}52 is a forest in
the frame {M}32,, then {£¥7}%2 is a forest in the frame {M*+7}%2,
for any k > 0. That is, it is easy to cut the forest at some level k and still
uge the same notation for what remains beyond level k. In fact, our main
technical Lemma 6.1 will concern an arbitrary level k¥ > 0, an arbitrary pair
of disjoint intervals 4, B € £, and some intervals inside A and B. Thus
only levels k and beyond k are relevant there. Therefore it suffices to prove
any such lemma in the special case & = 0. (It is the same as re-labelling
indexes so that they start at 0 instead of at the given k). From this point
on we are preparing for the proof of Lemma 6.1 in the special case k = 0.

2.1. Assume £° has at least two elements, A, B, A 3 B (and thus AN B
= {}) and fix such A and B, from this point until Lemma 6.1. Define
Co={leff:IcA), rh={Ielff:IcCB}
A Cartesian product b of the form
b=IxJ, Iell, Jely,

will he called a block on level j. Further, Lf;& ® L'."J} will denote the set of all
blacks b ou level 7.

2.2, Let I, I € £ and Jy, Jp € LZ'L and consider the set of blocks, s,
given by
s = {IL xJy, Iy x Jo, 2 % Ji, Iz X Ja}.
We call s a square on level j if one of the following two conditions holds:

9.2.1. Iy = I and J, = Jo. (In this case s reduces to the one-block set
g ={I} x J1}.)

9.2.9. There exists a real number ¢ # 0 such that [y --¢ = I3 and
Ji +t = Jp, (In this case s consists of 4 congruent, disjoint blocks whose
centres form an ordinary square in B2.) '
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Also, if I, Ia, Jy, J satisfy 2.2.1 or 2.2.2, we write s = 5(I1, I3, J1, J2).We
denote by S7 the set of all squares s on level j.

2.3. Consider a block b = I x J on some level j. We define sets 3(b) and
(D} by
B)={{z,y) eRxR: z—yel-J},
18) ={(z,y) ERxR:z+yel+J},
where I —J = {r—s:rel, seJtand I+ J={r+s:rel, s J},
and we call G(b) the & band generated by b and ~(b) the © band generated
by b. (The choice of signs is due to the fact that 3(b) consists of the lines
of slope +1 passing through b, and ~(b) consists of the lines of slope —1

through b.) Also, let 37 (resp. /) denote the set of all @ bands (resp. &
bands) generated by all blocks b on level j:

F =80 :b=IxJ, Iell, Jecll},
V={y):b=IxJ, Iell, Jeii}
2.4. Most of the time we want to consider only the blocks contained in
a given band, rather than the band itself. So if b ¢ £, ® £}, we define
M) = {c € Lh ® LL : B(c) = B(b)},
u(t) = {e € £ 8 L v(0) =1()},
and we call A(b) the & line generated by b, and u(b) the & line generated by
b. Let A? (resp. u7) denote the set of all A\(b) (resp. u(b)) for b € £ ® L.

2.5. Our definition of M? guarantees that @ bands on the same level are

either equal or disjoint, as are & lines, © bands, and © lines. This is shown
by the following.

2.6. ProrosiTION (Disjointness of parallel bands)

26.1. Let Iy, I, J1, Jo € M. Then there exist unique a,b € R such that

L =J1+a ond Iy = Jo 4+ b, We have: (I1 m—Jl)ﬂ(Iz - Jz) e | ifa="hif
—Ji=L —.Jy iffﬁ(]}_ X Jl) ﬂﬂ(lg X Jg) # 9.

2.6.2. For any & bands 81, B2 € (¥ we have either 81 = 0y or f1NBz = ¢,
For any @ lines A, A2 € N we have Ay = Ay or 8(\) N B(A2) = 0, where
B(A;) denotes the (unique) @ band containing A; on level 3.

2.6.3. Analogous results hold for & bands and & lines.

Proof. 1. Looking at the definition of M7, we see that @ = 4ml; and
b = 4nl; for unique m,n € Z. Thus.

It—J = [—lj, lj] +a= [—lj, lj] + 4mij,
Iy —Jp = [—lj,lj] +b= [—lj,lj] | 4'nlj.
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If a # bthen |a —b| > 4i; so clearly (s — J1)N{Lx — Jo) = @. If
(Il—Jl)ﬂ(Ingz) =Q0then h —Jy £# Lh—Jo. ¥, — 1 # I — Jy
then a # b. The definition of 8( ) immediately gives (I; ~J1)N (I ~J2) # 0
iff A(Iy x J1) NB(Iz x Jo) # 0. This proves 2.6.1.

2. Let I1,I, € £ and S, 5 € ;CJ Consider £, := B{I; x J1) and
Ba= B(Iy x J2). If 51 N B2 # 0 then 11 JU) N (I — Jo) # B, by definition
of 8( ). Thus I1 — J; = Iy — J» by 2.6.1, and so 81 = (2 by definition of 3( ).
Next, let A; = MI; x J;), i = 1,2. Clearly, the @ band 8(I; x J;) contains X,
and it is unique by the above. Thus B8(X;) is a well-defined notatioh. Now
suppose B(A1) N B(Az) # 0. Then B{\1) = B(A2) by the above, and thus
BT x J1) = B(Iy x Jp), implying A(I1 x J1} = A(J2 x Ja) by definition of
A(). Thus Ay = Ag. This proves 2.6.2.

3. For the analogous statements with y replacing § and p replacing A,
we first consider the analogue of 2.6.1: Define p,g € Rby Iy = —J;1 -+p and
Iy = —Jo + q. We claim that

(Il‘*'Jl)ﬂ(Iz“l-Jz)%@ Hf p=q ff Li+J1=1Ix+Jo
‘We leave the rest of the proof as an exercise.
2.7. Let s be a square on level 7, and let it be written the same way as
in 2.2, ie.
§ = S(Il,IQ,J]_,Jz) = {I1 x J}_,I]_ X Jg,Ig X J1,12 X J2}
where Iy = Iy +t and Jy = J; +t, t € R Consider the & line A\(J; x J1) =
Az x J2) =: X and the & line ,u,(Il % Jo) = p(fa x Ji) =: p. We say that s
joins A and p (ot p and A; the order is 1rre1evant) Notice that this definition
includes the case when s contains only one block (¢ = 0), and that A and u
are uniquely determined by s. At this point, let us extend the notation for
lines and bands and define A(s), u(s), B(s) and v(s) by
Ms) = Al x J1), p(s) = pu(la x 1},
Bls) =Bl < Ju),  (s) =v(I2 x J1).
We call these the respective ®/& lines/bands generated by the square s.
They are essentially the two “diagonals” of the square, viewed on level j.
Given A € M and p € 47, it is conceivable, a priori, that there can be any
number of squares s on level j such that s joins A and p (or none at all).
However, Lemma 3.2 below implies (in particular) that there can be at most
one such square s.
2.8. Define graphs G7 (the graph on level j) by
G¥ = (V“'ﬁ,}_i':")7
where the vertez set V7 is
vi=2uU ‘u‘.'i’
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the set of edges B is
E7 = 89 = {squares on level 7},

and where the convention is that an edge s € EY joins the two vertices
A(s), p(s) € V7, as described above in 2.7. In particular, the edges are not
directed. Notice that there is no edge with both of its endpoints in M, or
both in .

3. The main combinatorial result. To state the result we need to
define a loop in an undirected graph. The Appendix on graphs contains
additional material. The following definition of a loop or closed path is by
no means standard or all-inclusive. It does not include a loop traversed
twice in the same direction for example, but it does permit some travelling
over the same paths twice. This definition happens to be convenient in our
induction hypothesis.

3.1. DEFINITION. Given an undirected graph G, a loop in @ is a pair
of sequences as follows. First, a sequence V5, ..., V;, of vertices of G,n>2,
with V1 = V., and second, a sequence ey, . ..,e,_1 of edges of G such that at
least one of the e; occurs only once in the sequence, and forall 1 <{¢ < n—1,
e; joins V; and Vi4.

'The main result is the following.
3.2. LeMMA. For each j > 0, there is no loop in G7.

The proof will proceed by induction on j (see 3.10). The approximate
strategy is as follows. By the sparseness hypothesis 1.4, there is at most one
block b on level j such that & splits into a square with 4 distinet blocks on
level j + 1. This puts a restriction on the relation between the graphs G7
and G771, We will exploit this restriction by considering a (minimal) loop g
in G977, and lifting it to its “predecessor” §in (. We assume by induction
that GY has no loops, and so in particular g has no loops. This implies that
g has at least 2 “endpoints”. Then, examining § and g at these endpoints,
we eventually get a contradiction to the sparseness hypothesis. We begin
the proof with the definition of “predecessors”,

3.3. Definition of ~ for intervals and blocks

3.3.1. For an interval I € £7, j > 1, let T denote the unique interval in
£371 such that T > 1. T is well defined by 1.1 and 1.2.
332 For a blockb=1Ix J ¢ Ef; b C{:,, §21,defineb=Tx J Clearly,
bobandbe ﬁi—l ® Ef,;l is the unique block containing b.

Before defining ™ for squares, we need the following.
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3.4. PROPOSITION.~L6$ I..l.’ I, Ji, J2§ .Cj;IfI]_ =Ji+tandlp=Js+1
forsomet € R, then Iy = J; +a and Iy = Js + o for some a € R.

_ Proof Givent,wehaveh —J1 =I,—J, by Proposition 2.6.1. Clearly,
Il —Jl o I]_ - Jl and Iz ~— JQ ) Ig - J2. Hence (Il - Jl) N (Iz - Jz) % @, 80
fl —h=I- Jz, and we obtain the required a € R, by Proposition 2.6.1
again.

3.56. Definition of = for bands, lines and squares

3.5.1. For a @ band 8 € &, > 1, we have 8 = 5(I1 x J1) for some block
It x Ji. If § = B(Ix x Ja) for some other block I X Jo, then for both i = 1,2
we have A(I; x J;) D 8(L x J;) = 8, so B(ly x J1) and (I3 x Jo) are not
digjoint, and hence they are equal. This allows us to define 8 = ﬂ(g 3 X fl)-
Similarly, for a © band v = (I, x J;) we may define § by ¥ = y(J1 x J1).

3.5.2. Similar reasoning shows that for a @ lin~e Ay = A(l1 x JL) a.né a e
line pq = p{fi x J1) we may define = AT x Jy) and iy = p(f7 x J1).

3.5.3. Consider a square s € 57, 7 > 1. Let s = s(f1,13,J1,J2) with
L=I+tand Jy=J +1t,t€ R Then I = I, + a and Jo = Jy -+ a for
some a € B, by Proposition 3.4. We may define

g: S(E,fg, j‘—l: :fz) € Sj_‘l’
since s can be written in only two ways as above (the other being» 5 =
s(Ia, I, J2, J1) with ¢ replaced by —t) and both ways give the same 5. We

have § O s, but § is not necessarily the only square in S9! containing s.
(In fact, 3 is the smallest square containing s on level § —1).

The following proposition is immediate from the above definitions.

3.6. PROPOSITION. [fj > 1, s€ 8/, A€ M, pe€ y and s joins A and
p, thens C5e 8, AcheN L uc e w™t, and § joins X and fi.

Thus, we may think of ~ as a “graph homomorphism” from G to GITL.
In particular, the ~ image of a “connected” subgraph of G7 is a connected
subgraph of GY=* (see the Appendix).

3.7. PROPOSITION, Let § > 0. There is af most one block b € L"f,,‘ & LZ%
such that b contains 4 distinet blocks on level 5+ L.

Proof Let b= I xJ besuch a block. Suppose b; = I; x J;, i =1,2,3, 4,
are distinct blocks on level j 4 1 contained in b. We claim that at least 2
of the I; are distinct, for if not then [; = Iz == I3'= Iy, forcing all the J;
to be distinct. This means that the interval J € £* contains the 4 distinct
intervals J; € £it1, which contradicts 1.3. Thus 2 of the I; are distinct,
which means that I is of Type 2 (see 1.3). Similarly, J is also of Type 2.
Recall that I C A, J € B and An B = (. Thus I # J. By the Sparseness
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Property (see 1.4) we find that I, J are the only two Type 2 intervals in L7,
Thus, b is uniquely determined.

3.8. DEFINITION. If the square s € §7, 7 > 1, consists of 4 distinct blocks
and if § consists of just 1 block, then we call s a basic square on level j. The
one block b such that 5= {b} will be called a basic block on level j — 1.

REMARKS. By Proposition 3.7, there is at most one basic block and
at most one basic square on any given level. If I € £% and J € Ly are
both of Type 2, then I x J =: b is a basic block iff in addition the 4
subintervals of J and J in £/, which we can write as [y, lp =1 +a2 C I
and Ji, Jo = Jy +y < J for some x,y > 0, also satisfy 2 = y. In other words,
the distance between I; and I, must equal the distance between JJ; and Js.
In the latter case s 1= {I; x J1,I1 x Ja, Iz x J1, I3 X Ja} is a basic square
on level § + 1.

3.9. PROPOSITION.

3.9.1. Let j > 1. If the squares S, T € §7 satisfy (i) S # T, (il) S=T,
and (iii) A(S) = MT) =t A, then Ao = A(sg) for some basic square so € §7,
and Mg = A(S) = MT) = A(bo), where by is the basic block such that 5p =
{bo}-

3.9.2. Similarly, if we replace (iil) by p(S) = u(I") =
1(s0) for some basic square sq € 87, and fip = p,(g) w(T
by is the basic block such that 5 = {bo}.

D po, we get pg =
T) = u(bo), where

Proof of 3.9.1. Consider the square 7 := § = T' &€ §9~1. There are 2
cases:

Mr={IxJ}, Tetyt Jelty* o
(II) r = {K1 X LI:KI x LQ) K2 X L]_,Kz x Lz} where Kl;K‘Z 1= ,C‘L_l’
Ly, 1q € ﬁﬁ;l and for some a # 0, Kz = Ky +a, Ly = Iy + a.

Casg (I). We see that §,T are inside I » J (i.e. their blocks are subsets
of I x J). We claim that both I and J are of Type 2. Suppose not, and
suppose I is of Type 1 and J is of Type 1. Then there is a unique [y C I
and a unique J; C J on level 7. So [; x Ji is the only block on level j
contained in I x J. Thus § = T' = {I; x J1 }, contradicting (i). Now suppose
I'isof Type 1 and J is of Type 2. Let Iy C I and Ji, Jo < J, onlevel 7, with
J1 ;é Ja. Then 11— gy ?1: Il - Ja 80 that )\(Il X Jl) # )\(Il x Jz) but S,T are
the two squares {I; x J1}, {I1 x J2} in some order, since [y x Jy, Iy x J; are
the only blocks in I x J on level j. Thus A(S) # A(T), contradicting (iii).
Similarly, we cannot have I of Type 2 and J of Type 1. Thus I and J are
both of Type 2. Let their subintervals on level § be

hh=h+tClIl, J,h=h+uC
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where t,u # 0. We show that ¢t = u. If t # u, it is easy to see that the
four @ bands S(I; x J1), B(I1 x J2), B{Ix x J1), B{Ia x J2) are disjoint,
and so are the corresponding @ lines A(L x J1), All1 x Jo), M2 x Ji),
A{I> % Ja). Moreover, the only squares inside I x J on level j are then
{Il x Jl}, {Il x JQ}, {_[2 X Jl}, {Ig X JZ} But § # T are both inside I x J.
Thus S, T are some two of the {1}, x Ji}, k,{ = 1,2, and hence A(S) # A(T),
contradicting (iii). We have shown that ¢ = u. Hence s{l3, I, J1, J2) is a
basic square, and we call it $5. Now, S,T are some two of the squares sg,
{Iy x Ji}, &, [ = 1,2, such that A(S) = A(T), since these are all the squares
inside I x J on level j. The distinct @ lines of these squares are clearly
)\(Sg) = A({I]_ X J]_}) == /\({I2 X .]2}), )\({I1 X JQ}), )\({Iz x .]1}) Hence
S, T must be some two of the squares sg, {I1 x J1}, {I2 x J2}, for otherwise

A(8) # A(T). This shows that A(sg) = Ae. Also, 39 = {I x J} = S=T,
hence by = I x J and we get )\D = Abg) = (S) = )\(T) as required. This
completes the proof in Case (I}.

Case {I1). Since r has 4 distinct blocks and r = S =T, we see that S
must have 1 block in each of the 4 blocks of 7, and so must T. Thus, § and
T may be written as

S = {El X Fj_,E]_ x FQ,EQ X F1,E2 X Fg},
T = {Gl X Hl,Gl X HQ,GQ * Hl,G2 X Hz},

where E;,G; C K; and F;,H; C L;, 4 = 1,2, are intervals on level j.
Since S is a square, it follows that Ea = Ey + p and F» = F) + p for
the same p € R (p # 0). To prove this, recall that a square with 4 blocks
always has 2 blocks by # by with A(by) = A{b2). Looking at S, the only
possibility is A(By x Fi) = A(Fs x Fy), from which the existence of p follows
by Proposition 2.6.1. Similarly, G2 = Gy + ¢, Ha = Hy + g for some ¢ 7 0.
Next, we claim that either By x Fy # Gy x Hy or By x Fp # Ga x Hj. For,
if both are equalities, we get B; = Gy, F; == H;, i = 1,2, whence § =T,
contradicting (i), Thus we may assume that, say (w1thout loss of generality),
El x K % Gl X H1 Now )\(E]_ X Fl) = )\(S) )\(T) = )\(Gl X Hl) by (111)
Hence, there is a £ # 0 such that G; = By +t, Hy = Fy +t. Thus, the set
Sg = {E]_ x F},El X Hl,Gl X Fl,Gl X H]_}

i a square on level § with 4 distinct blocks. Also, 5p = {K1 x L1} =1 {bo},
so that s is a basic square. Finally, A(so) = )\(El % Fy) = A(S) = A and
o= AMEL x B) = MKy % 1) = Mr) = AMS) = A(T) as required. This
completes the proof of Case (II), and hence of 3.9.1.

Proof of 3.9.2. We leave this as an exercise. It is almost identical to
the proof of 3.9.1. Alternatively, note that the mapping z — —z applied to
A will change all u’s to \’s and vice versa (in Ll B) and hence the proof
of 3.9.2 reduces to 3.9.1.



112 I. Klemes

We are almost ready to prove Lemma 3.2, except for some ideas related
o (finite) graphs which, however, can be found in the Appendix.

3.10. Proof of Lemma 3.2. For j = 0 we have by definition £Y = {4}
and L% = {B}. Thus {A x B} is the only square (i.e. edge in G°), and
A(A x B),u(A x B) are the only ® and © lines. Formally, G° = (V°, E?),
VO =Xupl = {A4x B),pu(4d x B)}, E° = {{A x B}}. Thus G is the
graph with one edge e = {Ax B} and its 2 distinct endpoints Vi = A(A x B)
and Va = pu(A x B), so clearly GY has no loops.

We proceed by induction on j. Let § > 0 and assume that G has no
loops. Suppose G+ has a loop. Then G¥*+* has a simple loop by A2. Let g
be a simple loop in G**1, and consider g as a subgraph of G¥+%, g = (V,, Ey).
Define § = (V, B,) where V, = {V: Ve V,} and B, = {f: e € Eg}. Since
™ is a graph homomorphism (Proposition 3.6) we see that § is a subgraph
of G7. Thus by the induction hypothesis § has no loops. Also, § has at least
2 distinet vertices (since A N g7 = @) and is connected (since g is). Hence §
has at least 2 distinct endpoints Wi, Ws, by A5 of the Appendix.

+ Consider W1, We know that Wy € X Uy?, and without loss of generality
we may assume Wi € M (ie. a similar argument would apply if Wi € ).
Then Wy = Xy for some Ag € Vg, Ao € A+, and by A9 there exist edges
S1#T1e By C 89+1 guch that )g is an endpoint of both §; and T} and
S1 =Ty Since Ay € A7, this translates to

)\(Sl) = A(Tl) = AU.

Applying Proposition 3.9.1 to S; and Ty we see that g = A(sp) where
50 € 877 is a basic square and

W= A(81) = A(T1) = A(bo)
where by is the basic block on level j such that 5 = {by}.

Now consider W, &€ M U p/. We claim that if Wy € M then W, € w.
For suppose Wy € M. Then the above argument for Wy applies equally to
W and gives Wy = X, A} = A(s}) where sp € 891 is a basic square. But
there is at most 1 basic square on any level, S0 85 = $p, whence Wy = Wy,
a contradiction. So we must have Wa € u;. Moreover, the argument for
W still applies to Wy (via the symmetric Proposition 3.9.2) and gives us
Wa = g, o € V;; ﬂ‘uj'l-l, Ss % Ty € E C Sj-l-l, §2 = 2‘:2,

p{82) = u(T2) = po

and pio = (so) where sp € $711 is the basic square on level j -+ 1 (the same
3o as above for Wy, since there is only one!), and

= 1u(Ba) = p(Th) = ulbo).
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This has proved that in the graph G7, the square {bo} joins Wy and W5,
since Wy = A(bg) and Wa = u(bp). Now recall that g is a connected subgraph
of G7 containing Wy and W;. If § does not contain {bp} as an edge, then we
can construct a loop in G? by simply adding {bg} to the edges of g. Le. let

=TVWi,...,Vy = Wy together with the edges e;,...,e4..1 be a path in g
from W1 to Wy, let V.11 = Wy and e, = {bg}. Then e, appears only once,
so we have a loop (Definition 3.1). This contradicts the assumption that G7
has no loops. Therefore {dp} is an edge in §. It follows that g is the graph
with one edge, {0}, and its two endpoints, Wy, Wy (by A6). We shall now
look at all possible g and check that none of them is a simple loop, thus
obtaining a contradiction:

Let bg = I xJ. Let Iy, Iy C I and Jy, Jo © J be the subintervals on level
4 + 1 such that

S = {Il X J]_,Il X JQ,IQ, x Jl,Ig X J2}

and Ip = Iy +t, Jo = Ji +1%, t # 0 (see Definition 3.8). Then E; C
{SU,{I]_ X Jl},{Il X Jg},{fz X Jl},{Iz X Jg}} =: Fy and th C {/\(Sg) =
)\(11 X Jj_) = )\(Iz X Jz),/\(fl x JQ),)\(IQ X Jl)} U {,U.(S[)) = ,u.(Il X Jg) =
p(ly x J)u(ly x Ji),u(ly x Ja)} = V. Observe that A(fy x Jz),
MIp x J1), p(I; % J1), p(lz x Jo) are all endpoints of the graph (Vo, Eo).
Sc none of them can belong to Vg, since g has no endpoint, being a simple
loop. It follows that Vg = {A(so), t(s0)}. Also, none of the one-block squares
{h x i}, {Iix e}, {I2xJi}, {12 x J2} can belong to E,, because each has
one endpoint among those that were just eliminated. This forces E; = {so}
Thus g is the graph with one edge and two distinct endpoints and hence has
no loops, a contradiction. We have thus proved that G7*! has no loops, and
so the proof of Lemma 3.2 is complete.

4. Trees and edge colouring. We will estimate certain summations
in Section 5 by using the following corollary of Lemma 3.2.

4.1. COROLLARY. For each 7 > 0, 87 can be written in the form S7 =

siu 83 such that
@) s{ns; =0,

(il) Bf 81,82 € Si and s1 75- 89, then A(Sl) ?é A(SQ),

(iii) if 81,82 € Sf; and 81 # 8q, then u{s1) # u{sa).

Recall that 57 is the set of edges of the graph (Y. The above splitting
Si = Sj . SJ may be viewed as colouring all edges either blue (= 53) or
green (= SJ) such that there is at most one blue edge at every vertex in A%
and at most one green edge at every vertex in i (recall that the vertex set

of G is M U ). To achieve this we first discuss trees. Let a simple path be
a path (see A3) such that all of its edges €3, ...,en are distinct. Define a
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tree to be a graph such that for any 2 vertices V, W there is a unique simple
path from V to W. Two basic results (which we leave as an exercise in A10)
are that

(1) a graph G is a tree if and only if G is connected and has no loops, and
(2) if r is a vertex of the tree G, then for any edge ¢ of & there is a
unique simple path whose first vertex is » and last edge is e.

Proof of Corollary 4.1. We first note (and leave the details as an exercise)
that any graph can be written as a disjoint union of connected subgraphs
(components). Since G' has no loops (Lemma 3.2), each connected compo-
nent has no loops and is thus a tree. Let T' be such a connected component
of G¥ and colour its edges as follows. Fix a vertex ry € uf of T and call it the
root of T'. For any simple path starting from the root, colour the edges in or-
der alternately blue, green, blue, green, blue, ... That is, if rp = V4,..., V,,
and ey, ...,en—1 are the vertices and edges of a simple path (where e; joins
V; and Viy1), let e1,es,e5,... be blue and let eg,eq,ep,-.. be green. By
the remark (2) preceding this proof, every edge e of T' is thus assigned a
well-defined and unique colour. After colouring every component T, define
8 ={e€ 8 : eis blue} and 8 ={e € 87 : e is green}.

We now verify (ii). Let 51,52 € 5 and s; # s5. Suppose that A(s1) =
A(s2) = V. Then s; and s; are in the same component 7. Let the unique
simple path from rp to V have vertices rp = Vi,...,V, = V and edges
€1,---,€n.1. Clearly, rr # V since rpy € pf and V' € M. Also, en—y % 3y,
because otherwise the (unique) simple path from r7 with last edge so would
be V1,..., Vo, Vs = p(s2), with edges eq,...,e,_1 = s1,e, = Sqg, so that
51 and s; would have different colours. Similarly, en—_1 # so. It follows that
€1,--.,€n—1,51 and €1,...,6én.1, 57 are the edge sequences of the simple
paths from ro with last edge s; and sy respectively. Now recall that our
graphs have the extra property that every edge e has one vertex A(e) € MY
and one vertex u(e) & ,uJ’ But Vi = rr € pf by definition. Therefore
Voe M, Vaepu!,VyeN,. . ete Since V, =V ¢ M, we see that m must be

even. Therefore s; and s are both green, contradiction. The proof of (iii)
is similar,

An easy way to visualize the colouring of 7' and the above proof is as fol-
lows. We imagine the edges of T to be made of strings of equal length, Then
we dangle T' in the air, by holding it by some arbitrary node, say ro € u.
Thus rr is at the top of the tree (the root nede). Finally, we colour the
strings alternately blue, green, blue, etc., starting from the top and moving
down. Moreover, the vertices on the same horizontal level are either all of
type A or all of type p, and the type alternates, from the top down, in the
manner ft, A, 44, A, .. This observation immediately gives (ii) and (iii).
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5. Choosing diagonals with bounded overlapping. Consider a
square § € $7. There are at most 2 expressions for s of the form s =
(A]_,Az,Bl,BQ) {A1 x Bl,Al X Bz,Ag x B, Ag X Bg} where for t € R,
Az = Ay +t, By = By +tand A, Ay € L%, B1,B; € L}, the sec-
ond expression being s = s(As, Ay, B2, B1) if ¢ # 0. Note that {A4; x
By, 43 x B2} = s M A(s) is independent of the choice of expression, and
50 is {A1 X By, Ay x B1} = s p(s). Let £ x L denote, as usual, the
Cartesian product £, x L = {(I,J}: I € £ Je Ly}

5.1. DEFINITION. For each s € S7 define two functions Xs,a, Xe,u : "Cii X
Ly — R by

1 #IxJesnAs)
xs,A(I: J)= {0 otherwise,

_f1 #IxJesnuls),
Xou(d, ) = {0 otherwise.

Note that this can also be written as
XS,A(I: J) XsNA(s (I X ']) Xs,y.(I: J) = Xsnu(s) (I x J)

where Xsra(s)s Xarys(a) £ W@ L‘}’B — R are the usual indicator functions of
s N A(s) and s M p(s) respectively.

5.2. PROPOSITION. Let j > 0 and let 7 = 5% U S] be a decomposition
as in Corollary 4.1. Then for all (I,J) € L% x L,

Z xs 2 (L J) + Z Xou(L, J) € 2.

se59 se8y

In other words, every block Ix.J € ,Cf'.d_ ®£§ 15 an element of at most 2 sets
in the indeged collection {s N )\(3)}3653' U{s Nuls)teesy

Proof. We simply verify the even stronger assertion that every fixed
block I x J € £% @ £ is an element of A(s) for at most one s € 53, and
that it is an element of ,u( ) for at most one s € 8. Fix I x J & £ oL
IxJ € A(s) then A(I'xJ) = A(s). Thus part (ii) of Corollary 4.1 1mp11es that
there is at most one s € 5] such that Ix.J € A(s). Similarly, if I xJ € p(s)
then u{l x J) = u(s), and part (iii) implies the desired result.

6. Littlewood-Paley inequalities for functions with spectrum
in £7. Let f be a trigonometric polynomial on the circle T. We define
Spec(f) ={neik: F(n) # 0}. For E C R, fg is the function such that

fE = fo, ie fu(t) = Znezn}sf(”)eﬁm t € T. Given any forest {£}22,
as in Section 1, we have the following result, _
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6.1. LEMMA. Let k > 0 and suppose that A, B € L* are disjoint intervals.
Figj>kandput Ly ={Ieli:TCcAand Ly ={Ielf:IcC B}
Suppose that f. is a trigonometric polynomial such that

Spec(f) C U I, ie f= Z fr.

IeLld leld
Then
JIzalissl < 2{ (30 6P (X 191%),
T T reci, Jech

where the integrals are taken with respect to normalized Lebesgue measure,
dt/(2n).

Proof. It suffices to consider the case k = 0 for an arbitrary forest {L£%}.
Let Iy, I € £, and Jy,Jp € £ If

S(fﬁffz)(fﬁfh) #0

then (I1 — )N (J1 — Jo) # 0, and we must have I, = Iy +t and Jo = J, + ¢
for some t € R (by Proposition 2.6.1), i.e. I = I = J; — Jp, and thus
s(I1, I, J1, J2) = s is a square in 87. For each such square s, define

TT(f, S) = ifrll . |f12‘ ) i.f.hl : ‘fJ:a|a
and note the following two possible ways of estimating 7 (f, s):

1) 7(5,9) < gln o+ 51 PLfl?

1
=5 2 Xen L DI PS5,

{4,0)
1
(2) n(£,6) < 5165 in + 5\ fal Lo P
1
=3 > Xewl D DIFPIASE,
{I,7)

where 37 ; ;) denotes the sum over all (I,J) € £}, x £7.

In the following string of inequalities, the first factor of 2 occurs because
each square appears at most twice, as s = s(Iy, I, J1, Jo) = s(Ip, I1, Jo Ji).
We fix a decomposition $7 = S5 U S} as in Corellary 4.1. Then 7

NIfaPissl? = SfAfA(E)

SIS (S BT (5 7)

LeLs, Leld, JeLh T JpeLd
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- ¥

(I1. 03, Ty, Jo)e L3 e s oh wed

> Vnfu)(Frnfn)

(I, I2,J1,J2), 1 —Ta=J1 —J2

S(fhflz)(fhfh)

<2 a(fsy=f2( a9+ 3 m(f.5))
$€ 57 se5] sesi
JUOIEI NACHTIIED oFSIME LAY
SESi (I,7) HESﬂ (1,7)

= I (X o@D+ 3 el ) 52155

(I} ses s€ 57,
<\ anPlr = 2§ (3 15) (30 1812).

(IJ) recs, Jers

The last factor of 2 is from Proposition 5.2.

6.2. THEOREM. Let {L£1}32, be a forest such that L® consists of ezactly
the interval Iy , i.e. £L® = {Ip}. Fiz j > 0 and suppose that the trigonometric
polynomial f satisfies

Spec(f) C U I, de f= Z fr.

IeLd IeLsd

s <af (1)

T recs
where the integrals are with respect to normalized Lebesgue measure on T.

Then

Proof. The theorem follows from Lemma 6.1 by the method of [H1} or
[H2]. We repeat it here for completeness. The idea is to use the simple tree
structure of the subintervals of I. (This tree structure has nothing to do
with the trees of Section 4.). Moreover, only the “trivial” part of [H1] or [H2]
is needed here, since by hypothesis f has no spectrum in the complement
of |J L7

We first note the following identity: If I, Ix € £% are disjoint then

V1fn + folt =§0ful® + 1l + 40 1)

The proof is an exercise in checking which of the terms Vi fn (FrnFo.)s
k,1,m,n = 1,2, are equal to 0, using the facts that 1 —I) = [~l;, ] = a—1Ia,
and that the gap between [} and I is 2 3l; by definition of £*. If I is an
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interval, put £% = {J € £¥: J C I}. Let £§ = {I € £* : I is of Type 2}. If
I € Lk let A(T), B(I) denote the two elements of £ in some order (say
A(I) is to the left of B(I)). Now iterate the above identity to obtain

-1
(6.3) At =1 ( SUAFEY S 4|fA(K)|2|fB(K)|2)-

Iecd k=0 KeLk

That is, if Iy is of Type 2, apply the identity once to get
§171% = §1rnl* = §£acm [ + (£50o* + 4 Faun) 1 | Fo00) 1>

If Iy is of Type 1, we can just write fr, = fr,, where I C Iy, Iy € £. Then
the first application of the identity occurs in £ or on some later level. Next,
apply the identity to each of the 4th power terms whose index interval is of
Type 2, and leave the mixed terms alone. Stop when all 4th power terms
have an index interval T on level 7.

Given the identity (6.3), we apply Lemma 6.1 to each of the mixed terms
SlfA(K)Iz’fB(K)lz- To do this, fix K and take A = A(K), B = B(K) in the
lemma. (In the present notation these A, B are on level k + 1). Thus (6.3)
gives

(6.4) SJfl*sS[ZWMfZ( X)X LB

TeLs R=0KeLk retd TEL ey

It remains to check that in (6.4) each term of type | f7|2| f1|%, (I,J) € £IxLI,
occurs with a coefficient (multiplicity) of at most 4. First of all, since A(K)
is always to the left of B(K), the | fy[* terms occur only once, and | f7|2|£,]?,
I # J, ocours only if I < J (I is to the left of J). Next, if we omit the 8,
each (I,J), I < J, occurs at most once, by the following.

6.5. PROPOSITION. Let 0 < ki, kp <5 —1, Ky € L5 and Ky € L8 If
K # Ky then

(Cagay % L) N Cagreyy X Lhiaeyy) = 0.

To prove Proposition 6.5 note that either X7 N Ky =0or Ki DK,
or K1 C Ko. If K3 N Ky = () the result follows. So assume without loss
of generality that Ky O Kj. Then K, C A(Ky) or Ko € B(Ky). Assume
w.log. that K C A(K1). Then A(K,), B(K,) C A(K)). Since A(K1) N
B(K1) =0, we get B{X,)N B(K1) = @ and the result follows.
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Returning to (6.4), the proof is finished as follows:

ARSI DINLES N DI

Iegs (I,NeLixii, 1<t
2
<l Y PP =4 S 1nP)
(I, J)elixrs Icti

Appendix on finite graphs. In this paper a finite graph is denoted by
G = (V, Eg) where Vi and Eg are finite sets, called the set of vertices and
the set of edges of G, respectively. This is assumed to be accompanied by an
assignment of 2 vertices V1, Va € Vg to each edge e € Eg; we say e joins V)
and V5 (without regard to order) and we allow Vi = V4. Thus, formally we
should write G = (Vg, Eg, ng) where ng : Eg — {{V1,Va} : B, V2 € V)
and the convention is that e joins V4 and V3 if {V4, 12} = mgle). A subgraph
of a graph G is a graph g = (V,, Eg,m,) where V, C Vg, B, C Eg and
g = Mg restricted to E,. Thus V must contain wg{e) for all e € Fy.

In fact, the graphs in the text have the additional feature that Vg = AUp
where AN p = 0 and for each edge e € Ey, mg(e) = {Ay, pa} for some
A1 € hand pr € p, and we write Ay = A(e), p1 = ple). In particular,
the case V1 = V2 never actually oceurs. But, in this appendix we ignore
these additional features. The proofs of all results about graphs are left as
exercises.

Al. A loop (see Definition 3.1) is called a simple loop if its vertices (and
hence also edges) are distinct, L.e. if Vi,..., V.1 are distinct.

A2. Given a loop, there exists a simple loop contained in it, i.e. a simnple
loop which is a subgraph of the given loop, when both are regarded as graphs
in the obvious sense.

A3. A graph is said to be connected if for any 2 vertices V' # W there
exist vertices V1,...,V,, and edges e1,...,en—1 Such that Vi =V, V,, = W
and e; joins V; and Vi1 for i =1,...,n—1. We call this a path from V to W.

Ad, If an edge e joins vertices V, W, we say V' and W are the endpoints
of e. A vertex V of a graph G is called an endpoint of G if there exists an
edge € in G such that V is one endpoint of e, the other endpoint of ¢ is not
equal to V, and V is not an endpoint of any other edge in G. (“Isolated”
points are thus not called endpoints by our definition.)

AB. Let G be a connected graph with no loops and with at least 2 distinct
vertices. Then G has at least 2 distinct endpoints.

A6. Let Wy # W3 be two endpoints of the connected graph G = (Viz, Eg)-
If there is an edge e joining Wi and W in G, then G is a graph with one
edge: Vg = {W1,Wa}, Bg = {e}.
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AT7. Let G = (Vg,Eg), H = (Vy, Egr) be graphs. A map ¢ : Vg U Bg —
Vi U Ey is called a (graph) homomorphism if o(Vg) C Vi, p(Eg) C Eg,
and (e} joins @(v) and @(w) whenever e joins v and w, e € Eg, v,w € Vg.
Write ¢ : G — H.

A8. If ¢ : G — H is a graph homomorphism and G = (Vg, Eg) is
connected then the image graph (p(Vg), w(Eg)) is connected.

A9. Let the graph g = (V,, E;) be a simple loop (i.e. the graph formed
by taking the vertices and edges of a simple loop). Let ¢ : g —  be a graph
homomorphism, with h = ((Vy), ¢(Ey)). If k has an endpoint W = p(V),
then there exist 2 edges e; # ey € B, such that V is an endpoint of both e
and ez, and p(e1) = w(ez) = the unique edge in h with W as one endpoint.

A10. A simple path from a vertex V' to a vertex W is a path (see A3)
from V to W such that all of its edges e, ..., e,_; are distinct. We include
the one-point path ¥ (with no edge), and any simple loop (Vi = V3,). A
graph G is called a tree if for any vertices V, W of G there is a unique simple
path from V to W. We have the following results:

(1) G is a tree if and only if & is connected and has no loops.
(2) If G is a tree, r is a vertex of G and e is an edge of G, then there is a
unique simple path ((V1,...,V,), (e1,...,en-1)) with Vi = v and en.1 = ¢.
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Commutants of certain multiplication operators
on Hilbert spaces of analytic functions

by

K. SEDDIGHI and 8. M. VAEZPOUR (Shiraz)

Abstract, This paper characterizes the commutant of certain multiplication opera-
tors an Hilbert spaces of analytic functions. Let A = M be the operator of multiplication
by 2z on the underlying Hilberi space. We give sufficient conditions for an operator essen-
tially commuting with A and commuting with A™ for some n > 1 to be the operator of
rnultiplication by an analytic symbol. This extends a result of Shields and Walien,

1. Introduction. Let H be a Hilbert space of complex-valued analytic
functions on the open unit disc I such that point evaluations are bounded
linear functionals on H. Then for every w € ID there exists a function k,, in
H such that f(w) = (f, k) forall f € H. Now if we define K : DxD — Cby
K (z,w) = ky(2), then K is a positive definite function with the reproducing
property f(w) = (f(-), K(-,w)} for every w € I and f € H. The function
K is called the reproducing kernel for H.

Recall that a function K : Dx D — C is positive definite (denoted K > 0)
provided :

k11
Z aj“a?kK(wj,wk) 20
Gik=1
for any finite set of complex numbers aj,...,a, and any finite subset
Wy, .., Wn of I. Conversely, if K : D x b — € is positive definite then

k(]
{ZajK(-,wj) 1a1,.--,0n ECand wy, ..., wy € ]D)}
J=1
has dense linear span in a Hilbert space H(K) of functions with
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