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On Arens—Michael algebras which do not have
non-zero injective @-modules

by

A, Yu PIRKOVSKII (Moscow)

Abstract. A certain class of Arens-Michael algebras having no non-zerc injective
topological &-modules is introduced. This class is rather wide and contains, in particular,
algebras of holomorphic functions on polydomains in ", algebras of smooth functions on
domains in R™, algebras of formal power series, and, more generally, any nuclear Fréchet—
Arens—Michael algebra which has a free bimodule Koszul resotution.

One of the most general questions of homological algebra is the follow-
ing. Does a given category have sufficiently many injective and projective
objects? In this paper this question is treated from the point of view of
topological homology (a relative homological algebra in categories of topo-
logical modules over topological algebras). A certain “asymmetry” between
projectivity and injectivity for locally convex modules cver non-normable
algebras was noticed by J. L. Taylor [12]. It is remarkable that the original
motivation for Taylor's paper [12] was to develop homological tools, needed
for the construction of a multi-operator analytic functional calculus (see also
[13] and the recent book [3]).

This “asymmetry” can be expressed as follows. On the one hand, for
any additive category of locally convex spaces which satisfies certain nat-
ural conditions (see [12], [5]}, the corresponding category of locally convex
modules has sufficiently many projective objects. On the other hand, the
analogous question about injective objects is not so clear, and the reason
for this is a possible absence of so-called cofree objects in categories of lo-
cally convex modules over non-normable algebras (see [9]). The situation
is satisfactory only for Banach algebras: it is known that the category of
all Banach modules over a given Banach algebra has sufficiently many both
projective and injective objects (see [5]). In order to obtain sufficiently many
injective modules over a non-normable algebra A, one has to impose certain
rather specific (and rather disagreeable) conditions on the considered cate-
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gory of topological modules (see [12] and [1]). In particular, the action of 4
on some modules of this category fails to be jointly continuous, even though
the multiplication in 4 is jointly continuous.

The above question about injective modules was posed by A. Ya. Helem-
skii in {7]. More procisely, the problem was as follows. Does the category of
all left Fréchet modules over an arbitrary Fréchet algebra A have sufficiently
many injective objects? In the same paper it was conjectured that there ex-
ist Fréchet algebras which do not have non-zero injective Fréchet modules at
all. This conjecture was proved in [10] for Fréchet algebras C[[zy, . .., zn]] of
formal power series. However, the problem was open for semisimple Fréchet
algebras. In Helemskii’s paper [7), it was pointed out that the possible can-
didates for such algebras are Fréchet algebras of holomorphic functions on
domaing in C".

In this paper we prove this hypothesis and describe a certain class of
Fréchet algebras having no non-zero injective Fréchet modules. This class
contains Fréchet algebras of smooth functions on domains in R*, Fréchet
algebras of holomorphic functions on polydomains in C*, Fréchet algebras
of formal power series, and certain non-commutative algebras.

1. Preliminaries. Let us recall some definitions and fix some nota-
tion. Following Taylor (see [12]), by a & -algebra we mean a complete Haug-
dorff locally convex space (le.s.) A over C together with the structure of
an associative algebra such that the multiplication map Ax A — Ais
jointly continuous. We will often assume that 4 is an Arens-Michael alge-
bra, i.c., the topology on A can be defined by a family {l- 1l : ved}
of seminorms having the property ||abll, < llall.|bll, for all a,b € A. A
left ®-module over a ®-algebra A is a complete Hausdorff locally convex
space X endowed with the structure of a left 4-module such that the map
AxX - X, (a,z)—~a z,is jointly continuous. By replacing joint conti-
nuity with separate continuity, one obtains the definitions of &®-algebra and
®-module, respectively. Throughout the paper, all algebras and modules
are assumed to be unital, and all morphisms are assumed to be continu-
ous.

Let % be a complete additive subcategory of the category of all complete
Hausdorff 1.c.s.’s over C such that the following conditions are satisfied (sce

also [3]):

NI Ee%and F is topologically isomorphic to F, then F € %

2)If B € % and Ej is a closed subspace of E, then both Ey and the
completion of E/Eq belong to %;

A3) If E and F belong to &, then the completed projective tensor product
E® F also belongs to %. :
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In the sequel, we assume that such a category ¥ is given. If 4 is a &-
algebra whose underlying space belongs to €, then we denote by A-mod(%)
the category of all left ®-modules X over A such that the underlying space
of X belongs to €.

We refer to [5] and [12] for the basic notions in topological homology. If X
and Y are left ®@-modules over a ®-algebra A, then we denote by h4(X,Y)
the gpace of all A-module morphisms of X to Y. This space is endowed with
the strong topology, i.e., the topology of uniform convergence on bounded
sets. If Z is a right ®-module over A, then Z &4 ¥ stands for the projective
tensor product of Z and Y. By definition, Z ®4 Y is the completion of the
quotient space of Z® Y by the subspace generated by elements 2+ ¢ ® y —
z@a-y (x € Z, y €Y, a € A). The nth projective deriveAd functor of
ha(-,Y) (resp., ((Y®aY) is denoted by Ext(-,Y) {resp., Torj (-, Y)). (For
the general theory of derived functors in topological homology, see [5].) These
functors take values in the category of all (not necessarily separated) locally
convex spaces. If M is a @-bimodule over A, then the space 3™ (A, M) =
ExtT. (4, M) (resp., 7, (4, M) = Tor’" (4, M)) is called the nth Hochschild
cohomology (resp., the nth Hochschild homology) of A with coefficients in M.

Recall also the definition of injective module and the definition of injec-
tive homological dimension. An A-module @ € A-mod(%) is called injective
(with respect to ¥) if for each X € A-mod(%) and a closed submodule
Y < X which is complemented as a subspace of X, any A-module mor-
phism ¢ : ¥ — @ can be extended to an A-module morphism  : X — @,
i.e., the following diagram is commutative:

Yy ~isX
l Ve
@ e
P 2P

Here i is the canonical embedding of ¥ into X.

The injective homological dimension of an A-module @ € A-mod(%) is,
by definition, the least number n such that Exth(X,Q) = 0 for all X €
A-mod(¥) and all p > n, or, equivalently, Ext}"’l(}(, Q=0 for.all X e
A-mod(%#); it is denoted by injdh, @. If such an n does nf:t .e:‘:ust,' th«?n
it is convenient to put injdh, Q@ = co. It is known that @ is injective iff
injdh, @ = 0 (see [5]).

If A is a Banach algebra and % is the category of all Banach spaces,
then the injective homological dimension of a module @ € A.-mod(‘f) can
be equivalently defined as the least n such that @ has an injective resolution
of length n. In the general case, however, the category A-mod(%) may not
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possess sufficiently many injective objects, so we have to use the former
definition.

Suppose F is a left Banach module over a &-algebra A, and F is an ar-
bitrary left @-module over A. Consider the space #(E, F) of all continuous
linear maps of E to F. This is a complete locally convex space with respect
to the topology of uniform convergence on the unit ball of E. This space
has a natural structure of a ®-bimodule over A; namely, the action of A is
defined by the formulas

(a-p)(x) =a o), (p-a}(z)=plo-z) (peL(E,F), s€E, a€A).

‘We shall use the following result, which is a special case of Propositions 3.8
and 4.1 of [12].

PROPOSITION 1.1. Let A be a ®-algebra and B, F left &-modules over
A. Suppose A is either a Fréchet space or & barreled {DF)-spoce, and E
is a Banach space. Then there exist natural isomorphisms of veclor spaces
Ext}y (B, F) = #"(A, £ (E, F)).

Recall that an inverse system 2 = {X,,7¥, A} of topological spaces is
called reduced if for each v € A the image of the canonical map 7, : lim Z —
X, is dense in X,.. We use the notation of [2, 2.5] in the following lemma.

LEMMA 1.2. Suppose & = {X,,7#, 4} and & = {Y,., 7}, ,/1’} are in-
verse systems of topological spaces, and & is reduced. Let {p, fur} + & —
% be a map of inverse systems such that for each v/ € A the image of
the map fir @ Xyuny — Yo is dense in Y,:. Then the image of the map
f=1m{y, fis} is dense in lim &

Proof. Put X =lim 2 and Y =lim % It is known that the family

{r4(U) : Uy € Yy open, v’ € A’}

of sets is a base of the topology on Y (see [2, 2.5.5]). Therefore, it suffices
to check that 7. f(X) is dense in ¥ for all v/ € A'. Taking into account the
commutative diagram

f

X—=Y
thv')l l’nr
Koot TYV’
we obtain
T F ) = Fortpn(X) = For(roon (X)) = Tl Xpon) = Yo m

Let E and F be complete locally convex spaces. Consider the space
Ze(E,, F) of all linear continuous maps from the dual space £, equipped
with the Mackey topology, to F. It is a locally convex space w1th respect
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to the topology of uniform convergence on equicontinuous sets. Recall that
the Grothendieck canonicel mapping g : F & E —» %, (E., F) is defined by
gly®@z){(z') = (z',z)y. Since the strong topology on E’ is finer than the
Mackey topology, we have the natural embedding of Lc.s.’s

SL(BLF) C (B, F).
We also denote by g the composition of the above embedding with the
Grothendieck map.

Recall some standard notation {see [11]). Suppose U is a convex circled
0-neighborhood in a l.c.s. E and py is the Minkowski functional of UU. By
definition, put By = E/py (0) The completion of By with respect to the
quotient norm of the seminorm py is denoted by Ey. Let &y denote the
quotient map of E onto Ey. Further, if B C F is a convex circled bounded
subset, and py is the Minkowski functional of B, then put Eg = | J,, nB. This
is a normed space with respect to pp. The canonical embedding Ep — E is
denoted by ¥g.

Suppose u : E — F is a linear continuous map of Lc.s.’s B and F. For
each L.c.s. G, one has the induced natural linear map

us : Lol B, G) = La(Fp, G)
defined by the rule u.(p) = ¢ o v/. Obviously, this map is continuous.

LEMMA 1.3. Let v : E — F be o nuclear linear map of a Le.s. E to a
complete l.c.s. F. Then for each compiete l.c.s. G there exists ¢ natural linear
continuous map o ,Sf’e(Eﬁ, G)— G & F such that the following diagram is
commulative:

(B, G) ()

(1) \ /
GRF
Proof Since u is nuclear, there exist a convex circled 0-neighborhood

U7  E and a convex circled bounded set B C F such that u belongs to the
image of the canonical map

(EU), ®Fp — .’Z(F:’U,FB) — Z(E,F).

Take a preimage v € (EU) ® Fg of u under the above map, and put v ==
(@}, ® ¥5)(T) € Bz & F. Define o by the rule o(¢) = ¢ ® Lr(v). Obviously,
o : Ze(Ep, G) — G ® F is a linear map.

Take sequences {An} € C, {fu} C (Ey) and {§.} C Fip such that

'U = Z)\nfn ®yn:
n
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and 3 |An] €1, fn — 0, % — 0. Then
u=3 Anlfn.Yyn and o' =Y Au(,yn)fu

Here f, = f,, o ®y and y, = U5(7,). Evidently, the sequence {fn} C E' is
equicontinuous, and the sequence {y,} C F is bounded (cf. [11, 7.1]).
It follows from the definition of o that

(2) O'(C,D) = Z )\n(P(.fn) & Yr-
Hence,

ue{p)h) = (' (1) =3 An(ly yn)e(fn) = g0 (0)(R)

for each h € Fj. This proves that the diagram (1) is commutative.

It remains to prove that o is continuous. The space G ® F has a basis
of O-neighborhocds of the form I'(V ® W), where V and W are convex
circled 0-neighborhoods in G and F, respectively, and I'(V® W) is the
closed convex circled hull of the set VW = {v@w v eV, w ¢ W}
Take such a 0-neighborhood I'(V ® W). Since the sequence {y, } is bounded,
there exists A > 0 such that y, € AW for all n. Put D = {f,}. Then D is
an equicontinuous set, and

M(D,3"'V) = {p € L(E},G) : p(D) C A7V}

is a O-neighborhood in %, (Eg, G). We have ¢(f,) € A7'V for each ¢ €
M(D,A7'V), hence, @(fn) @ yn €V @ W for all n. It follows from (2) that
o(p) € I'(V ® W). Therefore, o(M(D,A\7'V)) C I'(V® W), and o is con-

tinuous. m

REMARK 1.1. Suppose that either G or F is isomorphic to a reduced
inverse limit of Banach spaces having the approximation property. Then the
Grothendieck map g: G@ F' — Ze(Ej, F) is injective (see [8, 43.2]), and
there exists a unigue map o such that the diagram (1) is commutative.

REMARK 1.2. Under the conditions of Lemma 1.3, suppose that E and
F are right Banach modules over a &-algebra 4, G is a left ®-module over
A, and u is an A-module morphism. Then the spaces % (E', &), Z(F', G)
and G® F' are ®-bimodules over A (see [5, I1.4.4, I1.5.15]), and it is easy
to check that u. and g are A-bimodule morphisms. It is natural to ask
whether o is an .A-bimodule morphism. Direct calculation shows that o is
a left A-module morphism. However, it is not clear if o is a right A-module
morphism. Indeed, one can easily check that the equality o(¢-a) = o(p) -0
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is equivalent to the following one:
‘P®1F(Z AnG - fn ®yn) = <P®1F(Z)\nfn®yn -a)
(p e _%’e(E}’B, G), a € A). Since u is an A-module morphism, it follows that
Y e frY¥n =Y An(fa e
n n

for all a € A. However, this does not imply that the elements

Zf\na" fn®yn and Z/\nfn@’yn *G
n n

of the space E'® F coincide. On the other hand, if the canonical map
E'® F — (B, F) is injective (this is true provided that either F or E'
has the approximation property, see [8, 43.2]), then these elements do co-
incide, and o is an A-bimodule morphism. Another sufficient condition for
& to be an A-bimodule roorphism is the injectivity of the canonical map
g: G®F — _%;(F[Q, G). This condition is satisfied whenever G is isomor-
phic to a reduced inverse limit of Banach spaces having the approximation

property.

2. Main results. Our main result is the following theorem.

TueoreM 2.1. Let A be o nuclear Arens—Michael olgebra such that the
underlying space of A is either a Fréchet space or o (DF)-space. Suppose
that there exists n € N such that the following condition holds:

(+) If M is o ®-bimodule over A such that H(A, M) = 0, then the
topology on the space H#5(A, M) is indiscrete.

Then the category A-mod(¥) does not contain any non-zero module Q such
that Ext(X,Q) = 0 for each left Banach A-module X. If, moreover, &
contains all Banach spaces, then injdh @ > n for each Q € A-mod(%).

Proof. Since A is an Arens—Michael algebra, it can be represented as
a reduced inverse limit of Banach algebras: A = ;ix_l_n{A,,,T,ﬁ‘,A} (see [6,
§.2.17]). Moreover, since A is nuclear, we see that for each v € A there
exists 4 > v such that the map 7# is nuclear. We endow each A, with the
structure of a right Banach A-module by putting a, -a = a,7v(a), where
a, € Ay, a € A, and 7, + A — A, is the canonical projection. Suppose
Q € A-mod(¥) is an A-module such that Ext(X,Q) = 0 for each left
Banach A-moedule X.

Since each complete nuclear (DF)-space is barreled (see [4]), we see that
A satisfies the conditions of Proposition 1.1. Therefore,
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KA, Z(4,,Q)) = Ext{(4,,Q) =0
for all v € A. This implies that the topology on 5% (A4, £ (A, Q)) is indis-
crete. By definition,
M (A, Z(4,,Q)) = Cokere,,
where the map
e, AR Z(AL,Q) — L(4,,Q)

is defined by the rule e,{a ® ¢) = @ - @ — ¢ - a. Hence, the image of the map
€, is dense in # (A}, Q).

For each v € A, take elements a(v) » v and 3(v) = a(v) such that

the maps 7’ ®) and 1'5 ((:)) are nuclear. Denote by o, (resp., cra(,)) the map

constructed in Lemma 1.3 for v = 75 () (resp., u = Tf((:)) ). We obtain the
following commutative diagram:

(rE8
g(A’a(y)ﬂ Q) ) "g(A,’G(V)J Q)

oy g
To{w)

QéAV Q®Aa(u)

lo@ 2
Taking into account Remark 1.2, we cannot claim that o, or Oa(v) Is an
A-bimodule morphism. However, 56, = o, © (Tf((s)))* is an A-bimodule mor-
phism. Indeed, since o, is a left A-module morphism (see Remark 1.2}, so
18 3g,. Further,
i @) = (el @) = 0 (7)) =
vi¥ v (Taguy) (- 0)) = v (7o) )4(0} - ) = o (900 (¥) - @)
= 0,(9{0ap) () - @) = 19 ® M (040 () - @)

=1 ® 7 (oap(9) - a = s(4) - a.
Hence, 5, is an A-bimodule morphism.

Note that the image of s, is dense in Q& A,. Indeed, since 2% has
dense image, the same is true for 1o ® 720, Tt follows from the left triangle
of the above diagram that o, also has dense image. Hence, the same is true
for o4(,) and for the composition s, = (1g ® r,?‘(”)) 0 Ta(u)-

For each v € A we obtain the following commutative diagram:

A@ g(A:@(,,)s Q)Eﬂ—(ﬂ—)g(i‘%@): Q)

14® ”ul l%v

ARQB A —F— Q8 A,
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Here the map &, is given by aQui—a-u—~1u - a.

Since thf image of £g(,,) is dense in _?(A;B{V), (), and the image of s, is
dense in Q & A,, we conclude that the image of &, is dense in Q@ & A,.. Using
the fact that projective tensor product commutes with reduced inverse limits
(see [8, 41.6]), we see that the map

FARQBA— QR4 a®u—a-u-—-u-a,
is the inverse limit of the maps &,. By Lemma 1.2, the image of £ is dense
in @ ® A. Therefore, the topology on the space

Coker& = J4(A4,QBA) = Torg (4,Q) = Q

is indiscrete. Since @ is Hausdorff, we conclude that Q =0. m

REMARK 2.1. It follows from the proof of Theorem 2.1 that one can
require the condition (*) only for A-bimodules of the form M = ¥ (E, F),
where E is a left Banach A-module and F € A-mod(%). In particular, if
A is a Fréchet algebra and % is the category of Fréchet spaces, then it is
sufficient to verify () for Fréchet A-bimodules.

Suppose A is a ®-algebra, A® = A& A°P is the enveloping algebra of
A. Recall that the diagonal ideal In C AS is the kernel of the canonical
projection m : A® — A, a®b — ab. We say that A has a free bimodule
Koszul resolution of length n if there exist central elements w1, ...,uUn € Ia
such that the Koszul complex K, (A% u1,...,Us) together with the canonical
projection 7 gives a resolution of the A-birnodule A:

0+— A& K (A%ur,. .., Un)-

COROLLARY 2.2. Let A be a nuclear Arens—Michael algebra such that the
underlying space of A is either a Fréchet space or a (DF)-spoce. Suppose
A has a free bimodule Koszul resolution of length n. Then A-mod(¥) does
not contain any non-zero module Q such that Ext} (X, Q) = 0 for each
left Banach A-module X. If, moreover, € contains all Banach spaces, then
injdh 4 @ = n for each non-zero @ € A-mod(¥).

Proof. Let us prove that A satisfies the conditions of Theorem 2.1.
Suppose K. = K.(A% 1, ..., us) is a free bimodule Koszul resolution of A.
Let M be an arbitrary ®-bimodule over A. Then

SP(A, M) = HP (hge(K,, M}) and (A, M) = Hyp(K, ® 4e M).
Tt is well known that the cochain complex K* ® 4e M is topologically iso-

morphic to hae (Ko, M)[n}, where the symbol [n] means that the complex is
translated to the left by n steps. Hence, ‘

S (A, M) = HP(K*§ o M) = H* P (has (Ko, M) = #777(A, M)
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for all p. By putting p = 0, we see that the conditions of Theorem 2.1 are
satisfied. In particular, injdh 4 Q@ > n provided that € contains all Banach
spaces. Since 4 has a free bimodule resolution of length n, we see that
Ext (E, F) = 0 for all left & modules E, F over 4 and all p > n. This
implies that injdh, Q@ < n for each @ € A-mod(¥). Finally, we get the
equality injdh, @ =n. n

3. Examples. Consider the following Arens—Michael algebras:

1. The Fréchet algebra. &{U) of holomorphic functions on a polydomain
U=l x...x U, CC"

2. The Fréchet algebra C°°(V) of smooth functions on a domain V < R?;

3. The Fréchet algebra Cf[z1,.. ., 2,]] of formal power series;

4. The (DF)-algebra #(K) of germs of holomorphic functions on a com-
pact set K = K7 x... x K, C C*, where K; C C.

All these algebras have free bimodule Koszul resolutions. This was proved
by Taylor [13] for cases 1 and 2. (For cases 3 and 4, the proof is analogous,
so we omit it.) Hence, these algebras satisfy the conditions of Corollary 2.2.

5. Consider the algebra ©(2) of “holomorphic functions in n free vari-
ables”, constructed by Taylor [13]. This algebra is defined as follows. Con-
sider the space Mj, of k x k-matrices over C. Let (2, = (M3)™ be the direct
product of n copies of M, and let 2 = Urey 25 be the disjoint union of
all ;. Consider the Fréchet algebra B(2) = [[p2, (2%, M.). By defi-
nition, the algebra D({2) consists of all elements f = (f) € B(2) that
satisfy the condition f;(a)m = mfi(b) whenever o = (ay,...,a,) € 2;, b=
(b1,...,bn) € 2 and a;m = mb; for some § x k-matrix m and all 7. Obvi-
ously, ©(§2) is a nuclear Fréchet-Arens—Michael algebra. Moreover, it con-
tains the free algebra C((1,...,{,) on n generators, where {; € D(£2) is

defined by (;(a1, ..., an) = a;. Taylor proved that D(f2) has a free bimodule
resolution of the form

0—D(2) ED()BD(N) & DMEDU)EC™ — 0

(see [13, 6.15]); here T(u®v) = uwv and §(uBVv D e;) = uGi®v — u® (.
Therefore, for each ®-bimodule M over D(£2) the space H#(D(12), M) is
the cokernel of the map

M—)M@Cﬂ’ 93""’2(37'@—(1"«’8)@6{,

i=1
and the space 5 (D(£2), M) is the cokernel of the map
MeC" — M, r@e - (o
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(see [13, 6.3]). Evidently, if the former map is surjective, then so is the latter.
Hence, S (D(2), M) = 0 implies that 5 (D(12), M) = 0. We see that the
algebra D (2) satisfies the conditions of Theorem 2.1.

Now we can specify the category ¥ in a suitable way depending on the
algebra we consider. Namely, in examples 1, 2, 3, and 5 we take the category
of Fréchet spaces, while in example 4 we use the category of complete bar-
reled (DF)-spaces. Certainly, in all these cases we can use the category of
all complete locally convex spaces as well. Then Theorem 2.1 and Corollary
2.2 imply the following.

CORCLLARY 3.1. There are no non-zero injective Fréchet modules and no
non-zero injective & -modules over the algebras &(U), C*(V), C[[z1, .. - znl]
and D(42).

COROLLARY 3.2. There are no non-zero injective barreled (DF )-modules
and no non-zero injective ®-modules over the algebra 6(K).

The author is grateful to A. Ya. Helemskii for valuable discussions.
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Ideals of finite rank operators,
intersection properties of balls,
and the approximation property

by
ASVALD LIMA (Kristiansand) and EVE OJA (Tartu)

Abstract. We characterize the approximation property of Banach spaces and their
dual spaces by the position of finite rank operators in the space of compact operators. In
particular, we show that a Banach space F has the approximation property if and only if
for all clogsed subspaces F' of co, the space F(F, E) of finite rank operators from F to E
has the n-intersection property in the corresponding space K(F, E) of compact operators
for all n, or equivalently, F(F, E) is an ideal in K(F, E).

1. Introduction. A subspace Y of a Banach space X is called an ideal
if there exists a norm one projection P on X* with ker P = Y (the an-
nihilator of ¥ in X*). A subspace Y of a Banach space X is said to have
the n-infersection property for some natural number n if for all families
{Byx(a;,7:)}7; of closed balls in X whose centers g; lie in Y,

ﬂ Byx(a;,r;) # @ implies ﬂ By (a;,r; +¢&) # 0 for all £ > 0.

gzl =1

Let E and F be Banach spaces. We denote by £(F, F) the Banach space
of all bounded linear operators from E to F, and by X(E, F), F(E, F), and
F(E, F) its subspaces of compact, finite rank, and approximable operators
(i.e. norm limits of finite rank operators). :

In [12]; A. Lima characterized the metric approximation property of
Banach spaces and their dual spaces by the position of finite rank operators
in the space of bounded linear operators. It was proved e.g. that (cf. [12,
Theorem 13]) for a Banach space F having the Radon-Nikodym property,
the following assertions are equivalent:

(a) E has the metric approximation property,
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