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Ideals of finite rank operators,
intersection properties of balls,
and the approximation property

by
ASVALD LIMA (Kristiansand) and EVE OJA (Tartu)

Abstract. We characterize the approximation property of Banach spaces and their
dual spaces by the position of finite rank operators in the space of compact operators. In
particular, we show that a Banach space F has the approximation property if and only if
for all clogsed subspaces F' of co, the space F(F, E) of finite rank operators from F to E
has the n-intersection property in the corresponding space K(F, E) of compact operators
for all n, or equivalently, F(F, E) is an ideal in K(F, E).

1. Introduction. A subspace Y of a Banach space X is called an ideal
if there exists a norm one projection P on X* with ker P = Y (the an-
nihilator of ¥ in X*). A subspace Y of a Banach space X is said to have
the n-infersection property for some natural number n if for all families
{Byx(a;,7:)}7; of closed balls in X whose centers g; lie in Y,

ﬂ Byx(a;,r;) # @ implies ﬂ By (a;,r; +¢&) # 0 for all £ > 0.

gzl =1

Let E and F be Banach spaces. We denote by £(F, F) the Banach space
of all bounded linear operators from E to F, and by X(E, F), F(E, F), and
F(E, F) its subspaces of compact, finite rank, and approximable operators
(i.e. norm limits of finite rank operators). :

In [12]; A. Lima characterized the metric approximation property of
Banach spaces and their dual spaces by the position of finite rank operators
in the space of bounded linear operators. It was proved e.g. that (cf. [12,
Theorem 13]) for a Banach space F having the Radon-Nikodym property,
the following assertions are equivalent:

(a) E has the metric approximation property,
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(b) F(F, E) is an ideal in L(F, E) for all Banach spaces F,
(c) F(F, E) has the n-intersection property in L(F, E) for all n and all
Banach spaces F.

The purpose of the present work is to characterize the approximation
property of Banach spaces and their dual spaces by the position of finite
rank operators in the space of compact operators. It will be shown eg.
that (cf. Theorem 5.1) for a Banach space E, the following assertions are
equivalent:

{a) E has the approximation property,
(b) F(F, E) is an ideal in IC(F, E) for all closed subspaces F' of cg,

(¢) F(F, E) has the n-intersection property in X(F, E) for all n and all
closed subspaces F of ¢p.

The approximation property for E* will be characterized similarly {cf.
Theorem 5.2). ' ‘

Our main Theorems 5.1 and 5.2 are formulated and proved in the final
Section 5, where we also present an elerentary (maybe the shortest) proof
for the classical fact that E* has the approximation property if and only if
F(E,F) = K(E, F) for all Banach spaces F. Section 5 is based on results
from Sections 2-4. In Section 2, we briefly deal with the notions of ideal and
n-intersection property, and with the relation between them. In Sections 3
and 4, using different methods, we investigate when the n-intersection prop-
erty of finite rank operators implies that compact operators are approx-
imable. In particular, we show that the n-intersection property of F (B, F)
in K(E, F) for all n implies the equality F(E, F) = K(F, F) whenever E*
is separable (Theorem 3.1), or one of the spaces E or F is reflexive (Corol-
lary 4.6).

Let us fix some more notation. We consider normed spaces over the real
field R. {Note that the proofs hold with some modifications for the complex
case as well.) In a normed space F, we denote the unit sphere by Sg, the
closed unit ball by By, and the closed ball with center = and radius r by
Bg(z,7). For aset A C E, its norm closure is denoted by A, its linear span.
by span A, its convex hull by conv A, and the set of its extreme points by
ext A. The set of all weak* strongly exposed points of Bg+ is denoted by
w*-sexp Bg~ (for this notion, as well as the notion of weak* denting points
cf. e.g. {19]). For two Banach spaces E and F, we denote by Ky (E* F5
the subspace of K(E*, F') consisting of compact operators which are Wee;k*—
weakly continuous. It is easily seen that K-(E*,F) = {T € K(E*F) :
xam T* C E}. The tensor product E ® F is always canonically identified
with a subspace of F(E*, F}; in p/a.rticula.r, E*@F = F(E, F). Some further
notation will be given in subsequent sections before use.
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2. Ideals and the n-intersection property for all n. In this section,
we briefly discuss a general situation related to the notions of ideals and
subspaces having the n-intersection property for all n.

Let X be a Banach space, and let ¥ be a subspace of X. Recall that
YV is an ideal in X if there exists a norm one projection P on X* with
ker P = Y. This notion was introduced by G. Godefroy, N. J. Kalton
and P. D. Saphar [6] in 1993. Their paper contains an important study of
so-called unconditional ideals. Note that there is an extensive literature on
a special subclass of (unconditional) ideals, namely on M-ideals (cf. the
monograph [8] by P. Harmand, D. Werner and W. Werner). It can be shown
{cf. e.g. [12, Theorem 1]) that ¥ is an ideal in X if and only if it is locally
1-complemented, i.e. for every finite-dimensional subspace £ of X and for
every £ > 0, there exists an operator T : B — Y with |T]| € 1+ ¢ and
Ty=gforallz € ENY. ‘

Recall also that Y has the n-intersection property (n-IP) in X for all n
if for all finite families {Bx (a;,7;)}, of balls in X whose centers belong
to Y,

k1] T

ﬂ Bx(as, i) # 0  implies ﬂ Byf{a;,r; + &) #0 for all e > 0.

i=1 i=1
This notion was studied by A. Lima [11} in 1983. But already in 1956,
N. Aronszajn and P. Panitchpakdi [1, p. 4923] showed that Y has the n-IP in
X for all n whenever there is a norm one projection from X onto Y. And in
1964, it was proved by J. Lindenstrauss [L5, p. 59] that every Banach space
has the n-IP in its bidual for all n.

The following result clarifies the relation between the two notions we are

interested in. Tts proof will be postponed until the end of the section.

PROPOSITION 2.1. Let Y be a subspace of o Banach space X.

(a) Y has the n-IP in X for all n if and only if ¥ is an ideal in every
closed subspace Z C X withY C Z and dim Z/Y = 1.

(b) Y is an ideal in X if and only if Y is an ideal in every closed subspace
ZCX withY CZ and dimZ/Y < oo, :

Clearly, every ideal has the n-IP for all n. The converse is not true.
J. Lindenstrauss [14, p. 78] has given an example of a 2-dimensional subspace
¥ of a 4-dimensional Banach space X which is not an ideal in X, but which
is an ideal in every 3-dimensional subspace Z of X containing ¥. (The
authors are grateful to M. I. Kadec for pointing out this example.) An
interesting example of an infinite-dimensional ideal ¥ in a Banach space
X with dim X/¥ = 2 is also due to J. Lindenstrauss (cf. [16]): for this ¥,
there is no norm one projection from X onto Y, but there is a norm one
projection onto Y from every Z with X>Z>Y anddimZ/Y =1
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The next lemma, which should be essentially known (its proof uses simple
arguments from [15, pp. 60, 51]}, will be used in the proof of Proposition 2.1
as well as in Section 4.

Recall that a Hehn-Banach extension operator is a linear operator & :
Y* — X* such that $y* is a norm-preserving extension of ¢* for all * € Y.

LeMMA 2.2, Let X be a Banach space, and let Y be a subspace of X with
dim X/Y = 1. If Y has the n-IP in X for all n, end z € Bx \Y', then there
exists y** € By« such that @ : Y* — X* defined by

(BY")y + az) = y"(v) + ay™ (¥"),

15 a Hahn-Banach exiension operator.

ye¥Y, ach,

Proof. The n-IP for all n implies that for all £ > 0, and all finite families
{y:}", in ¥ containing 0,

By(0,1+¢)N{) Bx (% |z — wli +¢) # 8.
=1

Hence clearly

L
7By (0,1 + )} N [] Bx= (ui, |z = will +€) # 0,
i=1
where j : Y — X is the inclusion mapping. By the weak* compactness of
Bx~(0,2) (for example), there exists y** € By such that

7)€ [ Bxe(w llz - yl).
yeyY

A straightforward verification shows that @ given by y** is a Hahn—Banach
extension operator. m

Proof of Proposition 2.1. (a} It is obvious from the definition that ¥ has
the n-IP in X for all n if and only if ¥ has the n-IP in every Z ¢ X with
Y C Z and dim Z/Y = 1. In the last case, the Hahn-Banach extension
operator € : ¥* — Z* from Lemma 2.2 defines a norm one projection
P =5 on Z", where j : ¥ — 7 is the inclusion mapping, with ker P = Y.
This means that ¥ is an ideal in Z.

(b) Clearly, Y is locally 1-complemented in X if and only if Y is locally
1-complemented in every Z C X with Y’ C Z and dim Z/¥Y < co. w

3. Intersection properties of balls for finite rank operators in
the space of compact operators. The following theorem, which is a key
result for the final Section 5, shows that if F* is separable, then F (F, E)
cannot be a proper subspace of X(F, E) having the n-IP for all n.
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THEOREM 3.1. Let E and F' be Banach spaces. If F* s separable and
F(F, E) has the n-IP in K(F, E) for all n, then F(F, E) = K(F, E).

Before proceeding to the proof, we introduce the following notation. Let
X be a Banach space, and let ¥ be a subspace of X. For y* € Y™, denote by
HB(y*) the set of norm-preserving extensions of y* to X. A straightforward

verification gives the following well-known characterization for extending
functionals defined on ¥ with dim X/Y =1 (cf. e.g. [15, p. 51]).

LEMMA 3.2. Let X be a Banach space, and let Y be o subspace of X with
dimX/Y = 1. Ify* € Sy« and x € X\ Y, then

HB(y*) = {zi 1t € () Baly" W) be -y}
yeY
where
ti{y+az)=y*{y)+at, yeY ack
Moreover, 7 = x7 if and only if £ = s.

Proof of Theorem 9.1. Suppose that T' € K(F, E) \ F(F, E). We shall
construct a separable subspace G C E and a sequence (Tn)o2, C F* @ G
such that T € K(F,G), and T,, — T weakly. This will imply that 1" €
v {1y, Te, ...} C F(F,G) C F(F, E), a contradiction.

Put By = T(F). Then T € K(F, E1), and E; is separable. Let (Syee
be a dense sequence in F* ® Ey. Assume that subspaces By,...,Ex C B
and operators (S£)52, C F* ® Ej are defined. Since F* @ E has the n-IP
for all n, there exists

™
Uk € [ Bregs(SEIT - Sil +1/n), nel
i=1
Put By = 5pan( By U S, UX(F)). Then Fgya is separable, B C Erqa,
and U¥(F) C Epy, for all n. Define

b+l _ ol k-l _ ol
Sk =g L., ST = 8
E+l _ o2 k1 @2,
Spii =952, s Ser 1 = Ses
k+h _ g3 k+1 __ o3,
Sy =83 ++e Sgk—3 = Oie;
Fi-f-1 _ ok
Sk(k-{—l)/z = S-

Further, choose S::(:i»l)ﬂ-}-l’ S:I:(-;ll)/zwa . & F*®@Fjy1 850 tl:fat (SE+iyee
is a dense sequence in F* ® Fy41. Note that, by the construction above, for
all ST*, there is an ng such that

Vn > ng, 3 <nln+1)/2, S;” = Sin+1_
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Let G = |Jpey Bx- Then G is a separable subspace of E, and T €
K(F,G). Let T = Uptl,, 5, n € N. Since Tn(F) € Bryz C G,
n(nt+1)/2
(31 Tue [\ Broe(SPTIT -8 +2/(n(n+1)), nel
i=1

Now we show that (T%,) — ¢(T) for all 9 € S(pega+ and ¢ € K(F,G)*
satisfying HB(v1) = {¢}. By Lemma 3.2,

M Ba@(),IT - Sl = {HD)}.

SeF*ad
This implies that, for given € > 0, there are S, 8 € F* @ & such that

B(T)+e—-y(8) > [T =8|, [¢(T) -9 >|IT~ 5.

Since G = ., B, and F* ® E, = {S}, S2,.. .}, there are S;?"'l and ST
such that

(82)  [8(T) +e = p(S7) > IT =SP4 2 8(T) = 9(577),
(33)  18(T) — e = (ST > |7 = SEPH 2 6(T) - (7).

As was mentioned above, we can assume that there is some ng so that (3.2)
and (3.3) are valid for all n > ng and some j = j(n), k = k(n) satisfying
Jyk < n(n+1)/2. If moreover 2/(n(n + 1)} < £, then by (3.1),

(3.4) $(Tn) — (57T < IT ~ S +e,
(3.5) [ (Tn) ~ (S < NIT = S5 + e
Inequalities (3.2)—(3.5) yield that

[9(Tn) — HHT)| < 2e.

Hence, 9{Ty,) — (7). .

It remains to show that T;, - T weakly in K(F,G). As (T},) is bounded
(cf. (3.1) and recall that Sy = S}), by Rainwater’s theorem, it is sufficient
that ¢(T.,.,,) — qﬁ(T) for all (ﬁ S| ex_tByc(p,G)*. But ext -BIC(F,G')* = {f** ®g* :
F** € ext Bps+, g* € ext Bg» } by a result of W. M. Ruess and C. P. Stegall
(20] (cf. also [8, p. 266}), and ¢|pga = f** ® g* € ext Bipsgeny~ for ¢ =
"™ ®g* € K(F,G)* with f** € ext Bp«», g* € ext Bg+. Since every o €
ext B(p-gg)« has a unique norm-preserving extension to K(F, G) (cf. [12,

Lemma 10]), we have HB(¢| @) = {¢} for all ¢ € ext Bx(ra)-- As was
proved above, this implies ¢{T,,) — ¢(T7). m

4. On cases when proper closed subspaces cannot have the n-IP
for all n. One of such cases was demonstrated by Theorem 3.1 of the previ-
ous section. For a more general context, the procf of Theorem 3.1 essentially
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yields the following result {from which it seems to be impossible to derive
Theorer 3.1).

ProrosiTION 4.1, Let X be o Banach space, and let Y be a separable
subspace of X having the n-IP for all n. Then, for all x € X, there exisis o
bounded sequence (y,) in Y such that y*(y,) — z*(z) for all y* € Y* and
xz* € X* sotisfying HB(y*) = {«*}. If moreover

ext Bx« = {z" € X" : 3y" € ext By~, HB(y*) = {«"}},
thenY = X.

For non-separable subspaces Y C X, the next result can be proved. It
follows from [6, Lemma 2.2]. For the sake of completeness, we present below
an independent proof.

ProrPOSITION 4.2. Let X be ¢ Banach space, and let Y be a subspace of
X having the n-IP for all n. Then for all ¥ € Bx, there evists a net (y)
in By such that y*(yan) — z%(z) for all y* € Y™ and z* € X* sotisfying
HB(y*) = {z*}. If moreover

X* =span{r” € X*:Jy* € Y*, HB(y"*) = {z"}},
then’Y = X.

Proof. It is sufficient to consider z € Bx \ Y. By Lemma 2.2, there
exists y** € By« such that ¢ : ¥* — (Y + R{z})*, defined by

(Py* )y + az) = y*(y) + o™ (v7),

is a Hahn—Banach extension operator. Using Goldstine’s theorem, pick a net
(y») C By weak* convergent to y**. Then y*(ya) — v*™(v*) = (Py*)(z) =
z*(z). The second assertion now follows immediately because then yx — =
weakly in X. =

Proposition 4.2 as well as Lemma 4.3 will be used to prove Theorem 4.4
below, which is a key result for our final Section 5.

LeMMA 4.3. Let E and F be Banach spaces. Consider EQF as a subspace
of L(E*, F). If e* is a weak* denting point of Bg+, and f* € F*, then
f*®e* € (E®F)* hes a unique norm-preserving estension to L(E*, ')
(which equals f* @ e* € L(E*, F)*).

P roof. The proof is similar to that of [13, Lemma 3.4{a)]. We can assume
|| /%] = 1. Consider any norm-preserving extension ¢ of f* @ e* € (E® F)*
to L{E*, F) and T € L{E", F). The equality /(T) = f*(Te*) can be shown
essentially as in the above-mentioned proof if the operators S and U it uses
are defined in the following manner. Let ¢ > 0, and choose § € (0,¢) and
e € F such that e*{e) = 1, |le|| < 1+ de, and |[e* — z*|| < ¢ whenever
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z* € By and z*(e) > 1 — 8. Then choose f € F such that f*(f) =1 and
Afl € 1+ de, and define S =e® fand U =e @ Te*. m

REMARK. Applying Lemma 4.3 to F* instead of F' (respectively, to
E* instead of E), and using the canonical isometric isomorphism between
L(E*,F*) and L(F, E**), one arrives at the following improvement of [13,
Lemma 3.4{a) (respectively (b))}.

(a) If e* is a weak* denting point of Bg+, and f** € F**, then f** ®¢* €
F(F, E)* has a unique norm-preserving extension to L(F, E™).

(b) If e** is a weak” denting point of Bge., and f* € F*, then e™ @ f* €
F(E, F)* has a unique norm-preserving extension to L(E**, F').

Recall for the following that a Banach space E is said to have property U
in its bidual E** if every z* € E* has a unigue norm-preserving extension
to E**. (For a recent study of such spaces cf. [18].)

THROREM 4.4. If one of Banach spaces E or F has property U in its
bidual, and E ® F has the n-IP in Ky« (E*, F) for all n, then E®@ F =
Ko (E*, F).

Proof. Suppose that E has property U/ in E**, Then E is an Asplund
space {equivalently, E* has the Radon-Nikodym property), and Bg- =
conv(w*-sexp Be~) (cf. e.g. [8, pp. 125-127} for a proof). Since E is an
Asplund space, it can be proved similarly to [4, Theorem 1] that the trans-
formation V from the completed projective tensor product F™ Br B* to
(K« (B*, F))* defined by V(u)(T) = > fF(Tej) {for u = }  fi ® €] €
F*®, E* and T € K. (E*,F)) is a quotient map. Since Vu = u for
all w € F* @ E*, this easily implies that (K.« (E*, F))* = F* ® E*. Set
A={f*®@e*: f* € F*, e* € w*-sexp B~ }. Then (K, (E*, F))* =spafi A.
Consider now any ¢ € A as an element of (F® F)*. By Lemma 4.3, such a ¢
has a unique norm-preserving extension (to the whole of L(E*, F)). Hence,
ER F = K, (E*, F) by Proposition 4.2.

In the case when F has property U in F**, the claim is an immediate
consequence of the proved one, and the canonical isometric isomorphisms
EQF2F@Fand Ky« (E*, F) 2 Ky (F*. E). u

Using the cancnical isometric isomorphism between K(E,F) and
Koy (B**, F) (defined by the map T — T**), one immediately obtains the
following two corollaries.

CoOROLLARY 4.5. Let F and F be Banach spaces. If F' has property U
in F**, and F(B,F) has the n-IP in K(E,F) for all n, then F(E,F) =
K(E, F).

COROLLARY 4.6. If one of Banach spaces E or F is reflexive, and F (B, F)
has the n-IP in K(E, F) for oll n, then F(E, F) = K(E,F).
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REMARK. Corollary 4.6 improves [12, Theorem 15] where both spaces
and F were assumed to be reflexive.

5. The approximation property. Recall that a Banach space E is said
to have the approzimation property (AP) if for every compact set K C E
and every ¢ > 0, there is an operator T € F(F, E) such that |Tz — x| < ¢
for all x € K. The next two theorems, describing the relation between the
approximation property and the question of approximating compact opera-
tors, are classical. They are due to A. Grothendieck [7, Chap. I, pp. 164-165,
167] (in [9, p. 400], (a)<>(c) of Theorem (AP) is formulated and proved us-
ing e-products of L. Schwartz). For the sake of completeness, we shall also
indicate an elementary (probably the shortest) proof of them.

THEOREM (AP). For o Banach space E, the following assertions are
equivalent:

(a) E has the approzimation property.
(b) F(F, E) = K(F, E) for all Banach spaces F.
(c) E® F = Ky (E*, F} for all Banach spaces F.

Proof. (a)=(c}. The proof follows by doing some modifications to the
proof in [17, pp. 32-33] and is omitted.

{(¢)=(b). Clearly, F* @ B = Ky~ (F**, E) for all Banach spaces F. But
Ky (F**, E) canonically identifies with K(F, E).

(b)=(a). See the proof in [17, pp. 32-33]. =

THREOREM (AP*). For a Banach space E, the following assertions are
equivalent: '

(a} E* has the approzimation property.
(b} F(B,F) = K(E,F) for all Banach spaces F.

Proof. Apply the equivalence (a)<(c) from the previous theorem to
E*, and use the canonical identification K., (B**, F') 2 K(E, F). u

REMARK. Note that the (elementary) proof of Theorem (AP*) given
here does not use the principle of local reflexivity (cf. e.g. the proof of the
same theorem in [L7, pp. 33~34]).

If, in the definition of the AP, operators 1' € F(E,E) can be chosen
so that || T, < 1, then E is said to have the metric approzimation property
(MAP). In [12], A. Lima characterized the MAP of Banach spaces and their
dual spaces by the position of the finite rank operators in the space of
bounded linear operators. He proved, among other things, that a Banach
space F with the Radon-Nikodym property has the MAP if and only . if
F(F, E) is an ideal in L{F, E) {or has the n-IP in L(F, E) for all n)-for all
Banach spaces F (cf. also [2] for related results). The next two theorems,
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which are the main results of the present work, describe the AP of Banach
spaces and their dual spaces through the position of finite rank operators in
the space of compact operators.

THEOREM 5.1. For a Banach space E, the following assertions are equiv-
alent:

(a) E has the approzimation property.

(b1} F(F, E) is an ideal in JO(F, E) for all Banach spaces F.

(ba) F(F, E) has the n-IP in K(F, E) for alln and all separable reflexive
Banach spaces F'.

{bs) F(F, B) has the n-IP in K(F, E) for alln and oll closed subspaces
F C ep.

(c1) E® F is an ideal in Ky« (B*, F) for all Banach spaces F.

(ca) E ® F has the n-IP in Ky« (E*, F) for oll n and all separable re-
flezive Banach spaces .

(cs) E@F has the n-IP in Ky-(E*, F} for all n and all closed subspaces
F Cep.

Proof. It is clear from the definitions that a subspace ¥ of a Banach
space X is an ideal in X or has the n-IP for all n in X if and only if its closure
Y does. Hence, by Theorem {AP), {a)=+(b1) and (a)=-(c1). The implications
{b1)=>(b2)&(bs) and (¢1)=>(ca)&(cs) are obvious.

(bz)=(a). By Theorem 3.1, F(F, E) = K(F, E) for all separable reflexive
Banach spaces F. Let G be an arbitrary Banach space, and T' € (G, E). By
a theorem of T. Figiel and W. B. Johnson ([5] and [10]), T factors compactly
through some separable reflexive Banach space F. (This fact can also be
deduced from the Davis-Figiel-Johnson—Pelczynski factorization thecrem
(cf. e.g. [9, p. 374])). That is, T = BA where A € X(G, F) and B € K(F, E).
Now, B € F(F, E), and therefore T = BA € F(G, E). We have shown that
F(G, E) = K(G,E). By Theorem (AP), this implies (a).

(bs)=>(a). The proof is the same as for the previous implication with the
only difference that it uses a compact factorization of T € K(G, E)} through
& closed subspace F of ¢p. (This is clear from a version of the Figiel-Johnson
factorization theorem—cf. |5, Corollary 6.2]; cf. also e.g. [3, p. 15] or [9, pp.
369-370].)

(co)}=>(a) is clear because {c3) is just an equivalent restatement of (by)
(recall that, canonically, E® F & F** @ E = F(F* E) and K- (E*, F) &
Ko (F*, E) = Ky« (F***, E) = C(F*, E) for reflexive F).

(ca)=(a}. Since closed subspaces of ¢y have property U/ in their biduals
(this is well known cf. e.g. [8, pp. 105, 111, 11]), by Theorem 4.4, (c3) implies
that E® F = Ky« (E*, F) for all closed subspaces F' of ¢o. The following

claim shows that this condition implies (c) of Theorem {AP), and therefore
(a) is true.
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Cram. Let E and G be Banach spaces, and T € Ky (E*, G). Then
there 45 o closed subspace F of cq so that T' = BA for some operators
AeKy (B, F) and B € K(F,G).

To establish the claim, we follow the proof of the Figiel-Johnson factor-
ization theorem in [10] and [5]. Similarly to [10, Proposition 1], we show that
the subspace of F ® G consisting of operators S : £* — @ which admit a
factorization T = BA for some operators A € E ® Coe and B € F(Coo, &),
where C., denotes the ¢p-sum of finite-dimensional Banach spaces intro-
duced by W. B. Johnson [10, p. 341] (cf. also [21, p. 425]), is a Banach space
under the norm

18| = inf{|| Bli]|All : S = BA, A6 E® Cro, B € F(Cw, @)}

By the proof of {10, Theorem 1], this subspace is equal to the whole space
EadG.

Let T € K+ (E*, G). Tt is clearly enough to prove the factorization of T'
for an F which is isomorphic to a closed subspace of ¢g. We now continue
similarly to the proof of [5, Proposition 3.1]. Let j : G — lo(I") be the
canonical embedding (for I' = Bgr). Since loo{I") has the AP,

iT € Ky (B*lo(IN)) = E R ls(I)
by Theorem (AP). By the above, 7' = BA for some A € Ku+(E*,Coo)
and B € K(Coo,loo(I)). Considering F = B~!(ranj) instead of Co, and
taking =B instead of B yield the desired factorization since Co (and so
F as well) is isomorphic to a closed subspace of cp. The claim and hence
Theorem 5.1 are proved.

THEOREM 5.2. For a Banach space E, the following assertions are equiv-
alent:

(a) E* has the approzimation property.
(b1) F(E,F} is an ideal in K(E, F) for all Banach spaces F'.
(b2) F(E,F) has the n-IP in K(E, F) for alln and all separable reflezive
Banach spaces F.
(bs) F(E,F) has the n-IP in K(B, F) for all n and all closed subspaces
F of cp.

Proof. Applying the equivalences (a)&r(ci)e>(co)e(ca) from Theo-
rem 5.1 to E*, and using the canonical identification XKy (E*, F) ==
K(E, F}, one immediately gets (a}e-(b1)e(be)>(bs).
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Toeplitz operators in the commutant of a composition operator
by

BRUCE CLOAD (St Catharines, Ont.)

Abstract. If ¢ is an analytic self-mapping of the unit disc I and if H 2(D) is the
Hardy-Hilbert space on D, the composition operator Cy on H 2(D) is defined by Ca(f) =
f o ¢. In this article, we consider which Toeplitz operators Ty satisfy TyCy = CyTy.

1. Introduction. Dencte the unit disc in the complex plane by D and
the boundary of the unit disc by 8D. We will be working with the fol-
lowing spaces: H%(D), the Hardy-Hilbert space which is defined as the set
of analytic functions on D with square summable power series coefficients,
H®(D), the set of bounded analytic functions on D, L2(8D), the set of L?
functions on the unit circle with respect to normalized Lebesgue measure,
and L*(8D), the corresponding L space on the unit circle. For notational
convenience, throughout the paper, we may abbreviate the symbols for these
spaces as H?2, H*®, L?, and L*. For more information on these spaces see
[9] and [11].

If ¢ is an analytic function on D, we may define a bounded operator on
H2(D), for all fin H?, by Cy{f) = f o ¢. These composition operators pro-
vide a large class of examples of operators on Hilbert spaces and, moreover,
there are excellent single variable complex analysis techniques with which
to analyze them. For more information on composition operators see [T} and
[16].

The commutant of a composition operator, Cy, is the weakly closed alge-
bra generated by all operators that commute with Cy. For a brief discussion
on the commutant of a composition operator see [8]. In [3], we consider the
question of how to generate the commutant of Cy for some specific func-
tions ¢. In [4], we examine other aspects of the commutant of a composition
operator. In [5], Carl Cowen showed that if f is a covering map of D onfo a
bounded domain in the complex plane, then the commutant of the Toeplitz
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