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The real-analytic solutions
of the Abel functional equation

by
G. BELITSKII (Beer-Sheva) and Yu. LYUBICH (Haifa)

Abstract. For the Abel equation on a real-analytic manifold a dynamical criterion
of solvability in real-analytic functions is proved.

1. Introduction. In this paper we continue to investigate the Abel
equation (A.e.)

(1.1) o(Fz)—p(z)=1, =zelX,

from a dynamical point of view (see [1]). In the general case  is an unknown
real-valued continuous function on a topological space X and F: X — X is
a continuous mapping. The following condition is necessary for solvability
of the A.e. ([1], Corollary 4.2).

(CW)  All compact subsets of X are wandering.
This means that for every compact set K C X there exists v > 1 such that
(1.2) FY{E)NF™"(K)=0 (n—m2>v).

This condition is also sufficient if the space X is locally compact and count-
able at infinity (l.c.c.i.) and the mapping F is injective ({1}, Corollary 1.6).
The injectivity is substantial ([1], Example 1.7).

The condition (CW) is also sufficient in a smooth situation. Namely, if
X is a C*™-manifold countable at infinity and F is a C*-diffeomorphism
with 0 < k < oo then (CW) implies the existence of a C*-solution ¢ (the
C*-soluability). As we said this is also true for & = 0. Note that if F' is a
homeomorphism then (1.2) is equivalent to F*(K)NK =0 (n > v).

Now we establish a similar criterion for & = w, i.e. in the real-analytic
situation. For short we will say “analytic” or “C%”.
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Let us recall that a locally compact topologieal space is called countable
at infinity if it is a countable union of compact subsets.

MaIN THEOREM. Let X be a C¥-manifold countable at infinity and let
F:X — X be o C¥-diffeomorphism. Then (CW) implies C-solvability of
the A.e.

COROLLARY. For the above described X and F the C°-soluability implies
the C*-soluability.

Our proof of the Main Theorem is based on a reduction of the solvability
problem to a conjugacy problem.

Given a C%-diffeomorphism F : X — X, one can consider the one-
parameter family

(1.3) Hy(z,t) = (Fz,t+3s) (z€X; seR)
of C“-diffeomorphisms X — X where X = X xR

Suppose that the A.e. is (“-solvable, and ¢ is its C*-solution. The for-
mula

(1.4) &(x,t) = (z,t + ¢(z )) (e X, teR)

yields a C“-diffeomorphism @ : X — X such that the diagram
-5

(1.5) slil ldi

!

X @ X

is commutative. The analytic diffeomorphisms Hy and Hq turn out to be
analytically conjugate.

Conversely, let (1.5) be commutative with a C*-diffeomorphism $(z, t) =
(¥(z,t),9(x,t)). Then for any fixed ¢ the function z + @(z,t) is a O%-
solution of the A.e.

Obviously, the same situation takes place in €%, 0 < k < oc.

2. Proof of the Main Theorem. For the reader’s convenience we recall
a well known dynamical construction (see [2], p. 37).

Let H : ¥ — Y be an analytic diffeomorphism of an analytic manifold Y,
dimY = d. For any point y € Y its orbit is O(y) = {H™y : n € Z}. Any two
different orbits are disjoint, so that the orbits are classes of an equivalence
relation. One can consider the corresponding quotient space Y/H provided
with the standard quotient topology: & set V C ¥/H is open if and only if
its preimage U = {y € Y : O(y) € V} is open in Y. Under condition (CW),
the space ¥/ H is Hausdorff. To show this, consider two distinct orbits, say,
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Ofy1) # O(y2). If W1 and W, are neighborhoods of y; and ys respectively,
such that

(2.1) HYW)NH™(W2)=0 (n,meZ)
then the neighborhoods
Vi ={0{y):ye Wi} (k=1,2)

separate the orbits in Y/H. Such Wy and W do exist, since otherwise there
exist some sequences {};}{2, in Z and {v;}¢; in ¥ such that

lim vy =g, lm Hby =y, || — oo,
ki de ] =0

and (1.2) is violated for K consisting of y1,yz, all v; and all H'v;

Now let {U,,®o} be an atlas giving the analytic structure on Y. This
means that {U,} is an open covering of ¥ and &, : U, — R? are homeo-
morphisms onto their images such that all $38, " are C“-diffeomorphisms
between $o(Uy N Us) and S5(U. NUg).

For any y € Y choose a(y) such that ¢ € Uy, and then a neighborhood
W, 3 y such that Wy C Uy and H™(W,) NW,, = @ for all integer n. (The
last property can be proved like (2.1)). Then the natural mapping ¥ — Y/ H
restricted to Wy is a homeomorphism (2, between W, and its image. We
obtain the atlas {£2, (W), a2y 1} giving an analytic structure on Y/ H,
the caononicol quotient analytic structure.

Coming back to the proof of the Main Theorem we start with the case
of a connected manifold X. Following our preliminary plan it is sufficient to
obtain {1.5) with a C*-diffeomorphism &. However, under condition (CW)
we already have (1.5) with a *°-diffeomorphism . Indeed, as we know (see
[1]), (CW) implies the C*™-solvability of the A.e.

Now let us introduce the quotient spaces ¥y = X /Hp and V; = X /H;
where X = X x R (see (1.5)). They are analytic manifolds since all H,
satisfy (CW). Since Hp and Hy are C*-conjugate, the manifolds Yo and Y3
are C°°-diffeomorphic in the following natural way:

#(0o(=,1)) = 01(P(2, )

where O, (z,t) is the H,-orbit of the point (z, ).

It is a well-known fact that an analytic structure on a C™°-manifold is
unique (see {3], Chapter 2, §5). Hence, there exists an analytic diffeomor-
phism ¥ : Yy — Yy, Let pp : X - Y, and p; X o Yo be the natural
projections. Since ImW¥py = Imp; = Y, for_any points :1: .z € X there
exists a unique continuous lifting 7 X - X, !I/( ) = «”, providing the
commutative diagram
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X—X

Po l?l
Yo—E>1;
(see [4], Theorem 16.3). By the same argument there exists a unique lifting
@ : X -+ X for U= such that % (z") = ’. Since ¥W¥; and V1 ¥ are liftings
for id: X — X with 0¥ (2”) = o and &% (2') = o', it follows from the
uniqueness that g =¥ =id. Hence, #: X - X is a homeomorphism.
Moreover, since pg, p; are local analytic diffeomorphisms and ¥ is an analytic
diffeomorphism, ¥ is also an analytic diffeomorphism.
Coming back to the previous commutative diagram, we see that

#(Oo(z,t)) = O1(¥ (e, 1))
for any point (x,7) € X. Hence ¥(z) € O1(¥(z,t)) for any z € Og(e,t). In
particular,
!‘-U(Hﬂ(ma t)) € Ol(w(wa t))
The latter means that
F(Ho(z,t)) = HY(¥(z,t)) ((2,1) € X)
for some integer n = n(z,t). Since the space X=XxRis connected,
n(z,t) = const. Obviously, n # 0, otherwise Hy = id. Hence, Hy is analyti-
cally conjugate to the diffeomorphism
H(z,t) = (an)t +n)
by the diffeomorphism 7. So, ¥ satisfies the equation
U(Fz,t) = ¥(z,t) + n.

It remains to note that the function ¢(2) = n~1%(z, 0) is a solution of (1.1).

Now let X be a disconnected manifold. It is sufficient to construct a
solution of the A.e. on the orbit |, ., F™(U) of a connected component U.

Note that F(U) is also a connected component for any n € Z. We have
the following alternative: either a) F™*(U) # U (n € Z), or (b) F*(U) = U
for some n € Z.

In case (a) one can set @{z) =n for z € F*(U), n ¢ Z

In case (b) let p = min{n > 0: F*(IJ) = U}. As we have proved, the
equation

@(FPz) - p(z) =1 (zeU)

has an analytic solution ¢. Then the function

Wz) =pp(Fz)+j (ze FI(U), j=0,...,p~1)
is a solution of the A.e. on the union |J,, F*(U). u
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5. Some examples

1. One-dimensional case. We single out this case since the wandering
property on the line can be reduced to a very simple one. Namely, it is clear
that all compact subsets are wandering with respect to a diffeomorphism
F:R — R if and only if it has no fived points, i.e. Fix(F) = 0.

THEOREM 3.1. Let F': B — R be a real-analytic fited point free diffeo-
morphism. Then F is analytically conjugate to the shift x — z + 1.

Proof. The quotient space R/F is a real-analytic manifold. Being a
compact connected ane-dimensional manifold, it is homeomorphic to the
standard circle T (see [2], p. 138). Hence, R/F is analytically diffeomorphic
to T provided with the standard analytic structure because the latter is
unique (see 2], p. 245). Let & : R — R be the analytic lifting of an analytic
diffeomorphism ¥ : R\ F — T. As in Section 2 we get

T(Fz) =T(x)+n
where n is an integer, n # 0. Then the analytic diffeomorphism @(z) =
n~'¥(z) conjugates F with the shift. =

2. Some examples on the plane. The simplest example on R? with the
above mentioned wandering property is the shift

F(zx)=z+e (z,ecR).

Obviously, any additive function ¢ : B? — R with p(e) = 1 satisfies the A.e.
for F,.

Theorem 3.1 cannot be extended to the two-dimensional case.

ExaMPLE 3.2. Let X = C\R_, where R_ = {£ e R:£ < 0}. Then X is
analytically diffeomorphic to the plane R? = C. Indeed, X is diffeomorphic
to the open right half-plane H by y = +/z, H is diffeomorphic to the unit
disk D by z = (1L — y)/(1+ ), and finally D is diffeomorphic to C by w =
z/(1 — |2|). Denote by T : X — R? the composition of the previous analytic
diffeomorphisms. Consider

G(ﬂ:) = ('\‘fv"/\n) (ﬂ'f = (5,?7) € X)
with some A € (0,1). The mapping F = TGT~? is an analytic diffeomor-
phism R? — R%. Moreover, F' is fixed point free since so is G. However,
F is not conjugate to any shift F; since it does not preserve orientation,
det B (w) < 0.

REMARK 3.3. The A.e. corresponding to the mapping F has an analytic
solution
~ In||T ||

p(w) = —— (w € R?).
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Hence, F has (CW), a property much stronger than the absence of fixed
points.

3. Shifts on Lie groups. Let X be a Lie group. Consider the right shift
Fy(z) = zg (z € X) with some g € X. In this case (CW) is fulfilled if and
only if the sequence {g"}2 . has no limit points (see [1]). Hence, we have

THEOREM 3.4. The A.e. corresponding to the shift Fy has an analytic
solution if and only if the sequence {g™}52% _ o, has no limit points.

In particular, consider X = GL(p,C). Following [1] we call a matrix
g € GL{p,C) guasiunitary if g is similar to a unitary matrix. Obviously, g
is quasiunitary if and only if the spectrum g lies on the unit circle and g
is diagonalizable. In other words, g is not quasiunitary if and only if the
following alternative holds: either (a) there is A with |A| % 1 and e € C?
such that ge = Ae, or (b) all eigenvalues of g are of modulus 1 and there is
A with [A] = 1 and e;,¢e; & C? such that ge; = Ae; and ges = des + 1.

LEMMA 3.5. A matriz g € GL(p,C) is quasiunitary if and only if the
sequence {g™}52 . hes no limit points in GL(p, C).

Proof. If g is unitary then, obviously, {g"}32 _ ., has a limit point in
the space of p X p matrices and sall limit points are unitary. Hence, if g is
quasiunitary then there exists a limit point of {g"}2%_ . and all of them
belong to GL(p, C).

Let g be not quasiunitary. Then in case (a) of the above mentioned
alternative we have g"e = A"e. The only limit point of {g"e}% ___ is zero.
Hence, {g"}72 _ . has no limit points in GL(p, C).

In case (b), g%es = A"ez + nA""leg, therefore g"es — oo as |n| — oo.
Hence, {g"}32 _ ., has no limit points again. w

Cornbining Theorem 3.4 and Lemma 3.5 we obtain

COROLLARY 3.6. The A.e. corresponding to the shift F, on the group
GL(p,C) has an analytic solution if and only if the matriz g is not quasiu-
nitary.

In fact, this analytic solution can be explicitly presented in the following
form:

o(x) In |det z|

_ 1
" In|detg|
if [det g| # 1.

If |[det g] = 1 then

o(x) = gy 1 el
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in case (a) and
1 {zeq, zes)
P = e
in case (h). Here (, ) is an inner product in €7 and || || is the corresponding
Euclidean norm.

(x € GL{p,®))
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