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We now have all the tools needed for the proof of Theorem 1. As observed
in §1, if X and Y are not disjoint then Y has some (X/K)"® as a factor. By
Theorem 4.1 it follows that (X/K)"® has a countable ergodic self-joining Z
which is & classical factor of Y. A classical factor of Y is a compact factor
of some Gaussian factor of Y, so it is virtually divisible by Theorem 3.2.

On the other hand, since (X/K)"C is a factor of X", a countable er-
godic self-joining of (X /K )™ lifts to a countable ergodic self-joining of X",
which must be isomorphic to X¥, by simplicity of X. This means that Z
is isomorphic to a factor of X¥ so Theorem 3.3 tells us that Z cannot be
virtually divisible. This contradiction completes the proof of Theorem 1. »
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A theorem on isotropic spaces
by
FELIX CABELLC SANCHEZ (Badajoz)

Abstract. Let X be a normed space and Gp{X) the group of all linear surjective
isometries of X that are finite-dimensional perturbations of the identity. We prove that if
Gp(X) acts transitively on the unit sphere then X must be an inner product space.

1. Introduction and statement of the result. During the thirties
some people studied isotropic spaces. These are normed spaces in which
the group of linear surjective isometries acts transitively on the unit sphere.
Clearly, inner product spaces are isotropic. That the converse is also true for
finite-dimensional spaces wag proved by S. Mazur [7] in 1938 (see also [2]):

THEOREM 1. Isofropic finite-dimensional normed spaces are euclideon
(in the sense that the norm comes induced by on inner product}.

There are, however, isotropic normed spaces that are not isomorphic to
inner product spaces (this was discovered in the sixties by A. Pelczynski and
S. Relewicz [8)): for instance, if u is a homogeneous non-o-finite measure, the
space L,(pu) is isotropic for every finite p (see also [6]). These examples are
necessarily non-separable. Also, isotropic separable normed (not complete)
non-euclidean spaces are known: for example, the subspace of all functions in
Lyp(—00, 00} having bounded support, In spite of these examples the Mazur
problem on the existence of a separable isotropic Banach space which is
not a Hilbert space remains open [3]. (A recent survey on this problem and
related topics is [4], which contains an extensive bibliography.) In this note,
we generalize Mazur’s result replacing the hypothesis on the dimension of
the space by a wealker one concerning the structure of the isometry group.

So, let X be a (real or complex) normed space with unit sphere S{X).
We denote by G(X) the group of all isometric automorphisms of X. An
operator T : X — X is said to be a finite-dimensional perturbation of
the identity if the difference 7" — Id is a finite rank operator. If we write
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F(X) for the ideal of finite rank operators on X, then the set of all finite-
dimensional perturbations of the identity is Id +F(X'). Clearly, Id +F(X)is
closed under composition and under taking inverses, so that the set Gp (X)
of all isometries which are finite-dimensional perturbations of the identity
is a subgroup of G(X). Our result is the following.

TuEOREM 2. Let X be a normed space. Suppose that given z,y € S(X)
there is T € Gp(X) such that y = Tz. Then X is an inner product space.

2. Proof of Theorem 2. Having in mind the classical proofs of The-
orem 1 vis, invariant inner products, we shall construct an invariant inner
product for Gp(X) which a priori is defined only on a suitable subspace
of X. The crucial step is Lemma 2. Lemma 1 collects some obvious facts
needed for the proof.

LeMMA 1. Let I" be a set of finite-dimensional perturbations of the iden-
tity on a vector space X. For each finite v C I', put

B(y) = span{ U (T - Id)X}.

Ty

Then:
(a) E(v) is finite-dimensional for every finite ;
(b) E(y) #0 if v # {Id};

(¢} Bly) < E(n) for v C n;
(d) TE(y) C E(v) for each T € v and all finite v C I'.

TeMMA 2. For every normed space X there exist a linear subspace H C X
and o (possibly degenerate) inner product (-,-) on H such that:

(a) H#0;

(b) TH = H for every T € Gp(X);

(¢} (-,-) is invariant under Gp{X) in the sense that (Tz, Ty) = (z,y)
for every T € Gp(X) and all x,y € H,;

(@) (zo,z0) =1 for some xg € HN S(X).

ReMARK. We claim neither that H is closed in X (even if X is a Banach

space) nor that the norm induced on H by (-, ) is weaker (or stronger) than
the original norm of X restricted to H.

Proof of Lemma 2. Let g be the net of all finite subsets of G p(X) ordered
by inclusion and for each v € g, let E(7y) be as in Lemma 1. Put

Y= B
YER

Clearly, Y is a linear subspace of X which is invariant under Gy (X). Observe
that the net (F(v))yep contains every x € Y eventually, that is, for every
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z € Y there is j € p such that ¢ € E(v) for all v > 5. Now, by an old result
of Auerbach [1], for each v € p there exists some inner produet (-, -)y on E()
such that every isometry of (E{(v), ||-||x) preserves (-,-), and, consequently,
one has (Tz, Ty)y = (2,y), for each T € v and all z,y € E(v). Fixing zo in
Y such that ||zg||x = 1, one can renormalize the inner products introduced
above by the condition {zy,20), = 1 for zp € E(v) and (zg,z0)y = 0 for
o & E(7).
Let

cpolp) = {(tv)'v € HK : there is 77 € p such that ¢, = 0 for every v > 'r)}.
P

Given z,y € Y, one sees that (x,y), is eventually defined, so that the
mapping

(2,y) €Y x Y — B(z,y) = ({z,9),) € [[K/coo ()

defines an “inner product” on ¥ which has valies in the guotient algebra
I1,, K/coo (). Moreover, B is invariant under G'p (X): let T be in Gp(X)
and let z,y be in Y. Pick 5 €  such that z,% € E(n) and T & 5. Then,
for v > u, one has T(E(y)) = E(y) and (T2, Ty}, = (z,y)y and thus
B(Tz,Ty) = B(z,y)-

Consider Lo )/ (coo()Nleo (0)), the subspace of families in [ ], K /coo ()
having a bounded representative, and define

H={z Y :B(z,z) € lo(p)/{coo() Nlec($))}-

Then H is a linear subspace of Y: that H is closed under multiplication by
scalars easily follows from 2-homogeneity of B; that H is closed under sums
is a consequence of the “parallelogram law”

B(ﬂ:+y,a:+y)+B(:cwy,w——y) = 2B(z,z) + 2B(y,y)

and the fact that B(z, z) > 0 in the obvious order of [] , K /coo (). Moreover,
Schwarz’ inequality implies that B(z,y) belongs to leo()/ (coo(f) N los (1))
for all z,y € H. On the other hand, it is clear that H is G'r(X)-invariant
and contains at least mg since B(zo,%0) = 1 + coolp)-

Finally, observe that the system V={y€p:72 Ninep 15 a filter base
on . Let U be a proper ultrafilter on p extending V' and define the desired
{scalar) inner product on H as

(33,’51) = 1%113(5311/)

(this definition is correct because the functional limg : leo (@) — K vanishes
on cgo()). It is clear that (-, -) is invariant under the maps of Gp(X) since
B(-,) is, and, obviously (2o, %) = 1. =
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Proof of Theorem 2. If Gr{X) acts transitively on S(X), then the only
Gp(X)-invariant subspaces of X are the trivial ones, hence H = X in
Lemma 2 and {-,-) is defined on the whole X. Moreover, (-,-) is Gp{X)-
invariant and (g, zq) = ||zp]? = 1. Transitivity of Gr(X) now iroplies that
(z,z) = ||z||? = for every £ € X, which proves the theorem. a

3. Concluding remarks and questions. In a sense, the proof of The-
orem 2 is algebra. Thus, it is not surprising that Theorem 2 holds if X
is assumed to be a quasi-normed space. But, actually, an almost isotropic
quasi-normed space having a non-trivial finite-dimensional perturbation of
the identity must be locally convex, its quasi-norm being, in fact, a norm [5].
Recall that an almost isotropic quasi-normed space is one in which the isom-
etry group acts with dense orbits on the unit sphere. Theorem 2 suggests
the following questions:

QUESTION 1. Let X be a normed space for which, given z,y € §(X) and
€ > 0, there exists T € Gp(X) such that ||y — T'z|| < &. Must X be an inner
product space?

QUESTION 2. Find operator ideals J (containing F) for which Theorem 2
remains true if T — Id € F is replaced by T'— Id € J.
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Weighted inequalities and the shape of approach regions
by
JOSE L. GARCIA (Vic) and JAVIER SORIA (Barcelona)

Abstract. We characterize geometric properties of a family of approach regions by
means of analytic properties of the class of weights related to the boundedness of the
maximal operator associated with this family.

1. Introduction. In [NS], Nagel and Stein studied under which condi-
tions on a general domain 2 C IR{1+1, the associated maximal operator Mg
is of weak type (1, 1}. J. Sueiro [Su] gave an extension of this result for spaces
of homogeneous type. Following the ideas of [Su], Pan [Pa] studied weak type
weighted norm estimates for Mg also in spaces of homogeneous type. Later,
Sanchez-Colomer and Soria [8S1] gave strong-type weighted norm estimates
for My in the Fuclidean space, and they also studied the relationship be-
tween weighted inequalities for this operator and the geometry of 2 (see
[8s2)).

In this paper we find another (easier) characterization of the weak-type
inequalities for Mg, in terms of the classical A, condition plus an extra
property related to being a Carleson measure (see Theorem 2.12). For this,
we use some of the techniques given in [AC].

This result allows us to prove that the equivalence of weighted inequali-
ties for M and the classical Hardy-Littlewood maximal function M com-
pletely determines the geometry of the family of approach regions {2 (see
Theorem 3.4). We work in the setting of spaces of homogeneous type, ex-
tending previous results in R™ for the special case of regions obtained by
translation of a fixed one (see [582]).

To this end, we observe that there exists a class of “power” weights
(see Coroliary 3.2) which are the key to establishing the correspondence
between analytic properties (boundedness of maximal operators) and geo-
metric properties of the domains (2. The main idea behind this technique
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