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Toeplitz operators in the commutant of a composition operator
by

BRUCE CLOAD (St Catharines, Ont.)

Abstract. If ¢ is an analytic self-mapping of the unit disc I and if H 2(D) is the
Hardy-Hilbert space on D, the composition operator Cy on H 2(D) is defined by Ca(f) =
f o ¢. In this article, we consider which Toeplitz operators Ty satisfy TyCy = CyTy.

1. Introduction. Dencte the unit disc in the complex plane by D and
the boundary of the unit disc by 8D. We will be working with the fol-
lowing spaces: H%(D), the Hardy-Hilbert space which is defined as the set
of analytic functions on D with square summable power series coefficients,
H®(D), the set of bounded analytic functions on D, L2(8D), the set of L?
functions on the unit circle with respect to normalized Lebesgue measure,
and L*(8D), the corresponding L space on the unit circle. For notational
convenience, throughout the paper, we may abbreviate the symbols for these
spaces as H?2, H*®, L?, and L*. For more information on these spaces see
[9] and [11].

If ¢ is an analytic function on D, we may define a bounded operator on
H2(D), for all fin H?, by Cy{f) = f o ¢. These composition operators pro-
vide a large class of examples of operators on Hilbert spaces and, moreover,
there are excellent single variable complex analysis techniques with which
to analyze them. For more information on composition operators see [T} and
[16].

The commutant of a composition operator, Cy, is the weakly closed alge-
bra generated by all operators that commute with Cy. For a brief discussion
on the commutant of a composition operator see [8]. In [3], we consider the
question of how to generate the commutant of Cy for some specific func-
tions ¢. In [4], we examine other aspects of the commutant of a composition
operator. In [5], Carl Cowen showed that if f is a covering map of D onfo a
bounded domain in the complex plane, then the commutant of the Toeplitz
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operator, Ty, is generated by composition operators induced by linear frac-
tional transformations ¢ that satisfy fo¢ = f and by Toeplitz operators.

In this paper, we are interested in classifying the Toeplitz operators that
commute with Cjy. In the second section, Theorem 1 shows that the only
Toeplitz operators that commute with a composition operator induced by
an analytic self-map of the disc which is not an elliptic disc automorphism
of finite periodicity must be analytic Toeplitz operators. The third section
concerns which multiplication operators commute with a given composition
operator. The most important results in that section are Theorems 5 and 6.
Theorem 5 provides a full solution to this problem in the parabolic disc
automorphism case. Theorem 6 provides a partial solution in the hyperbolic
disc automorphism case.

2. Toeplitz operators. A Toeplitz operator is a special type of gen-
eralized multiplication operator. If f € L*{4D) and P is the orthogonal
projection of L2(OD) onto H? (under the standard identification of an H2
function with its boundary function in L?(8D)), then we may define an op-
erator on H? by T¢(g) = P(fg) for g € H?. If the symbol f of the Toeplitz
operator is in H"°, then such a Toeplitz operator is called analytic and it
corresponds to the multiplication operator with symbol f on H?.

Let ¢ : D — D be an analytic mapping. Denote by @[ the nth term in
the sequence of iterates of ¢ under composition, that is

¢ =go.. . 0.
e

ntimes

Disc automorphisms may be classified into three types: elliptic, parabolic
and hyperbolic. Elliptic disc automorphisms have one fixed point in D,
parabolic one fixed point on 4D, and hyperbolic two distinct fixed points
on 80. By conjugation by a Mdbius transformation, an elliptic disc auto-
morphism is equivalent to a rotation about zero (Schwarz’s Lemma). They
may be sub-classified into elliptic disc automorphisms of finite periodicity
(¢/" = = for some natural number n) and of infinite periodicity ([16], pp.
5-6).

Let ¢ : D — D be an analytic mapping which is neither an elliptic
disc automorphism nor the identity mapping. The Denjoy-Wolff point of
¢ is the unique point in the closed unit disc to which the iterates of plm!
converge uniformly on compacta ([16], p. 78, and [7], p. 58). Denote the
Denjoy-Wolff point of ¢ by a. We note that, for each fixed positive integer [,
(™) converges weakly to &t ([7], p- 3, Corollary 1.3). Also, if A commutes
with Oy then A commutes with C'g and hence Cym. Thus one possible

technique to glean information about the commutant is to iterate ¢ under
composition.
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THEOREM 1. Let ¢ : D — D be an analytic mapping which is neither an
elliptic disc automorphism of finite periodicity nor the identity mapping. If
f € L®(8D) and Ty commutes with Cy, then f must be analytic.

Proof. The proof breaks into three parts depending on the nature of ¢.
(I) First suppose that ¢ is neither an elliptic disc automorphism nor a
constant. Let the Denjoy-Wolff point of ¢ be a. Let f =¥ o0 ___c,2" and

decompose f as fi + f2 where fi € (H*)* and f, € H?. Then the fact that
Ty commutes with Cy implies

TsCym(2) = Com Ty (2).
Fxpand the right hand side to conclude that
TH(") = {c-1 + foz) 0 ™.
Note that CyT¢(1) = Ty Cy(1) implies f2 0 ¢ = f» and thus

TH(@™) = oy + ()¢l
Taking the inner product of this equation with 1 yields

(Tp(p™), 1) = ca + F2(0)9(0).
This is equivalent to
(@, TFHL) = eo1 + F(0)417(0).

By the remark previous to this theorem, ([, T#(1)) converges to {a, T'7 (1)}
= {afs, 1) = af2(0). By the Denjoy—Wolff Theorem, c_; + f2(0)¢[" (0) con-
verges to c_y + af2(0). Thus c_y = 0. Assume by strong induction that
c_y = ... = c_gs1 = 0 and consider T¢(z!) in the above argument. This
results in the equation Ty((¢")!) = c_; + (f2)(¢™)". By taking the inner
product with 1 and passing to the weak limit as above, we get a'fa2(0) =
¢y +atfo(0). Thus ¢.; == 0. Hence by induction, ¢, = 0 for all n > 1; that
is, f is analytic.

(I1) Let ¢(z) = b for all # € D, where |b| < 1. Let f € L®(dD) with f =
#1 -+ f2 where fi € (H?)* and f, € H? First, consider TyCy(1) = CpTy(1),
which iraplies fo = fo(b). Thus fo is a constant; let f; = c. For any g € H 2
TsCulg) = CyTy(g). After expanding both sides of this equation, we get
cg(b) = (P(f19)}b) + cg(b), so (P(f19))(b) = 0. In particular, take g to be
successively z*, where k is a natural number, to conclude that the nega‘_c_we
Pourier coefficients of f are zero. Thus f = fa, so f is a constant function,
and 7' is an analytic Toeplitz operator. o .

(ITI) Let ¢ be an elliptic automorphism of infinite periodicity. Flr%t,
assume that the fixed point is 0; then by Schwarz’s Lemma, ¢(z) = €' z
where e"? # 1 for all integers n # 0. A direct computation yields .that. if
ACy = CyA, then A is an operator represented by a diagonal matrix with
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respect to the standard basis, {#*¥: k& =0,1,...}, and every such operator
must comrute with Cy. If Ty is a Toeplitz operator which commutes with
Cy, then since Ty must have constant diagonals (in the standard basis), f
must be a constant function. Let the fixed point of ¢ be b # 0. Let a(z) =
(b— 2)/(1 — b2), and note that « is a self inverse. Suppose that Ty commutes
with Cy where f = fi + fo with f1 € (H?)* and fo € H? TyCy(1) =
CyTs(1) implies that fo = fa ¢ ¢ and since ¢ has infinite periodicity, foisa
constant. Thus f1 induces a Toeplitz operator which commutes with Cy. We
claim f; = 0. Now T, commutes with Cy implies Co1's, Cn commutes with
CoCyCy but CoCyCy = Coogon and aogoa is an elliptic disc auntomorphism
of infinite periodicity with fixed point 0. Thus Ty, = CoDCy where D is a
diagonal matrix in the standard basis. Let the kth diagonal entry of D be
Ak. Represent g = D(a) by

g(z) = Ao + i Ae(DYF (B> — 1)2P.

k=1

Since T, (z) is a constant, we see that g o v is a constant and hence g is a
constant; this implies A; = 0 for k£ > 1. Also, Ay = 0, because T, (1) = 0.
Thus D = 0 and hence f; = 0. w

As the next result shows, the previous theorem cannot be extended to
all elliptic disc automorphisms.

THEOREM 2. Let ¢ be an elliptic disc automorphism of period ¢ (g > 2)
with ¢(0) = 0. Then Ty commutes with Cy if and only if the Fourier exzpan-
sion of f is of the form 3 oo Ung2™.

k—tad+ sl

Proof. Since ¢ is an elliptic disc automorphism of period ¢, we have
¢(z) = etz with § = 27r‘;— where p is an integer, g is a nafural num-

ber, and ged(p,q) = 1. Note that > #"/¢ = 1 if and only if ¢|n. Let
f = wtnz™ = fi+ fo with fi € (H?)* and fo € H?. Note that
TfCeivrip/qz(l) = Ce2ﬂ‘ip/quf(1) imp]ieS
Fa(z) = fa(e*™*/93),
Thus f; is g-fold symmetric and hence fo = Y oo angz™?. Similarly,
cheﬂ"“ipf‘iz(z) = Oez“*P/'?sz (%)
implies that
C1e2™®/T zezﬂp/qu(z) =c_1 + zez’”‘p/qu(z)

which implies that c_; = 0. For n such that ¢ — n assume by strong induction
that if m < n and q—m then ¢_,, = 0. Then

TyCotrinse (2") = Cez""P/qu.f (z™)
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implies

a_ne2wpn/q+ § :
0<m<n, qm

a_mzn—mBQTripn/q + E27r'ipn/qznf2(z)

is equal to

Ay + E : a_mzn—mezwipn/q _I_eZwipn/qznfz(z)_
0<m<n, glm

Comparing terms, we conclude that a_, = 0. Thus f = Ef.’;doo Gng2™d.

Conversely, if f is g-fold symmetric in its Fourier coeflicients and if f €
L*(8D), then by straightforward calculation T commutes with Coarir/a,. ®

3. Multiplication operators. A reasonable conjecture is that the com-
mutant of a composition operator Cy is the weakly closed algebra generated
by the Toeplitz operators which commute with Cy and the composition
operators which commute with Cy. In [3], we show that this conjecture is
not true for certain examples, but we believe the question is still of inter-
est in many cases. Carl Cowen in [6] characterizes for a given function f
(not a conformal automorphism of D} which functions g commute with it
under composition, In Section 1, we showed, except for elliptic disc auto-
morphisms of finite periodicity, that the Toeplitz operators which commute
with Cy must be analytic. In order to emphasize this, we denote Ty by My if
f € H*. We will now determine which multiplication operators commute in
some special cases of Cy. For f € H*, M, commutes with Cj is equivalent
to fo¢ = f. Note that if @ is a disc automorphism and f a function in H°°,
then OaMfCa—1 = Myoq.

THEOREM 3. Let ¢ be an elliptic disc automorphism with fized point b. If
¢ is of infinite periodicity, then a multiplication operator My commutes with
Cy if and only if f is a constant. If ¢ is of period g, then o multiplication
operator, My, commutes with Cy if and only if f € H® gnd f is of the
form 3000 ang((b— 2)/ (1 — bz})™.

Proof. Apply Theorem 1 (part III) and the remark preceding this the-
orem for the infinite periodic case; apply Theorem 2 and the same remark
for the finite periodic case. w

THEOREM 4. If ¢ : D — D is an analytic mapping with an interior fized
point, and also if ¢ is neither an elliptic disc automorphism nor the identity
mapping, then My commutes with Cy implies that f 1s constant.

Proof Suppose ¢(a) = a and fo ¢ = f; then for any z9 € D,
F (6™ (20)) = f(zo) for all natural numbers n. Now since, by the Denjoy—
Wolff Theorem, ¢[™(zp) converges to a as n tends to oo, it follows that
F{z) = f(a) for every zo € D; thus f is constant. w
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If (a;) is a sequence of non-zero complex numbers in the unit disc such
that $°7°. (1 — |a]) < oo, then the infinite product

H i G’;.,-,,—Z
|an|1-an

converges uniformly on compact subsets of D to a holomorphic function
called a Blaschke product ([7], p. 32, or [16], p. 181).

Now suppose that ¢ is a parabolic disc automorphism with Denjoy—Wolff
point 1, or a hyperbolic disc automorphism with fixed points 1 and —1 where
1 is the Denjoy—Wolff point. Define

% =2z and Pl =¢"to...0¢7t.
M S

n times

Let z, = ¢™ (D). In [14], pp. 332-333, the authors prove that

II f" 272 (n#0)

zn| 1 — Zpz
N=—03

is a convergent Blaschke product (note that the index in the product is two-
sided infinite) and that B o ¢ = B for such a parabolic disc automorphism,
and B o ¢ = —B for such a hyperbolic disc automorphism.

THEOREM 5. Let ¢ be a parabolic disc automorphism with Denjoy—-Wolff
point 1 and let B be the Blaschke product defined above. Let f € H 2, Then
fod=7Fifand only if f =3 o axB* where Yo lak|* < 0.

Proof. Let M be the subspace of A? spanned by {B* : k& = 0,1,...}.
By definition,

R .
(Bk7BJ) = o S Bk(emﬂ)ﬁj(eiﬂ) de,

0

which, when k > j, equals
27

! § B*~1 () dp = (B 1),

P

and when j > k, equals

2

| B7*(e®)d = (1, BI).
0

Since B{0) = 0, B* and BY are orthogonal when k = j. Thus

Mz.{ianB":i

n=0 n==0

1
o

lan)? < oo}.
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We want to show that if fod = f, then f ¢ M. Let P : H2 — M be
the orthogonal projection onto M and let @ : H2 — M+ be the orthogonal
projection onto ML. Decompose f with respect to these projections to get
Ff=P(Hi+Q(f) Nowif g € M then go ¢ = g (since B o ¢ = B); thus
P(fyo ¢ = P(f). Also, since fo ¢ = f, we have Q(f) o ¢ = Q(f), which
also implies Q(f) o =1 = Q(f). The constant functions are a subspace
of M, so (Q(F))(0) = 0 and thus (Q(F))(¢™(0)) = (Q(£))(0) = 0 for all
integers n. Hence B divides Q(f) in the H? sense that B must be a factor
of the inner part of Q(f). Thus Q(f) = Bh for some h &€ H2. For i > 1,
(B, Q(f)) = 0implies {B¢, Bh) = 0, which implies (B*~!, i) = 0,50 h L M.
Since, moreover, Q(f) o ¢ = Q(f) and B o ¢ = B, it follows that ho ¢ = h.
Repeating the process on h, we conclude that B | h. By induction, B* | Q(f)
for any arbitrary natural number k. Thus z* | Q(f) for all k, which implies
Q(f)=0;thus fe M. u

COROLLARY 1. If ¢ i3 a parabolic disc automorphism with Denjoy—-Wolff
point 1, and f € H™, then My commutes with Cy if and only if f =
S o anB™ where 377 lan]? < oo.

COROLLARY 2. If ¢ is a porabolic dise automorphism with Denjoy—Wolff
point 1, and if h is an eigenfunction associated with eigenvalue A for Cgy,
then

b= 2o anB"
5
for some a, such that 3 oo o |an|? < 0o and f; = (™) yphere y(2) =
i(l+ 2)/{1 — 2), b is a real number determmed by ¢, and d is a real number
of the same sign as b such that ¢ =X, Conversely, if ho¢ = h, then foh is
an cigenfunction for eigenvalue A where fy is defined in a samzlar manner
to fx

Proof. The following construction can be found in [13}, p. 447, Theorem
5. Define v(z) = i(1 + 2)/(1 — z). This is a conformal mapping of the unit
disc onto the upper half plane. Let § = yo¢o~y~!. Since § has one and only
one fixed point in the upper half plane, and is a conformal map, it must be
of the form §(w) = w -+ b for b a real number and b # 0. Now the set of
eigenvalues for Cy is 8D ([13], p. 447, Theorem 5) so let u € &D and let
d € [-2m, 27] with e = p and sign(d) = sign(b). Define

fu= (4db™ (=)

Now
[ful2)] = el b= < 1
and thus f, € H*. Now yodp=4o0y=7y+bso
C¢' (fl-‘v) = e(idb“‘l-yoqﬁ) e e(id+idb_1fy) . .U’fu-
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This procedure holds for any g in 8D, in particular, for A and A. f ho ¢ =
Mh where b € H?, A € 8D, X # 1, then fch € H® (because f; € H™)
and (fsh) o ¢ = |APfxh = fxh. Thus fzh = 3500 B" for some square
summable complex numbers a,, by Theorem 5. Note that f5 is never zero on
D even though | f(2)] tends to 0 as z tends to 1. Thus 1//5 is not bounded
on D but it is an analytic function on D. Hence

h= E;'L.C;O a'n'Bn
5
as analytic functions on D but b € H? so (Y or,anB")/ fx is in H?. Con-

versely, if h o ¢ = b, then (fah) e ¢ = Afah and hence fih is an eigenvector
with eigenvalue A. m

If ¢ is a parabolic disc antomorphism that has Denjoy-Wolff point e oA
1, then we may conjugate Cy by a(z) = e "z, so that @™ 0 ¢ o o has
Denjoy—Wolff point 1. Thus if f € H? is such that f o ¢ = f, then f must
be of the form goo~! where g belongs to the subspace M as defined in the
proof of Theorem 5 with Cy replaced by Cy-10400-

It is not so easy to deal with the hyperbolic case. There is a pesky
negative sign which occurs when B is composed with ¢. For hyperbolic
composition operators, the fact that B o ¢ = —B rather than Bo ¢ = B
has also caused problems in other results relying on the Blaschke product
([12]). Here we provide a partial classification of the solution to fo ¢ = f
for ¢ a hyperbolic disc automorphism.

THEOREM 6. Let ¢ be a hyperbolic disc automerphism with Denjoy-Wolff
point 1. For each integer i > 0, let B; be the Blaschke product formed from
the iterates of O under the hyperbolic disc automorphism ¢l If fop = f,
then f =3 pogarBo... By, where Yoo lag]? < oo.

Proof. First of all, since By ... By divides By ... B; as inner functions
when k £ [ and each By, for every & has a factor of z, by following the integral
norm procedure in Theorem 5, we conclude By ... By is perpendicular to
By...B; when k#1.

Since By, for any % is not fixed by ¢ under composition, a slightly dif-
ferent technique is required than in the parabolic case. Let ap = f(0) and
consider g3 = f — ag. Now ¢1 o ¢ = ¢1 since f and oy are fixed by ¢
under composition. Thus gy is zero at all points ¢{*1(0) and hence By|g.
Hence f may be represented as ap + Byfi- Now since By o ¢ = —By and
fo¢ = f, we have ficp = ~f1. We cannot work with this directly; however,
ficgpod=—Ffrog = fi; thus fi is fixed by ¢/*. Replacing ¢ by ¢ we
may, using the above procedure, work with fi and write f1 as a; - By fs.
Thus f = ag + 01Bo + BoBi fo; here f; is fixed by ¢!4. By continuing this
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procedure f may be written at the Nth step as

N
f=2akB0...Bk+Bo...BN+1RN
k=0

where Ry is a remainder term. Since {By ... B; : 5 = 0,1,...} is an orthogo-
nal set of inner fanctions, ||f||* = (f, /) = S r g lax!® +{|Bo ... Bxy1Ra 2.
Hence Y po jaxl® < oo. Let R= f — Y% ax By ... By; thus
[o,=]
R—Bg...BN+1RN - Z akBQ...Bk.
k=N-+1
As N tends to oo, R~ By...ByuRy|* = 35Zy,ylax]® tends to 0.
Hence By ... Byy1 By converges to R in H?. Since By ... Bri1Rn has an
(N +1)-fold zerc at 0, we conclude that B = 0 and f has the desired form. =

The first question of interest is: how big is the span of {By... By :
k =0,1,...}? Since none of the By...By for any k is fixed by ¢ under
composition, the span contains more than those functions that satisfy fog =
f. Denote by ko the reproducing kernel function at « in D. Every function
of the form zkymi(qy, where n 3 0, is perpendicular to that span since such
functions are perpendicular to constants and

By, in _
— (@) =0.

Hence the span is not all of H2.

COROLLARY 3. Let ¢ be a hyperbolic disc automorphism with fized points
1 and —1 where 1 is the Denjoy-Wolff point. If f € H*, and My commutes
with Cy, then f =300 JanBy... By with Y e, an|? < co.

Second: could By in Theorem 6 be replaced by another function to give a
necessary and sufficient condition? By Theorem 7.21 in {7], p. 227, for each
8 & [0, 27| there is a function he such that hgo = €hy and, moreover, both
he and 1/hg are in H®°. In place of By, one could use the function h, By,
since this is fixed by ¢. The problem with using this function is that it is
not an inner function and the estimates for the powers of the norms become
unbounded. There is something that ks does contribute to the problem, as
follows:

If Cy is a hyperbolic composition operator induced by a disc autormor-
phism with fived points 1 and —1 with the Denjoy—Wolff point ot 1, then
f € H? is an eigenvector associated with eigenvalue € if and only if f = hag
where g is an eigenvector associated with eigenvolue 1.

If ¢ is a hyperbolic disc automorphism with fixed points other than
—~1 and 1, we may conjugate it by a disc automorphism so that it has fixed
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points 1 and —1, with 1 the Denjoy-Wolff point ([14], p. 332). Thu_s the above
results can be translated to apply to any composition operator induced by
a hyperbolic disc automorphism.
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