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AT7. Let G = (Vg,Eg), H = (Vy, Egr) be graphs. A map ¢ : Vg U Bg —
Vi U Ey is called a (graph) homomorphism if o(Vg) C Vi, p(Eg) C Eg,
and (e} joins @(v) and @(w) whenever e joins v and w, e € Eg, v,w € Vg.
Write ¢ : G — H.

A8. If ¢ : G — H is a graph homomorphism and G = (Vg, Eg) is
connected then the image graph (p(Vg), w(Eg)) is connected.

A9. Let the graph g = (V,, E;) be a simple loop (i.e. the graph formed
by taking the vertices and edges of a simple loop). Let ¢ : g —  be a graph
homomorphism, with h = ((Vy), ¢(Ey)). If k has an endpoint W = p(V),
then there exist 2 edges e; # ey € B, such that V is an endpoint of both e
and ez, and p(e1) = w(ez) = the unique edge in h with W as one endpoint.

A10. A simple path from a vertex V' to a vertex W is a path (see A3)
from V to W such that all of its edges e, ..., e,_; are distinct. We include
the one-point path ¥ (with no edge), and any simple loop (Vi = V3,). A
graph G is called a tree if for any vertices V, W of G there is a unique simple
path from V to W. We have the following results:

(1) G is a tree if and only if & is connected and has no loops.
(2) If G is a tree, r is a vertex of G and e is an edge of G, then there is a
unique simple path ((V1,...,V,), (e1,...,en-1)) with Vi = v and en.1 = ¢.

References

[H1] K.E. Hareand L Klemes, A new type of Littlewood-Paley partition, Ark. Mat.
30 (1992), 297-309.
H2] — —, On permutations of lacunary intervals, Trans. Amer. Math. Soc. 347 (1995),
4105-4127.
[R] W.Rudin, Trigonometric series with gaps, J. Math. Mech. 9 (1960}, 203-~227.

Department of Mathematics and Statistics
805 Sherbrooke Street West

MecGill University

Montréal, Québec

H3A 2K6 Canada

E-mail: klemnes@math mcgill.ca

Received January 27, 1997 (3827)
Revised version June 15, 1998

icm

STUDIA MATHEMATICA 133 (2) (1999)

Commutants of certain multiplication operators
on Hilbert spaces of analytic functions

by

K. SEDDIGHI and 8. M. VAEZPOUR (Shiraz)

Abstract, This paper characterizes the commutant of certain multiplication opera-
tors an Hilbert spaces of analytic functions. Let A = M be the operator of multiplication
by 2z on the underlying Hilberi space. We give sufficient conditions for an operator essen-
tially commuting with A and commuting with A™ for some n > 1 to be the operator of
rnultiplication by an analytic symbol. This extends a result of Shields and Walien,

1. Introduction. Let H be a Hilbert space of complex-valued analytic
functions on the open unit disc I such that point evaluations are bounded
linear functionals on H. Then for every w € ID there exists a function k,, in
H such that f(w) = (f, k) forall f € H. Now if we define K : DxD — Cby
K (z,w) = ky(2), then K is a positive definite function with the reproducing
property f(w) = (f(-), K(-,w)} for every w € I and f € H. The function
K is called the reproducing kernel for H.

Recall that a function K : Dx D — C is positive definite (denoted K > 0)
provided :

k11
Z aj“a?kK(wj,wk) 20
Gik=1
for any finite set of complex numbers aj,...,a, and any finite subset
Wy, .., Wn of I. Conversely, if K : D x b — € is positive definite then

k(]
{ZajK(-,wj) 1a1,.--,0n ECand wy, ..., wy € ]D)}
J=1
has dense linear span in a Hilbert space H(K) of functions with
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T 2 "
H ZajK(., wj)H = Z aj“a"kK(wj, wk)
j=1 5 k=0

and f(w) = (f(), K(,w)} for every w in D and f in H(K). Thus evalu-
ation at w is a bounded linear functional for each w in I. Note also that
convergence in H(K') implies uniform convergence on compact subsets of I.

Now if K is a kernel on D x I which is analytic in the first variable and
consequently coanalytic in the second variable, then K(z,7) is an analytic
function on I x ID in the two variables z and w. Hence K(z,w) can be
represented by the double power series 375 o a;x2'@". If C denotes the
matrix [a;z] then such a K can be written more compactly in the form

K(z,w) = Z*CW = (CW, 2-)[1

where Z denotes the column vector whose transpose is (1, 2, 2%,...). (Here 13
denotes the usual space of all square summable sequences.) It is well known
that K > 0 if and only if C > 0 . Henceforth for positive matrices C, H(C)
will denote the space H(K) where K = Z*CW. For more information about
reproducing kernels the reader is referred to [2]. Some good sources on spaces
of analytic functions are [3; 5; 6; 9; 11].

G. Adams, P. McGuire and V. Paulsen [1] have proved the following
basic theorem in which it was shown how to produce bases for H (C) via
factorizations of the form € = B*B.

TrEOREM 1.1. If C = B*B for some bounded operator B on li, then
the operator V' from (ker B*)L into H(C') defined by

(VA)&) = (B*£, B

is unitary.

COROLLARY 1.2. [f C = B*B and {fa} is an orthonormal basis for
{ker B*)*, then {(B*fn,Z)ti} is an orthonormal basis for H(C).

We can construct a basis for H{C) by using the Cholesky decomposi-
tion of the nonnegative matrix C' into the product U*U/ , where U is upper
triangular. For more details the reader is referred to [8].

Let B(H) denote the algebra of all bounded operators on H. If F C
B(H), then ' = {Se€ B(H) : TS= ST forall T F} is the commutant
of 7. Shields and Wallen [10] studied the commutants of the operator of
multiplication by z and introduced interesting function theoretic methods.
Another interesting reference is [7). Cugkovié [4] studied the commutants of
certain Toeplitz operators with symbol 2™ on the Bergman space by decom-
posing the space into the direct sum of n subspaces. In this paper we study

the commutants of the operator of multiplication by 2™ on Hilbert spaces
of analytic functions. :
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NOTATIONS. Throughout this paper, A is the operator M, of multipli-
cation by z. Let H dencte a Hilbert space of analytic functions on I} such
that 1 € H, zH C H, point evaluations are bounded for every w € D and
dimker(M, — w)* = 1. Let Bo(H) denote the set of all compact operators
on H. Also if T € B(H) then T, = T & ... ® T (n times) which acts on
H&...®H (n times). A complex-valued function ¢ : I — C is called a
multiplier on H if ¢ C H, that is, of € H for every f in H. It is well
known ([10]) that every multiplier is bounded and analytic on D. Given a
multiplier ¢ let A, dencte the operator of multiplication by . Because
1 € H the multipliers are contained in H. If the set {z" : n > 0} is an
orthogonal basis for H and ¢ is a multiplier, then ¢ = > 77 an2™. Be-
cause point evaluations are hounded the power series expansion of v can be
written as ¢(z) = 3 oo o an2™

2. The commutant of A". First we state a lemma which will be used
in the proof of the main result.

LeMma 2.1, Let H = H(K) be a Hilbert space with reproducing kernel K.
If the matriz of K is diagonal with positive entries then {1,2z,2%,...} is an
orthegonal basis for H.

Proof. Since {e,} is an orthonormal basis for I3, where e, has 1 in
the nth coordinate and 0 elsewhere, putting B = C%? in Corollary 1.2
completes the proof.

THEOREM 2.2. Let H have a reproducing kernel of the form

oo
K(z,w) =Y a(z®), a >0,
i=0
or {equivalently) let the set {z* : k > 0} be an orthogonal basis for H.
Assume there are constants a > 0, 8 > 0 and v > 0 such that for allm > 1,

(1) &< akmfor < B forallk=0,1,...
and
(2) akm-l—l/akm <7 k=0,1,...

IfMA~ AM € Bo(H) and M € {A™} for some n > 1, then M = M, for
some analytic function .

Proof. Since K(z,w) has a diagonal matrix with positive entries {a,},
by Lemma, 2.1 the set {z* : k > 0} is indeed an orthogonal basis for H. For
i=0,1,...,n—1let

H;, = v{zkn—ki}'

k=0



124 K. Seddighi and 8. M. Vaezpour

Then H =Hy&...& H,_y and A"H; C H; fori=0,1,..
can define V; : H — H; by Vi(#*) = 2%+t { = 0,1,...,n.
To see that V; is bounded let f = 377 jaxz" be in H. Then

n 1. 50 we

[eu]

I£1P =3 ol %)1* < co.
k=0
Because ay = ||2*||~2 we see that (1) is equivalent to the existence of con-

stants Cy > 0 and Cy > 0 such that Cq|2%|| < ||2**|| < G| 2*||, & = 0,1, ..

We therefore obtain
2 = 2 , b
= |4 (X ee) | < 14123 el l412)
k=0 k=0

o
H Z gz
k=0
o0
< CBIATE Y anl? 2 2
k=0
The above computations show that ||V; f|| < Cof|A%|| - | fI| and hence V; is
bounded.

This way we get an operator V = Vy@®...®V,—1, whichmaps H&. . .0 H
into Ho & ...® Hyp_1. We also have AH, C Hyyy for i = 0,1,...,n— 2.
Consider the operator H; — Hy, i = 0,1,...,n — 1, given by 2

2" that is, A~ g,. This operator is bounded if and only if =% <
C’||zk"”+1|| k=0,1,..., for some constant C' > 0. This condition is equiv-
alent t0 axn4 < Makn,k = 0,1,..., for some M > 0, which is condition
(2). It is clear that the operator Vy : H — Hp is given by Vo f = f o 2"
and Vif = 2'f o™ = AWf, f € H,i=1,....n Wenowshowthath
has a bounded 1nverse By the same techmque V[:, : Hy — H defined by

Voo l(Ek oﬂkz " =Y Oakzk or simply Vi~ Lf = foz " exists and is
bounded.

Assume p = {p;)1 7,

have

[e-u]

z) = Eaknz’m

k=0
[a)

z) = Zakn+lzkn+la o Pn1(2) =) Gkngner 2L

k=0

i\? ow if we cons1der M, from Ho @ ... @ H,,_., into itself, its matrix has the
orm

I € H where p; € H;. Writing ¢(z) = Y oreo arz® we

9]

M, = (M52

%,7=0
M = {Mmﬂ- for i 2 j,
Mg, ;. fori<yg,

where
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and o it is constant on its diagonal. Also if an operator M on Hy®. . . @ Hp—1
has this form then it is a multiplication operator.

To show what M, looks like first suppose that z*"*¢ ¢ H; and ™"+
€ Hj. Then since 2™+ is a multiplier, zEn+. zmnHi is equal to zk+mInti+i
€ Hijifitj<n—Llortozgktmtintition ¢ g . $fi4+j>n—1
Soif f; € H; and f; € Hj, then f;f;isin Hyy; fori+j <n—1andin
Hiyjn for i+ j > n — 1 provided this product makes sense. Now suppose
that f € H. Then

f=fo+fi+. A facry, fi€eH;,i=0,...,n—1,
and also for ¢ a multiplier we have v = ¢y + ..
because ¢ € H. So
wf =(po+ ...+ n-1)(fo+ ...+ fa1)
= (wofo+wofy + ...+ @ofu-1) +(prfo+orfi + ..+ @1 fa-1)
+.o (pnafo+ .+ en_1fa1)
After rearrangement we have

‘Pf = ((POfO +e1fa1+eafae+. F ‘Pn—lfl)

+(wofi +o1fa—at+ ..k onoafo) +...

+ (pofn-1+pifa2+ ...+ on_1fo)
where the kth parenthesis is in Hx—y. Infact ; f; € H;y for.i—}— j<n—1and
wif; € Hiyjn for i+ j >n—1 because AP f; = AM A f; is inHy.y for
i+j<n—1andin Hipjop for i+j > n. Writing ¢;(2) = 340 @knti2""
completes the proof of Theorem 2.2.

In particular A can be represented as

.+ @p_3 where @; € H;

0 00 0 =z

z 00 0 0

A= 0 =z 0 0 0
z

0 00 ... 290

Now since M, f = @f we can consider M, as a matrix operator from
Hy@ H @...® Hy_y into itself given in the proof of Theorem 2.2.

We now show that if T' € {A™}, then TV A, = ATV, where A,
Ad.. . . pAactson H®... & Hand T : Hoea BH, . — Hﬂea @Hn 1.
To show this, note that

AFV(F) = AT (o) = R = V() = VA()

— 1, the restriction of A™ to Hj is denoted by A7 =
n—1 so we have A"V = V A,,.

where for 7 =0,...,n
A" g, . Therefore A}V; = ViAforj=10,1,...,
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Hence if T' € {A™} then TA™ = A™T and
TV A, =TA"W = ATV,
Now suppose
M= (MZJ)” 0 € {An}f

where M;; : H; — H;. Then MV A, = A"MV. But MV =
Hence

(MZJV )1 ==

M{jV}'A:A?MﬁVj, z‘,j:O,...,n—l.
Fori=0,1,...,n—1let X; : H —» H; be the operator X;
Xil = f;, f; € Hy. Write

oo
£ = Za‘mzmn-i-i — Az( Z amzmn) . ATV(]( Z amzm).
m m=0 m=(
Using the equality X;4 = A7X; we have X;A(2%) = A?X,;(2*). Therefore,
X; (2P 1) = 27 X;(2"). Hence
Xiz = znfia Xizz = 22nf1:: LR X'izk = zknfiy

Let p;; € H be defined by ¢ = Y., amz™ = Vg ' A~ f;. Then M, 5V =
ViL;;, where L;; is the operator of multiplication by ¢;;. We ShDW that
X; = VLW In fact, X;(z )—-z‘“”_f and

( ) ~ Gozj == (Z Con, k—l—m) - Z amz(k+m)n-|-i
m

n VL % y
= #"Vi(y) = W(“’ i) (hnes)

Therefore,
VL«LJ(Z )= (‘Pzg)( kn_l_j) wz]( Imﬂ) = Ny J(z )

where 1y; = Vi(p;;) and NU is the operator of multlplmatmn by /2.
Hence MV = (M;;V;)772, = (Vilis)ti2, = (Ni; V)72 In what follows
for a set of vectors hy,. .., hy, the matrix transpose of the vector [Ay ..
is denoted by [hy... A"

‘We now have

MV[ku,zkl,...,zk"“l]’ =

i

(ViLig)igoole®, 2, .. aPem3]

(%),

We compute M A — AM by writing
MA A,M (N'LJA AN’& 1,5~ 1)

-1

zJO
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where N_y; = Np_1; and N; 1 = N, 1. The restriction of MA — AM
to Hy is

(MA-— AM)|5,(ho)
= [(NglA - ANn_l,g)ho, (NllA - A.Ngo)hg, .

= [(to1 — 2¥n—1,0)ho, (Y11 ~ 2¢00) ho, - . -
Therefore MA — AM g, = My|g, where

f = o1 — 2tbn-1,0,%11 — %00, - -+, ¥n-1,1 — 2¥n_20}"
Since MA — AM is compact it follows that MA — AM|g, = M¢|n, is a
compact operator.

Now we show that My : H; — H; is also compact. This is clear because
Mf|H = M, (M¢|g, )M, |H, Therefore

Mf.Ho@...@H_1—>H063...63Hn_1

is compact and so f = 0. This implies that s = i41,0/2,4=0,1,...,n—-1.
Simila.rly, MA - A.]V“_,H1 = MQIHl and g = (’lf)i,2/2§ - 1,[)1;_1,1)?;01 where
P11 = Yn_1,2. But M|z, is a compact operator on Hy and so M,A :
Hy — Hi is compact. On the other hand My A|g, = My where h = (33 —
z'z,bl-_l,l)i”‘____ol and ¥_11 = Pn.1,1. Now since My, : Hg — H is compact as
before, this means that h = 0 or equivalently ¢; 2 = 2¢0;_11, 1= 0,1,...,
n—1, and ¥_1,1 = 4n_1,1. If we continue this way we conclude that M = M,
where ¢ = (191,0)755 -

REMARK. Condition (1) states that what corresponds to the bounded-
ness of the composition operator Vj is the existence of a uniform (with
respect to k) bound on the ratios agm/ag. Similarly, their lower bound be-
ing > 0 should suffice for bounded invertibility of V5. With condition (2)
the boundedness of A~ : H; — H is guaranteed. Fortunately, this kind of
assumptions holds true in most interesting spaces (Hardy, Bergman, Dirich-
let etc.). What one must do is to exclude “exotic” weights such as a; = k!
Note that the composition operator then maps some element f € H outside
the space: it may happen that Vo f & H.

ExaMpPLE 2.3. Assume B is the diagonal matrix with positive entries
{ap, a3, ...}, (limsup at/™=1 < 00, K(z,w) = 5220, ai(#)* and

H= {Zb 2" Z[b | /an<oo}

=0

s (Nn-11A — ANp_20)ho]’
s (Pn—1,1 — 2n_2,0)ho]'.

In this case {1,z,22%,...} is an orthogonal basis for I, and H satisfies the
condition of Theorem 2.2 provided (1) and (2) hold. If a; = 1 then H is the
Hardy space H? of the unit disc, if a; = i+ 1 then H can be identified with
the Bergman space of analytic functions on I, and if a; = (i +1) ~! then H
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can be identified with the Dirichlet space of analytic functions on ID whose
derivatives are in the Bergman space.

CoroLLARY 2.4. Let H be as in Theorem 2.2 and u be a one-fo-one
analytic map of 1D onto D such that uf, fou € H for every f € H. Let
S e {My} and SM, — M, S € By(H). Then 8§ = M, for some analytic
function p.

Proof WedefineV: H — Hby Vf= fout. Clearly, V is a bounded
linear operator with inverse V™! f = f o w. Then V™'AV = M,,. Now since
Se{Mpyn}, 5e{VIAWY and so VSV~! g {A"}. But

VSV A AVEVT =V (SM, - M, 5)V™!

is compact, so by Theorem 2.2, VSV ™! = M,, for some analytic function 1.
Therefore, § = V1MV, and since V"' MyV = Moy, we have § = Mo,
THEOREM 2.5. Let H have the reproducing kernel

1-—-2w = i
K(z,w)= A-2i-a) > ai(zm),
where {a;} is a nondecreasing sequence of positive numbers. Suppose there
are constants vy > 0, v2 > 0 and v3 > 0 such that for allm > 1,

i=0

(3) N < bim bk <2, k=0,1,...,
where b = ap, bi =g, —4g—1, k>0, and
(4) E7R:1'n+1/bk:'m. < s, k= 0,1,..‘

If M € {A™} for somen > 1 and MA — AM € Bo(H), then M is a
maultiplication operator with an analytic symbol.

Proof. Note that

1= N 1ozt
K(z,'w) = Wgai(zw) = m gai(?ﬁw)

Z 1 > . bt o0 ) '
- (l -z + Tﬁ) Z“i(z"@”)" = ( Z [T Z z”) Zai(zﬁ;)z
i=0 m=1 o =0
o> oo oa
= Z Z a AT Z Z gy e

3= m=1 t=0) A=

If we denote the matrix of K (z,w) by C = (a@-,-),?‘}ao, then

Qiitm =ay, 1=0,1,2,..., m= 1,2,...,
n=0,1,2 ...

Hence a;; = a; for § > ¢ and C is symmetric. The matrix C has {ag, ay,
az,...} on its main diagonal and the same thing as its subdiagonals and

Qitn,i = Gg, i=011:2)-~-3
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superdiagonals. Now if we write C = U*U with upper triangular matrix U,
then the nonzero entries in each row of U are equal. Suppose the entries in
the tth row of U are b;. In fact

2 __ 2 _ 2
bo—ao, bl—al—ag, bzza.g—a.l,

Now by Corollary 1.2 and considering the orthonormal hasis {en}y for 12

the set . o
{Zbozi,...,Zbkzi-i-k,...}

=0 =0
is an orthonormal basis for H. For simplicity let fo = Y o0 z°. Then the set
{fo,2f0,2%f5, ...} is an orthogonal basis for H. It is clear that ll2* foll = =
be. For i =0,1,...,n—1let

o0
H; = V{zkn+zf0}-

k=0
Then A”Hi C Hyfor i =0,1,...,n—1and H = Hy ... @ H,_1. We
denote by A} = A"|g, the restriction of A™ to Hj;, j =0,1,...,n— 1. Now
similar to the notations in Theorem 2.2 fori =0,1,...,7 — 1 we define

Vi: H — H; by Vi(2"fo) = 2" f,.
The boundedness of V; follows from (3). We now have
AFV;(2* fo) = AF(2*¥73 fo) = ZBE0nH £ = V3 (2R 1) = V A(2" fo).

Therefore A7V; = V;Afor j=0,...,n—1. Let V=V;@&V1®... V1. Then
Vmaps H&...® H intc Ho®...® H,_1 and we have A*V = VA, Hence
T € {A™} if and only if TV A, = A™TV. Now if M = (M;;)772, € {A"Y,
where M;; : H; ~» H;, then after some calculation we have M;V; = ViLyy,
where L;; is the operator of multiplication by ¢;; for some analytic function
©i; = 3, Gm2™. We now have

ViLi; (2" fo) = Vi{wij 2" fo) = V@( Z amz™ - Z zk+m)
m=0 m=0

_ V](Z i alzk+l+7’n) -

Jz==() n=0

(S ()

me=={ m=0

o0
o Z SEHntidtm

co

o~

oQ

(z—j Z e zmn+z’) ( i zkn+j+m)

m=0 m==0

(z—j X_zoamzmn+i) (zkn-{-jfo) — %Ti(zkn+jfo),

Ul

8
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where th;; = > _ am2™" . Therefore,

(Vili)(f) = Q'b—i-"(lf}-f) for f € H.

zd

Now using the same idea as in Theorem 2.2 we can complete the proof.

EXAMPLE 2.6. If a; == ¢ -+ 1 in Theorem 2.5 then

1

(1 —2)(1 —T)(1 —w2)
and U = (U;)85-q, where Uy; = 0 for i > jand Uy = 1for i < 4. So
{z"/(1—2) : n > 0} is an orthogonal basis for H.

The authors would like to thank the referee for several helpful comments
and a careful reading of the article.
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A class of I-preduals which are
isomorphic to quotients of C(w*)

by
TOANNIS GASPARIS (Stillwater, Okla.)

Abstract. For every countable ordinal a, we construct an lj-predual X, which is
P w™+2 . B N
isometric to a subspace of C{w® ) and isomorphic to a quotient of C(w®). However,
X is not isomorphic fo a subspace of C(w®”).

1. Introduction. The study of quotients of C'(«), for @ a countable or-
dinal, is closely related to the problem of the isomorphic classification of the
complemented subspaces of C[0,1]. Indeed, every complemented subspace
of C[0,1] is either isomorphic to a quotient of C(a) for some o < w; (see
[4]), or isomorphic to C[0,1] (see [11]).

According to a result of Johnson and Zippin [8], every quotient of C{w)
is isomorphic to a subspace of C(w). A natural question which arises then
is if such a phenomenon occurs in C'(a) for every o < wy. Alspach [1] gave
a negative answer to this question by exhibiting a quotient of C(w*) which
is not isomorphic to a subspace of C{a) for any o < w;.

Alspach’s example left open the following question: Suppose X is isomor-
phic to a quotient of C'(w*) and that there exists a < w; with X isomorphic
to a subspace of C(a). Is X isomorphic to a subspace of C{w*)?

In this article, we answer this question in the negative by proving the
following:

THEOREM 1.1. For every countable ordinal o, there exists an l1-predual
spoce Xy with the following properties:

1. X4 i5 isomorphic to a quotient of C(w™).
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