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Measures and lacunary sets
by
PASCAL LEFEVRE (Lille)

Abstract. We establish new connections between some classes of lacunary sets. The
main 00l is the use of (p, ¢)-summing or weakly compact operators (for Riesz sets). This
point of view provides new properties of stationary sets and allows us to generalize to more
general abelian groups than the torus some properties of p-Sidon sets. We also construct
some new classes of Riesz sets.

1. Introduction, notations and definitions. In the first section, we
make precise the framework of this paper.

In the second section, we give some imequalities satisfied by measures
whose spectrum contains either a stationary set (Introduced by G. Pisier in
[P-1]) or a p-Sidon set, and the remaining part of this spectrum is a A(1) set
in a general setting or N in the setting of the torus. We cbtain some Fourier
multiplier properties for these measures.

The study of the behaviour of their Fourier coefficients leads to the con-
struction of some new sets of continuity. This is done in the third section.

In the fourth part, we give a partial connection between stationary sets
and A(2) sets.

In the fifth part, we study a subclass of p-Sidon sets. This provides some
Banach type condition for p-Sidon sets to contain products of two infinite
sets.

In the sixth part, we construct new Riesz sets. We notice that CUC
sets are Riesz sets. We extend results of F. Lust-Piquard (¥Yco & C4(G) =
A is Riesz”}, W, Rudin (“E C N is a A(1) set = Z~ U F is Riesz”) and
Y. Meyer (“If E is the set of squares or the set of prime numbers, then
Z~ U E is Riesz"). :

Let & be an infinite metrizable compact abelian group, equipped with its
normalized Haar measure dz, and I" its dual group (discrete and countable).
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146 P. Lefévre

G will mostly be the unit circle of the complex plane and then I' will be
identified with Z by p + ep, Where ey(xz) = 7%,

We denote by P(G) the set of trigonometric polynomials over G, i.e. the
set of all finite sums . a7, where ay € C.

We denote by C(G) the space of complex continuous functions on G,
with the norm | f|lco = Supyeq |f(z)]. This is also the completion of P(G)
for ||- feo-

M{G) denotes the space of complex regular Borel measures over G,
equipped with the total variation norm. If x € M(G), its Fourier trans-
form at the point -y is defined by G(v) = {, v(~z) du(z).

LP(G) denotes the Lebesgue space L? (G, dz) with the norm

2 (Js@ra)”, 1gp <o
P G

esssup | f(z)], p=ooc.

The map f — fdz identifies L}(G) with a closed ideal of M(G) equipped
with the convolution.

If B is a normed space of functions on G which is continuously embedded
in M(Q), and if A is a subset of I', we define

By={feB|fly)=0, ¥y ¢ A}.
This is the set of elements of B whose spectrum is contained in A.

(g4)yer denotes a Bernoulli sequence indexed by I', i.e. a sequence of
independent random variables taking values +1 and —1 with probability
1/2. Moreover, (g,)yer stands for a sequence of centred independent com-
plex gaussian random variables, normalized by E|g,|? = 1, where E denotes
expectation.

|E| denotes the cardinality of the finite set F and E° the complement
(inIMofEBCTI.

We use notions which are standard in the framework of Banach space
geometry, referring to [D-J-T] or [W] for the definitions of cotype, (p, ¢)-
summing operators, etc. We nevertheless specify that we use the property
(V) of Pelcayriski in the following form (see [W] for the equivalent definition):

DEeFINITION 1.1. A Banach space X has the property (V) of Petczynski
if, for every Banach space Y and every operator T : X — ¥ which is not
weakly compact, there exists a subspace Xj of X isomorphic to ¢p such that
1| x, is an isomorphic embedding,.

We also use the property (V*) of Pelezyaski in the following form:

DEFINITION 1.2. A Banach space X has the property (V*} of Pelezynski
if, for every Banach space Y and every operator T : ¥ — X which is
not weakly compact, there exists a complemented subspace ¥ of ¥ and a
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complemented subspace Xy of X isomorphic to £* such that Ty, : Yo — Xo
is an isomorphism.

Let us now recall some classical definitions of lacunary subsets of I

DEFINITION 1.3. Let 1 < p < 2. A subset A of I' is a p-Sidon set if there
exists a constant C' > 0 such that for any f in PA(G),

- 1/p
(S 1Fr) ™ < il
AEA
The best constant C is called the p-Sidonicity constant of A and is de-
noted by Sp(A)} (see for example [B] or [B-P]). Obviocusly, a p-Sidon set is
a ¢-Sidon set for ¢ > p. If A is a p-Sidon set and not a ¢-Sidon set for any
g < p, then A is called a frue p-Sidon set.
For p = 1, this is in fact the notion of Sidon set. For a deep study of
such sets, we refer to {D-G], [L-R] or [P-2].

DErFINITION 1.4. A subset A of I' is dissociafed if for every sequence

(ry)yea € {—2,...,2}" with almost all n, equal to zero,
qu”“fﬂl:#\f'yGA:'y”‘fml.
YEA

‘We recall that if A is dissoctated, then it is a Sidon set.

DermNiTION 1.5. Let (Fy)v>o be an increasing sequence of finite subsets
of I" such that | J7_, Fiv = I. A subset A of I' is a set of uniform convergence
relative to (Fy)y>o (for short, a UC set) if for all f € Ca(G), (Swfwzo

converges to f in Ca(G), where Snf =3 _cp, f(7)7.
For such a set, the UC constant U(A) is
U(A) = sup{[Sx(fllleo | f € CA{G): |fllo =1, N 2 1}.

REMARK 1.6. This notion depends on the choice of (Fn)n>o- Here we
shall be interested in the case & = T, where the natural choice of (Fx)nzo
is Fy == {~N, ..., N}. For a (non-exhaustive) survey on UC sets, one may
read [L1j.

DEFINITION 1.7. A subset A of Z is a CUC set if it is a UC set such that
$UPyez U (p+ 4) is finite, i.e.
sup{ | Sm,n{Hiles | f € Ca(G), Iflloo =1, myn 21} < oo,
where Smnf = 2 _m<i<n fl@)eq.

DEFINITION 1.8. A subset A of I' is a set of continudty if for every e > 0,
there exists 8 > 0 such that for every p € M(G) with ||p)| = 1,

T [A(r)] < & = Fgp [A{m)| < =
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The relations between sets of continuity and some other thin sets (in
particular, UC, A(1)}, p-Sidon) were studied in {F-P].

DEFINITION 1.9. A subset A of I' is a Riesz set if Ma(G) = L (G). More
precisely, this means that, given any u in M4(G), there is some h in L' (G)
such that 2(~) = Ji(y) for all v in T".

More about Riesz sets can be found in [L-P] or [Go].

DEFINITION 1.10. Let 0 < p < 0. A subset 4 of I' is a A(p) set if there
exists ¢ € ]0, p{ such that L%, (G) = LY (G).
This implies that L% (G) = L7 (@) for all r € 10, p[.

REMARK 1.11. For p > 1, this is equivalent to: every measure y € M4 (G)
actually lies in L% (G).

We recall that, if A is a A(1) set, then there is some p > 1 such that 4
is a A(p) set. Thus, A is a A(1) set if and only if L} (@) is a reflexive space
(see [B-E]).

Let us introduce the following norm on P(G), called the C*% norm
(“almost surely continuous™ ):

M 111=§ | 3 evt@)Fnn|_ape).
2 qer

REMARK 1.12. By [M-P}, replacing the Bernoulli sequence (&v)ver by a
gaussian sequence (g,)yer gives an equivalent norm on P(G).

(@) is, by definition, the completion of P(G) for the norm [-]. This is
also the set of functions in L?(G) such that the integral in (1) is finite, or the
set of functions in L*(G) such that, almost surely, £, (w)f(7) = F¥(~) with
J“ in C(G) (for the equivalence between the quantitative and the qualitative

definition, we refer to [K]); C**(G) is also called the space of almost surely
continuous random Fourier series. .

DEFINITION 1.13. A subset A of I' is stationary (for short, A € S) if
there exists C' > 0 such that, for all f € P4(G),

71 < Cllflleo-
The best constant C is called the stationarity constant of A and is denoted
by Kg(4).

& obviously contains the Sidon sets and G. Pisier showed that S contains
all finite products of such sets. & is thus strictly larger than the class of Sidon
sets because it is well known that a Sidon set cannot be the product of two
infinite sets. ‘

J. Bourgain [Bo] proved that if Ay and A, are infinite then
Ar x Ay GS{'—‘)Al,Az & SﬂA(Z).
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Some new properties of the class S are studied in [L.2], and & is compared
to some other classes of lacunary sets.

2. Measures with lacunary spectrum and Fourier multipliers.
We now give some properties of measures with lacunary spectrum containing
either a stationary or a p-Sidon set. This is done in terms of multipliers
and we deduce some information on the behaviour of the Fourier-Stieltjes
coefficients of such measures.

In the following, X denotes any Banach space of functions on @, with
cotype 2, which admits the characters as an unconditional basis and has the
following property:

There is some function ¢x : N — RT such that lim;—,., ¥x (z) = co and

(2) for all finite A C I H Z’YHX 2¢X(|A|)“ Z"y||2.
YEA vE€A

An X-get is a subset A of I" such that C4(G) is canonically and contin-
uously embedded in X. Property (2) of X will be used in Lemma 2.5 and
in Theorem 3.2.

An example is X = C*%(G)} in which case an X-set is exactly a station-
ary set. C** (@) has cotype 2 by [P-1] and (2) is a corollary of the following
inequality for the C® norm ([L2]).

Let P € P(G); for § > 0, set B = {y € I' | |P(v)| > 6} and N; = |Es].

Then
[P] > ed+/Nslog N

{where ¢ depends neither on P nor on §)

Another example is given by the closure of the polynomials for the £
norm (p < 2} of their coefficients: || P}| = ||P!|p. Then the X-sets are p-Sidon
sets. We clearly have (2).

We now study some multiplier inequalities.

THEOREM 2.1. Let A be an X-sef and let A C I' be o A(1) set. Then

there exists ¢ > 0 such that for every measure 1 in Maua(G) and every h
in L2(G),

(3) H; RO < el [l

This means that, for every measure p € Maua(G), the function i1, defines
a bounded multiplier from L*(G) to X.

Proof We use the following theorem due independently to Kislyakov
and Pisier (cf. Th. 15.13, p. 316 of [D-J-T]), where § denotes a subspace
of O(G): “If the quotient C(G) /8§ is reflexive and X has cotype 2 then any
operator T': § — X is 2-summing”.
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This is applied to § = Cac(G), observing that the dual of C(G)/Ca:(G)
is Ma(G@) = LL4(G) (recall Remark 1.11), which is reflexive, hence
C(G)/Ca<(G) is reflexive too.

Now fix 1 in Maua(G) and take T = T, defined by

Caa(G) = X, [ uxf
This operator is bounded because for all f in Cae(G), f * p lies in Cy(G)
and A is an X-set. Moreover, ||T,/} < K||u|, where K denotes the norm of
the embedding of C4(G) into X.

T,, i therefore 2-summing and the Pietsch factorization theorem provides
us with a constant C’ and a probability measure v on G such that, for every
hin Cye(G),

1/2
ITuW)x < C'llel (§ 1a) Paviz))
G
Actually, we can choose dv = dz. Indeed, the unconditionality of the

characters for the norm in X provides a constant & such that for every
g € Gand h € Cue(G),

T (% < EITulhe) % < RO |ul)? § Rz + g) | dv ().
a
We integrate the previous inequality over @ o obtain, via Fubini’s theorem
and the unconditionality of the characters in L*(@®),

| Tu (W) < KO |ul)? § 1ol div(a) = R(C[ll)? § I3 dv(z)
2] &
= k(C"ull)*[IRl3.
We conclude by using the density of Cae(G) in L2 (G). w
In the case of the torus, we get a stronger result.

THEOREM 2.2. Let A be an X -set included in N. Then there exists ¢ > 0
such that for every measure p in My z-(T) and every h in L2(T),

(4 || %mz\)ﬁ(/\)/\ux < el 1Al

This means that, for each measure pu € My 5-T, ila defines a multiplier
from L¥(T) to X.

Proof We give two proofs.

First method. We use the following generalization of the Kahane-Katz-
nelson—de Leeuw theorem due to Kislyakov.

There exists ¢ > 0 such that for every h & £2 (N), there exists f € A(D)
such that
(5) [ flloo < elfhl],

\J?(’Y)J > |hy| forall yeN.
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Fix h in £ and p in Mgz (T), and let f € Cn(T) = A(D) be as in (5).
~ Wehave px f € Ca(T) and {lu* flloo < (] - | flloo < ellie]i - [I2]]2- As A
is an X-set, this implies ||u« fi|x < C|lu| - {|hl|2 for some copstant C > 0.
On the other hand, using the unconditionality of the characters in X,

we have

e flx = | 3 AR
AEA
Hence

|0 AR < 200 - A2
AEA

Second method. We use a theorem which is due to Bourgain ([W], p. 305):
every bounded operator from A(D) to a cotype 2 space is 2-summing.

Hence the operator 7, introduced in the proof of 2.1, is actually 2-
summing. The proof ends as in Theorem 2.1. =

In the particular case of stationary sets, we immediately get the following
two corollaries:

COROLLARY 2.3. Let A be a stationary set and let A be either o A(1)
set (for any G) or Z~ {when G = T). Then there exists ¢ > 0 such that for
every measure p in Maya(G) and every b in L*(G),

(6) [ = A0RGA] < ellul - 1Bz
AeA

Concerning p-Sidon sets, in the case of the torus, we obtain a new proof
of an inequality due to Fournier and Pigno [F-P], which was based on an
inequality of Edwards and a multiplier inequality of Stechkin. In a more
general setting, we get the following corollary:

COROLLARY 2.4. Let A be a p-Sidon set and let A be a A1) set. Set
r = 2p/(2 —p). Then, for every measure i1 € Maua(G),

- 1/r
(") (32 mor)™ <dlul
. Aed
where ¢ depends only on A and A.

Proof The previcus results on X-sets applied to p-Sidon sets provide
¢ > 0 such that for every u € Msua(G) and every h € L¥(G),

(3 BOROFY ™ < el - Il

AEA |

Now, £7 is exactly the space of multipliers from £* to £7. w
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LEMMA 2.5. Let A and B be subsets of I' such that there exists ¢ > ()
such that for every p € Maup(G) and every h € L*(G),

) | 32 2RO, < el - 1l
AEA

Then for every p € Maup(G),

©) vx(lr € A | ()| 2 8})) < k|l /5

where k depends only on the constant ¢ in (8).

Proof Let p € Myup(G) and § > 0.
Set A5 = {y € A||fi(v)| 2 8}. Let A} be a finite subset of A;. Observe
that

1
fo= (2o VELHO) and [fla=1.

v €A}
The hypothesis leads to ||u * f]lx < ¢||u|. Since for every v & A,

px fy) = mﬁwﬁh’): as A is an X-set, we get the inequality (where ¢/
depends only on ¢)

lles * Fllx = &dnfrx (| Aj)).

Hence k| u}j > dtpx ({A]]). Taking the upper bound over all finite subsets As
of As, we conclude that A itself is finite and

Rllpell = 8t x (| 46])-
This proves (9). m

3. Applications to sets of continuity

DEFmNITION 3.1. We say that an infinite metrizable abelian compact

group & has the property D if any infinite subset of I" = (¢ contains an
infinite dissociated subset.

This essentially means that we discard the case where the set {7V |
€ I'} is finite. '

By [P-P), if A is either a UC, a p-Sidon or a A(1) subset of N, then Z~ UA
is a set of continuity. We prove a similar result for stationary sets. We also
study the case of an infinite metrizable ahelian compact group having the
property D and show that the union of a A(1) and a stationary subset (resp.
a p-Sidon subset) of I' is again a set of continuity. This follows from part 2.

We state all results for p-Sidon sets or stationary sets but the statements
and proofs actually remain valid for any X-set.

We use the following principle essentially contained in [F-P).

THEOREM 3.2. Let A and B be subsets of I' (where I = G has the prop-
erty D) such that B is a set of continuity and there is a strictly increasing
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Junction ¢ from N to R™, tending tv co, such that

(10)  Vu e Maup(G), ¥6>0: o(l{ye Al = 63 < |lull/s.
Then AU B is a set of continuity.

We get some new classes of sets of continuity.

THEOREM 3.3. Let A be a stationary subset of I' (where I’ = G has the
property D), and let B be either a A(1) set or Z~. Then AU B is a set of
continusty.

Proof. Corollary 2.3 and Lemma 2.5 lead to (9) with A a stationary
set and B a A(1) set or Z~. So, the hypothesis (10} of Theorem 3.2 is
satisfied with ¢(¢) = C(logt)*/? where C' depends only on A and B. As Z~
(by the classical Katznelson~de Leeuw theorem) and every A(1) set are, in
particular, sets of continuity, Theorem 3.2 concludes the proof. »

For p-Sidon sets, we get:
THEOREM 3.4. Let A be a p-Sidon subset of I' (where F = G has the
property D), and B a A(1) set. Then AU B is a set of continuity.

Proof. Corollary 2.4 and Lemma 2.5 lead to (9) with A a p-Sidon set
and B a A(1) set. So, hypothesis (10) of Theorem 3.2 is satisfied with ¢(t) =
Ct/P=1/2 where C' depends only on A and B. As B is a A(1) set, it is, in
particular, a set of continuity. Theorem 3.2 concludes the proof. m

In the special case of the torus, we get a result which is already contained
in [F-P]: the union of a p-Sidon subset of N and Z™ is a set of continuity.

4. Spreadable stationary sets and A(2) sets. These notions are
inspired by the following one due to [M-P].

DEFINITION 4.1. Let A be a subset of I'. A disjoint family {5} of subsets
of A is a Sidon partition of Aif | J; T; = A and there is some constant C' > 0
such that, for every choice of o; in Xj, the set {0;}; is Sidon with a Sidon
constant hounded by C.

We recall the following:

TueoreM 4.2 ([M-P], p. 131). If {Z;}; is a Sidon partition of A C T
then there emists M > 0 such that, for every h € C**(G),

S tihgle < MI[Zhj]l with hj= 3 M)A
) i AEZ;
‘We introduce a subclass of stationary sets.

DeriNITION 4.3. A subset A of I' is spreadable stationary if there exists a
constant € such that, for every family of finite subsets A; of A, there exists
a stationary set S, with stationarity constant less than C, and characters
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7v; such that {y;A;}; is a Sidon partition with constant less than ' and
v;idi © 8.
REMARK 4.4. A sufficient condition for 4 to be a spreadable stationary

set is that there exists an infinite subset H of I' such that H - 4 is again
gtationary. Of course, any spreadable stationary set is stationary.

A natural problem arising from Bourgain’s theorem ([Bo]} on the product
of stationary sets is about the link between stationary sets and A(2) sets.
We are able to answer this question in the setting of spreadable stationary
sets.

THEOREM 4.5. Any spreadable stationary set is a A(2) set.

Proof. Consider a finite family of polynomials f; with spectrum A; in-
cluded in A. By hypothesis, we get a constant C and characters v; such that
{7;4;}; is a Sidon partition. There exists a stationary set S with constant
less than €' containing the spectrum of each polynomial ; f;. So, we get

[[Zm]] <C s | Zemng =C st 3 e fi(a)
< O:gg; fi(@)]-
Now Theorem 4.2 provides €’ such that
Sl =Y vt < [ S ws]-
J J g
So we conclude that
> il < COsup 3 |f5(a)].
] red P

This means that the formal inclusion of C4(G) in I*(@) is l-summing,
Using the Pietsch domination theorem and the translation invariance as in
Theorem 2.1, we get the result. u

5. SBpreadable p-Sidon sets. We introduce the notion of spreadable
p-Sidon set.

DEFINITION 5.1. A subset A of I' is spreadable p-Sidon if there is some
constant C such that for every family (A;); of finite subsets of 4, there are

characters -y; and a p-Sidon set B, with S,(E) less than C, such that the
sets v;A; are disjoint and included in E.

REMARK 5.2. A sufficient condition is the existence of an infinite set H

such that & - A is a p-Sidon set. Obviously, any spreadable p-Sidon set is
p-Sidomn.
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NOTATION. Let A be a p-Sidon set. We denote by j4 the operator
Ca(G) =,  hrh,
whose norm is §5(A4) by definition.

THEOREM 5.3. Let A be a spreadable p-Sidon set. Then j, is (p,1)-
summing.

Proof. Let (f;)1<;<n be a finite family of polynomials € C4{G). There
exist characters hi,..., R, in I' and a p-Sidon set E such that the polyno-
mials hy f; have disjoint spectra (because of the spreadable character of A)
included in E. The p-Sidonicity of F gives

[( X ws), < SP(E)H;%HW < 5B 31

1<7<n

As the spectra of the polynomials b, f; are disjoint,

(2 m) "= (2 1mm) " = 3

1<48n 1<i<n

hifs) Hp

So
(3 tian) " < 8B s 3 1sal
1€5€n 1<J <n

This proves the result. =

REMARK 5.4. With Remark 5.2 and the previous theorem, we get a
Banach type condition for a p-Sidon set A to contain the product of two
infinite sets A and B: j4 and jp are (p,1)-summing, with (p,1)-summing
norm dominated independently of A and B (but obviously depending on A).

Using the (p, 1)-summing point of view, we recover an old result on
products of p-Sidon sets which is very easy to prove using Walsh matrices.

Conversely, the matrix point of view does not seem to imply (p, 1}-summing
properties.

COROLLARY 5.5 ([L-R}). Let A be a p-Sidon set, end let A and B be
infinite subsets of I' such that A- B C A. Thenp 2 4/3

Proof. By Remark 5.4, the following lemma proves the claim.

LemMA 5.6. Let 1 < p < 4/3. There is no infinite set A such that ja is
(p, 1)-summing.

Proof. Suppose the existence of such a set A. We give two proofs.

(p, q)-summing point of view. As p < 4/3 implies p/(2 — p) < 2, we may
choose a real ¢ such that p/(2 —p) <g <2
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The injection 4 from £ to £7 is ((1/p + 1/2 ~ 1/g)™*, 1)-summing (cf.
Th. on p. 209 of [D-J-T]). By a theorem of Kénig, Retherford and Tomczak-
Jaegermann (p. 208 of [D-J-T1), the composition 7o j4 is 2-surmming,

By the Pietsch domination theorem and the translation invariance of the
operator ¢ o jq, we get fii o ja(h)|lq < C|lh||2 for every A in C4(G), which

extends by density to every h in L% (G).
This is clearly impossible for ¢ < 2.

Elementary point of view: Walsh matrices. Given an arbitrary integer n,
select n distinct characters aq,...,a, in A. For 1 <5 <n, we define

f= i L (R
3 o \/ﬁ P n o
The polynomials f; have spectra included in A. For every ¢; of modulus 1,

H 2 Ejfju - ii%exp(%&@)qak

1<j<n o J=1 k=t
< {eHl2 sup [[{ar{z)}]2 = n.
e

oQ

As j4 is (p,1)-summing,

n2/P=1/2 _ (i nl—P/2)1/p = (i HEH@)UP <Cn
J=1

j=1
for arbitrary n, hence p > 4/3. »

We add an immediate corollary of Theorem 5.3.

COROLLARY 5.7. Let A be o spreadable p-Sidon set and € Mu(G).
Then o defines a Fourier multiplier from the Lorentz space LPYQ) to 7.
In particular, u defines a Fourier multiplier from LT (G) to £2, for anyr > p.

Proc.>f. It suffices to compose j4 with the convolution operator defined
by 4 acting from C(G) to O4(G) and use [D-J-T], Th. 10.9, p. 204. u

6. Riesz sets. The proof of the following theorem is very easy but we
have not been able to find any reference to it.

THEOREM B.1. Buvery CUC set in Z is o Riesz set.

Proof Let 4 be a CUC set. Then there exists a measure & on T such
Fél&}%ﬁ(n) = 0 for every n € ANZ™, and 8(n) = 1 for every n € ANN (cf.
Given 1 in M4(T), the measure & + 41 is in M(T). As N is a Riesz set,
there is some f in L* such that f(n) = &' u(n) for every n € Z, A fortiori,

-

f(n) =7{n) for every n € N.
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Hence, f — p lies in M3 (T) and in the same way {Z~ is a Riesz set),
there is some g lying in L* such that §{n) = (f — #)(n) for any n in Z.
Therefore i=f+gand f+ge L' u

REMARK 6.2. When A is a CUC set, the previous proof actually shows
that the Hilbert transform is bounded from M, (T) to H. Hence, for every
measure p with spectrum in 4,

’u,"'m E i(ne, and uoo= Z H(n)e. ., are in H*.
neANN neANZ—-

DEerINITION 6.3. X < L((@) has the property “cy ¢ X if X does not
contain any subspace isomorphic to ¢y, :

We shall exhibit some new Riesz sets. A theorem of Dressler and Pigno
states that the union of a Riesz set and a Rosenthal set 4 (i.e. one with
L7 (G) = Ca(@)) is again a Riesz set. We recall two Iongstanding open
problems in the theory of lacunary sets: '

(QL) If “cu ¢ Ca({G)?, does it follow that A is a Rosenthal set?
(Q2) If “co ¢ LP(G)", does it follow that A is a Rosenthal set?

(the converses of (Q1) and (Q2) are clearly true).

If we could find a Riesz set F and a set A such that cp ¢ Cu(G) and
LU A is not Riesz, we could get a counterexample to (Q1). The following
results, which generalize some classical ones on Riesz sets, show that we
have to turn down some situations.

THEOREM 6.4. Let A C I" have the property “co ¢ Ca(G)” and let E
be o Riesz set such thai Cg-(G) has the property (V) of Pelcayiski. Then
EU A is a Riesz set.

Proof. Fix pin Mgua(G) and f in LE.(G).

Consider the convolution operator U associated with p, acting from
Cre(G) to C4(G). Since Cge(G) has the property (V) of Pelczynski by
hypothesis, as Ca(G) does not contain cg, it follows that U is weakly com-
pact.

A fortiori, p * f defines a weakly compact operator L' — C(@), hence
w* f belongs to C(G); f € LE:(G) being arbitrary, u is a Fourier multiplier
from LE.(G) to C(G).

We then apply a theorem of Heard [He|: there exists g in LY(G) in-
terpolating [i on E°, that is, G(n} = f{n) for any n in E°. Therefore
w~g € Mp(G). Since F is a Riesz set, p — g € LY{G), and =g+ (1 — 9).
This concludes the proof. m

We deduce the following:
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COROLLARY 6.5. Let A C I have the property “co ¢ Ca(G)” and let E
be a A(1) subset of I'. Then E U A is a Riesz set.

Proof. First method. It suffices to prove that E satisfies the hypothesis
of Theorem 6.4. As the space R = Mg(G) is reflexive, F is a Riesz set and
as X = C(G) has the property (V) of Pelczyfiski, a result of G. Godefroy
and P. Saab (Th. IIL.4 of [G-S]) implies that R = Cg<(G) has the property
(V) of Pelczynski.

Second method. We give a self-contained proof. Tf EU A is not a Riesz set,
then there exists a measure i € Mgy (G) and a sequence (f,,) of continuous
functions spanning a subspace X of C(G) isomorphic to ¢y such that the
sequence (i * f,,) also spans such a subspace ([L-P], p. 71). We can choose
(frn) normalized.

The convolution operator defined by p acting from C'(G) to the quo-
tient space C(G)/C4(G) is weakly compact because it factors through the
reflexive space C(G)/Cge(G).

By a characterization of weakly compact operators from C(G) ([D-J-T],
Th. 15.2, p. 309), for every ¢ > 0, there exists N{e) such that for every
feXx,

e FIE < N Fll1 + &l flioo-

Hence we get a sequence 4, in C4(G) such that [|px fr, ~ Ay || oo converges
to 0. Indeed, the canonical injection from C{G) to L! is I-summing and
the weakly unconditionally Cauchy sequence in C(G), 3 f,, is absolutely
converging in L'(G). Then, for every & > 0, there exists an integer m such
that, for every n 2> m: || fu|l1 < N(e) ‘e and ||p* fn|| < 2e. Hence we can
choose a sequence 4, in C4(G) such that ||y * f, — Aplles < 2e for any
n > m, which was the claim.

Hence, there exists a subsequence of {Ay,),, which is equivalent to a sub-
sequence of (uxf). We conclude that C 4 {G) contains a subspace isomorphic
to cp. This gives a contradiction. m

In the case of the torus, we have the following generalization of a theorem
of F. Lust-Piquard.

COROLLARY 6.6. Let A C N have the property “cq ¢ Ca(T)”. Then
Z7 U A is o Riesz set.

Proof. It is well known that Cx(T) = A(D) has the property (V) of
Pelczyfski. On the other hand, the F. and M. Riesz theorem asserts that N
is a Riesz set. Theorem 6.4 gives the claim. m

REMARK 6.7. The converse is false: it is known ([Me]) that the union of

the set of squares and the negative integers is a Riesz set but cp ¢ Cin2) (T}
{[L-P2]).

icm
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We deal with the question {Q2). We consider the union of sets A satis-
fying the stronger condition “cy ¢ L (G)” with more general sets E than
in Theorem 6.4.

DEFINITION 6.8. F C I' is nicely placed if the unit ball of LL(Q) is closed
for the topology of convergence in measure. E C I' is a Shapiro set if every
subset of E is nicely placed.

We refer to [Go] for nicely placed and Shapiro sets. We recall that Shapiro
sets are both Riesz and nicely placed ([Gol).

THEOREM 6.9. Let A C I' hove the property “co ¢ L(GF)” and let E
be a Riesz set such that I (G)/LE(G) has the property (V*) of Petczyriski.
Then EU A is a Riesz set.

Proof. The idea is to dualize the proof of Theorem 6.4. Fix g in
Mzeua(G).

If f € L'G) and h € L} (@), then p* (f+h) = px f+pxh and pxh €
LY (G). Hence, the multiplier U defined by p, acting from LY{G)/L4.(G) to
LYMG)/LE(B), is well defined.

The space L*(G)/L%.(G) does not contain any complemented subspace
isomorphic to £, because this is equivalent (see [D], p. 48) to the property
“co ¢ LL(G)".

By assumption, the operator U is weakly compact. Fix a function A in

%.(G). The multiplier operator 7' defined by A acting from L'(G)/LE(G)
to C(G) is bounded (by | h|lc). Denote by S the canonical surjection from
LNGY to LY@)/L5:(C). The multiplier operator defined by p * h from
LMG) to C(G) is ToU o 8, which is also weakly compact. We conclude that
* h lies in C'(G), hence p is a multiplier from L% (G) to C(G).

The proof ends as in Theorem 6.4. m

COROLLARY 6.10. Let A < I' be such that “co € L (GQ)” and let E be
a Riesz set which is nicely placed. Then E U A is a Riesz set.

Proof, As F is nicely placed, L'(G)/LE(G) has the property (V*) of
Pelczyriski and we may use Theorem 6.9. Indeed, L' (@) and L%L(G) are
L-summands in their biduals (see [H-W-W] for precise definitions), hence
LNG)/IL(G) is itself an L-summand in its bidual (Cor. 1.3, p. 160 of
[H-W-W]). By a theorem of Pfitzner, every L-summand in its bidual has
the property (V*) of Pelezyhski (Th. 2.7, p. 173 of [H-W-W]). This proves
the claim.

The following result generalizes classical results of W. Rudin (for A(1))
and Y. Meyer [Me]:
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COROLLARY 6.11. Let E C N be either a A{1) set or the set of sums of
squares ({n? + m? | n,m € N}) or the set of prime numbers. Let A ¢ N
have the property “cq ¢ LF(T)”. Then Z~ U E U A is a Riesz set.

Proof. By [Go], if E is either the set of sums of squares or the set of
prime numbers, then Z~ U E is Riesz and nicely placed. When  is a A(1)
set, then Z~ U E is even Shapiro. m
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