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Implicit functions from locally convex spaces to Banach spaces

by
SEPPO HILTUNEN {Helsinki)

Abstract. We first generalize the classical implicit function theorem of Hildebrandt
and Graves to the case where we have a Keller C’f&—map f defined on an open subset of
E x F and with values in F, for F an arbitrary Hausdorff locally convex space and F a
Banach space. As an application, we prove that under a certain transversality condition
the preimage of a submanifold is a submanifold for a map from a Fréchet manifold to a
Banach manifold.

0. Introduction and preliminaries. Our main objective is the follow-
ing

IMPLICIT FUNCTION THEOREM. Let E and F be locally conver spaces
with F Banach. Assuming k € NU{oc}, let f : ExF 2 dom f — F be a C*-
map with f(z,y) = z. If &2f(z,y) : F — F is bijective, then there exist open
sets U and V in E and F, respectively, such that (z,y) € U x V C dom f
and the set f~ ()N (U xV) isa C¥-map EQU — F.

Here N is the set of positive integers and dom f is the domain set of
the function f. By Definition 0.8 below, a C*-map always has open domain.
Basing on the above implicit function theorem, we then prove as a corollary
the following

THEOREM. Assuming k € NU{oo}, let M and N be C*-manifolds with
M modelled on Fréchet and N on Banach spaces. Let f: M D domf — N
be a C*-map. If S is a C*-submanifold of N end for all (y, z) € 718
conditions (1) and (2) below are satisfied, then f~1(S) is o OF-submanifold
of M.

(1) moTfe: TuM — TyN — T,N/T,5 is surjective.
(2) Ker(m o T'f,) is complemented in T M.

Here f~1|5 is the relation f~* restricted to the set S. The = above is
the quotient map T, N — TyN/T,S. If T,N/T,5 is finite-dimensional, then
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236 S. Hiltunen

the requirement (2) is superfluous. We treat real and complex scalars simul-
taneously. Consequently, the holomorphic case is also included; cf. Remarks
0.12 below and [6; Lemma 2.6].

Now we explain our notion of C* differentiability, which for real scalars
is a weakened adaptation of the Cy of [1], and which coincides with Cf of
[4] for maps between locally convex spaces.

Crur fundamental category of maps is that formed by all separated limit
(or convergence) spaces as objects and all continuous functions from some
opern subset of the domain space to the range space. A limit space X is a
set § endowed with a convergence (in {1] a pseudo-topology) 4, X = (S, 4).
It is separated iff for any filter ¢ on S converging to both z and y, we have
z=1y Aset V C Sis open iff V € & for every filter & converging to any
z € V. A function is continuous iff it maps convergent filter bases in its
domain to convergent filter bases in its range. A filter base in a subset of a
Iimit space is convergent iff the filter generated by it on the whole space is
convergent. We really obtain a category by

0.1. LEMMA. Let X, Y be convergence spaces and f: X Ddomf —Y
a continuous function with dom f open in X. If B is open in Y, then 4 =
FY(B) is open in X.

Proof. If a filter € in X converges to = € A, then {UNdom f: U € &}
is a filter base in dom f, converging to . Thus the filter ¥ = {V : 30 € & :
FUNdom f} €V C Y} converges to f(x) in ¥. Hence B € . So, for some
U € &, we have f(Undom f) € B. Thus U Ndom f C f~1(B) = A. Hence
A€ @, as dom f € $. We are done, because & and x are arbitrary. m

As an embedded full subcategory, we consider continuous maps between
separated real (K = R) or complex (K = C) convergence vector spaces. In
(1], these are called pseudo-topological vector spaces. With every conver-
gence space we have associated a topology in the above way. Conversely, a
topology defines a convergence. A topological vector space can thus be inter-
preted as a convergence vector space. For the basic facts about convergence
vector spaces, see, e.g., [1] or [2].

For a convergence vector space E, dencte by NpE the neighbourhood
filter of zero in the topology of E. Put Vy = AMK. A filter @ on a vector
space X is called equable iff & = [V &). Here [V &) is the filter on X generated
by the filter base Vo formed by the sets VB = {dz: A e V and z € B},
where V € Vy and B € $. A convergence vector space E is called equable
iff for every zero filter (i.e., converging to zero) & there exists a smaller
equable zero filter ¥ (ie., ¥ C &). With every convergence vector space B,
we assoclate the equable space E* with the same underlying vector space
and with zero filters being those filters on E for which there is a smaller
equable zero filter. Every topological vector space F is equable, because

icm

Implicit functions 237

ME is equable and contained in every zerc filter. For more about equable
spaces, see [1]. There F°Y is denoted by E#.

With a pair E, F' of convergence vector spaces, we associate the equable
space Loq(E, F) of continuous linear mappings as follows. Call a filter { on
E quasi bounded iff [Vy(] is a zero filter in E. Let M = L(E, F) be the vector
space of continuous linear maps E — F {defined on all of E). Equip M with
the unigque vector convergence whose zero filters are those filters ¢ on M
such that for all quasi bounded ¢ in E, the filter [#(] on F is a zero filter
in F. In this way, we obtain the convergence vector space Lyn(E, F). Now
put Log(B, F) = (Lop(B, F))*4. In [1] the space Loq(K, F') is denoted by
L#(E; F). For locally convex spaces B, F, we have Loo(E, F) = Lz (E, F),
where the latter space is that considered in [4]. By [4; p. 56, Corollary 0.7.4],
we have

0.2. LEMMA, Let G, F be locolly convex spaces with F normable. Then
o filter & on L(G, F) converges to zero in Log(G, F) iff

(@) W e MpgGVW e NgFIALed: LUCW.

Moreover, the convergence of Leq(F, F) is given by the norm topology of the
normed space L(F, F) of continuous linear maps 7 — F.

For a proof, note that condition (@) above is equivalent to the require-
ment that the filter & is a zero filter in the space Lo(G, F) of {4].

Let F be a convergence vector space. By a differentiable curve in F, we
mean a function ¢ : [0,1] — E which is continuous at the points 0 and 1
and, moreover, for 0 < ¢ < 1 there exists ¢/(t) € E such that the filter base

(s =) He(s) —e(®): 0< s <1and 0 < [s %] <4} :6 >0}

converges to ¢'{1) in E. By separatedness, ¢(t} is unique. The function ¢’ :
10,1 t — &/(t) € B is the derivative of c.

0.3. LEMMA. Let E be a locally conver space and U o closed convex set
in E. If ¢ is o differentioble curve in E with ¢(0) = 0g € U and rnge’ C U,
then mage C U, in particular, ¢(1) € U.

Proof, Without restriction, assume real scalars, If the claim is false, then
os) € U for some g € |0, 1]. By Hahn-Banach, for some £ & L(E, R) we have
LU) € ]~o0,1] and £(c(s)) = 1. The function £o c satisfies the requirements
of the classical intermediate value theorem. Consequently, for some ¢ € ]0, s
we get 1 < 574 = s7H(c(s)) = (foc)(t) = & (®)) € &U) € ]-o0,1], a
contradiction. =

Our principal concept of differentiability for maps fED2domf — F
between locally convex, or, more generally, between (equable) convergence
vector spaces, is FB-differentiability, originally introduced in [1]. As auxil-
iary concepts we need G- and MK-differentiability. Here the letters refer to
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Gateaux, Michal and Keller, First we define the corresponding “smallness”
or remainder concepts.

0.4. DEFINTTIONS. Let E, F’ be convergence vector spacesandr : £ — F
a function (defined on all of ). Let X denote any of the symbols G, MK
or FB. We say that r : E — F, or the triple 7 = (E, F,r), is X-small iff the
corresponding condition below is satisfied. For MK we make the restriction
that E, F' have to be topological vector spaces.

(G) For all h € E, the filter base {{t~'r(th) : 0 < |t| < 6} : § > 0}
converges to Op in F, i.e., lim;q¢~ir(th) = Op.

(MK) I e \gEYW e NpF AV e MpE vt e K\ {0}, he U theV =
t~Yr(th) € W.

(FB) For all quasi bounded ¢ in E, the filter base {{t7*r{th): 0 < || < §
and h € B} : § > 0 and B € (} converges to Op in F. .

For a convergence vector space G, if r + B — F is X-small and b &
L(F,&), then also bor : F — G is X-small (with the above restriction for
MK). Trivially, FB-smallness implies G-smallness. Using 0.5 below, we get
MK = FB = G. So G-smallness is the weakest.

0.5. PROPOSITION. If 7 is MK-small, then 7 is FB-small.

Proof. Let 7= (E, F,r) be MK-small. (So E, F are topological vector
spaces.) For arbitrary quasi bounded ¢ in E, assuming 0.4(MK), we have to
prove that for all W € AGF, there exist § > 0 and B € ¢ such that for all
t € K and h € B, we have the implication: 0 < [¢t| < § = t71r(th) € W.

Since Ao E C [Vo(l, for U as in 0.4(MK), we first get ¢B; C U for some
€ > 0 and By € ¢. Then, for arbitrary W € AQF, put eW in the place of W
in 0.4(MK). Again using AoE < [Vo{], for the V of 0.4(MK), we find 6 > 0
and B € ( such that By C V for |t| < 8. Now B = By N By € (. Let then
t € K and h € B be arbitrary with 0 < |t| < 4. Putting s = ¢~ and k = ¢h,
we have k € U and sk = th € V. So we get t~ir(th) = ¢~ (s 'r(sk)) €
e W) =W. n

From now on, by a vector map we mean a triple f: (E, F, f) such that
E, F are convergence vector spaces and f is a function defined on some
subset of & and with range included in F, i.e., f C E x F. Instead, we may
use the phrase “map f: E 2 dom f — F™.

0.6. DEFINITIONS. Let f = (E, F, f) be a vector map and let X denote
any of the symbols G, MK, FB. Then a pair (¢,7) is called an X-ezpansion
of f at z iff z is an interior point of dom f in the topology of E, £ € L{E, F),
r: B — Fis X-small, and f{z +h) = f(z) +£(h) +r(h) for £ + A & dom f.

It X = MK, we require F, F' to be topological vector spaces. By a stan-
dard argument, the linear mapping £ is unique. The map f is said to be
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X-differentiable at z iff there exists an X-expansion at ©. A map is X-
differentiable iff it is X-differentiable at every point in its domain. Then
the domain is necessarily open. Mere “differentiability” will from now on
refer to FB-differentiability.

The {Gateaux) derivative function f' of the map 7 is defined to be the
set of all pairs (z,£) such that for some » the pair (£,7) is a G-expansion of
f at z. Then the function f': dom f' — L(E, F) is defined at every point
at which f is G-, FB- or MK-differentiable. _

The (Frolicher-Bucher) derivative (map) of a vector map f is the vector
wmap Df = (B, Log(E, F), f'|A) having as domain set the subset A of dom f’
formed by the points at which 3? is FB-differentiable. If JT is differentiable,
then A4 = dom f' = dom f. N

Following the conventional usage, we may write D f instead of Df, and
also f instead of f = (E, F, f).

0.7. PROPOSITION. Let E,F be locally convex spaces with F normable,
and let the map f = (B, F, f) be G-differentiable. If f' is continuous F 2
dom f — Leq(E, F), then f is MK-differentiable.

Proof. In view of Lemma 0.2, the claim follows from [4; p. 76, Th.
1.2.11}. =

Let now Cp be the (proper) class (not a set) consisting of all continuous
vector maps (E,F, f), where E,F are equable and dom f is open in E.
Putting Ng = {0}UN and co+1 = 00, we then construct our differentiability
classes C* for k € Ny U {oo} as follows.

0.8. DEFINITION. A vector map f belongs to C” iff there are maps F&
in Cp for | € Ng,1 < k+ 1, such that f O = f and F4 is differentiable with
FOHD) = DFE) for i € Ny, @ < k.

We have the usual recursivity of continuous differentiability: for any ke
No U {oo}, f € C¥t* & (f € C' and Df € C*) & (f differentiable and
f,Df € Ck).

Consider maps between equable spaces. By 2 trivial induction, one sees
that constants, defined on an open subset of the domain space, are in
(%, This implies, by the above recursivity, that continuous linear maps
are in C°°. To prove that continuous bilinear maps are in C*, using [1;
p. 44, 4.2.3], one only has to show the continuity of the derivati\m?. By [1;
Propositions 6.3.3, p. 72 and 2.8.3, p. 24], the bilinear composition map
comp : Log(B, F) X Leg(F,G) 3 (k, &) — Lok € Leg(E,G) is continuous,
hence in C'™. .

For maps f = (E,F, f)and § = (F,G,g) in C° = (y, we define the
composition f5 as (B,G,go f). Here dom(g o f) = f*(domg) is open in
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E by Lemma 0.1. If 7,5 € C1, then f7 is differentiable and the first order
chain rule (g o f)' = comp e [f',g' o f] holds [1; pp. 38-41]. In general, for
maps f; = (B, F;, fi) where 4 = 1,2, we define the map [f;_,_)?z] as [f1, fa] :
E 2 (dom f1) N (dom f3) 3 ¢ — (1(2), fale)) € Fi x Fs (e [L; p. 3, 1.3.2)).

Fach class C* forms a category under the composition (]T, 7)) — f@'
defined above. This follows from a general order & chain rule, Proposition
0.11 below. We also get functors T : C*+! — C* by forming tangent maps;
for f = (B,F,f)put T : f — Tf = (E x E,F x F,Tf), where Tf :
(dom f) x B3 (z,u) = (f(=), f'(z)u).

0.9. LEMMaA. Let k € Ny U {oc}, (E, F, f) € C%, and let G be equable.
Then the implication b € L(F,G) = (E,G,bo f) € C* holds.

Proof By the equivalence g € C= <> ¥k € Ny : g € C¥, it suffices to
prove the claim for k € Ny. Use induction. The case k = 0 is trivial. Let now
f € C**! and assume our claim to hold for k. Then 7 is differentiable and
f, Df € C*. Trivially then also e f is differentiable and (ho f)/(z) = bo f/(z)
for z € dom f. Thus (bo f) = I" o f/, where the partial composition map
I': Log(BE,F) 3 £ bof =comp(4,b) € Leg(E, G) is linear and continuous.
By our induction hypothesis, bo f, D(bo f) € O%. Hence bo f € O+, «

0.10. PROPOSITION. Let k € NgU{co}, f = (E,F, f) and § = (E, G, g).
Then the implication f,§ € C* = [f,§] € C* holds.

Proof. Again use induction. To prove the claim for & == 0, one only needs
to observe that dom|[f, g] = (dom f)N(dom g) isopenin B. Let k € Ny, f,5 €
C* 1, and assume our claim to hold for k. Then f,§ are differentiable and
7,9, Df,Dg € C*. By the induction hypothests, then [,5], [Df, DF] € C*.
Now one can verify [f,7] to be differentiable and [f, g)'(z) = [f'(x), ¢/ (z)]
bo hold for all z € (dom f}N (dom g). Thus we may write [f, ]’ = Xo[f’,¢'],
where X : Loq(F, F) x Leg(B,G) 2 (b1,£2) > [1,83) € Log(B, F x G) is
linear and continuoui (1; p. 79, 6.4.13, p. 30, 2.9.1, p. 21, 2.6.4]. By the
preceding lemma, D[f,§] € C*, hence [f,5] € C*+1. »

0.11. PROPOSITION. Let k € Ny U{oo}, f= (B,F,f) and §= (F,G,g).
Then the implication f,§ € C* = f§ e C* holds.

Proof. Proceeding by induction, first note that the case k = 0 is trivial.
Let then k € Ny, f,g € Ck+1, and assume our claim to hold for k. Then f,§
are differentiable, f,§ € C! and £,§,Df, Dg € C*. Put h = [DF, f(D)Z,
Wlklere € is comp : Log(E, F) X Leg(F,G) — Leg(E,G). Then T € O C
Q~ - By our induction hypothesis, and by Proposition 0.10 above, we have
fa,h E~Ck. By the first order chain rule, fgis differentiable and D(fﬁ') =h.
Then fg € C* 1 follows. m '
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0.12. REMARKS. By [2; p. 114, Remark], [5; p. 306, Lemma] and [4;
p. 110, 2.9.5. Remarks (1)], one can obtain the following results for real
scalars. Let E, F be locally convex spaces, / openin E,and f: U — F a
function. Then f is C* in our sense iff f € C% (U, F) in the sense of [4]. If,
moreover, k = oo and F is Fréchet, this is equivalent to f € CP(U, F) in
the sense of [4] for A = gb, ¢, b, pk, k, s. If also F' is Fréchet, all these are
equivalent to f € Lip®> (U, F) in the sense of [2].

One can also prove that if B, F are Fréchet, then f being k times (contin-
uously) differentiable in the sense of [8] is equivalent to f € C¥{U, F) in the
sense of [4]. Our concept of CF is, in general, weaker than that considered
in [1]. In this respect, there is some confusion in [4], because Keller seems
to think that they are equivalent for maps between locally convex spaces.
However, this is not the case even for scalar-valued maps defined on the
whole of an infinite-dimensional Hilbert space. Cf. [4; p. 11, (2), p. 74, 1.2.7.
Remark, p. 97, 2.6.3. Remarks (2)}.

Proceeding by induction, using Lemma 0.2, [1; p. 42, Prop. 4.1.1], and the
recursive property stated after 0.8, one can directly prove that for normable
spaces E, F, we have (E, F, f) € C* iff f is a C*-function E 2 dom f — F
in the classical sense.

0.13. REMARKS. Denote by Lis(E, F} the set of linear homeomorphisms
E — F. By the open mapping theorem, for Fréchet spaces E, F, we have
£ € Lis(E, F) iff £ is a continuous linear isomorphism E — F. Later we need
t0 know that for a Banach space F, the map inv : Leq(F, F) 2 Lis(F, I) 3
£ €71 € Log(F, F) is in C*. This follows from the last part of 0.12 by
recalling that in Banach space calculus inv is a C*°-map. In particular, note
that £is(F, F) is open in Loq(F, F).

We also need to know that for (By, F, f), (B2, G, g) € C*, themap fx g :
E = By x By 2 (dom f) x (dom g) 3 (z,y) — (f(2),9(y)) € F x G isin C*.
This follows from 0.10 and 0.11, because we can write f x g = [fep,go 4],
where p : B — Ey and ¢ : B — Ej are the natural continuous linear
projections.

1. Implicit Function Theorem. Let B, F' be locally convex spaces.
Let the topology of F' be given by a Banach norm & |z||. Put G = E x F.
Let B{z, 6}, B(5) and B(8) be the open and closed balls in F with radius )
and centered at = and zero, respectively. The partial derivatives below are
derivatives of the corresponding partial maps.

1.1. LemMMa. Let @ : G 2 domi — F be in C* with ¢ and @' map-
ping zero to zero. Then for every £ € L{E,F) there exists a continuous
seminorm p in E, on open neighbourhood U of zero in E, and § > 0 such
that for V = B(8) we have U x V' C domy and the set g = {(z,y) €
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UxV:op(xy) +&z) =y} is a function with domg = U, ragg C V, and
lig(uw) — g()|| < (v —v) for all u,v e U.

Proof Put & = {B : 3A € MyG : ¢'[4] C B C L(G,F)}. Then, by
the assumptions, & is a zero filter in L.q(G, F). Applying Lemma 0.2, let
W, € NpG be the U given by condition ().

The linear mapping ¢ being continuous, we have £{U1} C B(1) for some
absolutely convex Uy € AMpE. We can assume U3 x B(6;) € W, for some
81 > 0. Let p; be the Minkowski functional of I/;. Put p = 8p; to obta.in the
continuous seminorm searched for. Let ¢: G 3 (z,y) — p1(z) + 3 ||¥]-

For o = inf {{, $61}, let B(a) be the W in condition 0.2(@). Then, for
some Up € Mo E and some § > 0, we have ||¢'(2)w]l < o for z € Up x B(4)
and w € W,. By the openness of dom, we can assume Uy C U7 and
Up x B{4) C dom .

By continuity of ¢ : domy 3 (z,y) r+ ¢(z,y) + £(z) we find an ab-
solutely convex open neighbourhood U of zerc in E with U C U such
that ||1(z,0p)|| < 36 for = € U. Write V == B(8) and W = U x V. Then
W C Uy x B(6) C dome.

Next, we consecutively state and prove claims (1) through (6) below.
From these claims, we get our lemma. .

(Ve e W, we G: [¢zv] < glw). To prove this, let 2 € W,
w = (u,v) € G and assume first s = g(w) % 0. Then

m(—‘fu) % pw) < gw) =a <

and

o = el =22 (G0l = 22 ) =20 <

Hence Su € U1 and o € B(41). So 2w = (2u, 2v) € Uy x B(§;) T W,.
Then '
; Y
(e

Assuming next g(w) = 0, for all s > 0 we have p;(su) = [jsv|| = 0, hence
sw € Uy x {05} € Wa. 0 sl (2]l = [/ (2) (sw)]| < . Thus ' ()uw]] =
0 < g(w).

(2) Vu,z € W : |p(w) — ¢(2)|| € glw — 2). To prove this, fix w, z and let
c:[0,1] 3t wl(z+ tlw — z)) ©(z) € F. Then c is a differentiable curve
in F with ¢(0) = OF and ¢/( ¢ (24 t{w — 2))(w — z) for 0 < ¢t < 1. So,
by (1), we have ||¢/(t)]| < q('w - z) Taking then B(g{w — z)) as the U in
Lemma 0.3, we get [|p(w) — o(z)|] = |lc(1}] < g{w — 2).

8

81.

Wl b

N wl| = 2
I e =

s
<Ea-—-3—q(w).
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3y Vz € U, y € B(20) : ¢¥(z,y) € B( §). For a proof, by (2) we first
obtain ||¢(z,y) —p{z, 0p)jl < (OE, y) = Hy“ Now recall that fjib(z, 0p)| <
%5, to get

W (@ )l < (e, ) — 9z, 0r)| + W (, 0p)||
= {lip(z,y) + £} — (@(z,0F) + £(z))| + |¥{z, 0|
= |le(z,y) — oz, 0p)|| + [l¥(z, 0F)|
<glyll+58< 3 36+ 3= 26

(@) Vo € Uy,z € V ¢ [(o,y) — (2, 2] <
calculate:

b=, y) — (=, 2) 1| = [e(z,v) + £(z) — ({2, 2) + L))l

= lip(z,v) — @z, 2)]| < 908, v — 2) = 3lly — 2Il.

By (3) and (4), for a fixed z € U, the function {(v, z) : (z,v,z) € ¥}, i.e.,
y + 9(z,y), is contractive B{28) — B(24). Thus (z,y,y) € ¥ for a unique
y € B(26) C B(§) = V. Then g = {(z,1) : (z,p,0) €¥}N (U xV)isa
function U — V.

(5) Vu € E : |[£(u}]l < 2p1{ ) For a proof assuming first s = pq (v} # 0,
we have py (Fu) = Zlapl(u) . Hence u € Uy. Thus £(£u) € B(1), and
we get [[£(u)] = 2s]4(Eu)|] < 2s = 2p;(u). Assuming now p;(u} = 0, for
all 5 > 0 we have su € Uy, hence s|£{u)|| = [|{(su)|| < 1. Thus ||£(u)] =0 <
2p1{u).

(6) Yu,v € U : ||g(u) — g(v)|| < p{u—wv). To prove this, write 2 = g(u)
and y = g(v), so that 2 = Y(u,z) = @(u,z) + &(u) and y = $(v,y) =
w(v,y) + £(v). By (2) and (5), we obtain

e —yll = ey, 2) — @lv,y) + £(u — o)
< Nl 2) = v, v)il + [1€(u - )|
< q(u—v,2—y)+ 21 (u—v) = 31 (u—v) + 3]z -y,

—g@)| = llz —yll € 6pi(u—v) =p(u—2v). =

1.2. LEMMA. Let f : G2 domf — F be in C' with f(z0,30) = OF
ond 8 f(xo,yo) bijective F — F. Then there exists a continuous seminorm
p in E, an open neighbourhood U of zo in E, and § > 0 such thot for
V =By, 8) and g = f1(0r)N (U x V), we have U x V S dom f and g is
a function U — V satisfying |lg(u) — g(v)|| € p(u —v) for all u,v € U.

Proof. Put 4, = 31f($0,y0) and £ = azf(ﬂ:o,yg). Then £, € .C(E,F)
and £ € Lis(F,F), by 0.13, Hence £ = —&; ' o £y € L({B, F). Defining
¥, 0: G2 —(30,70) +dom f — F by $lz,y) =y — (& o f) @0+, %0+ )
and ¢(z,5) = ¥(z,y) — £(z), we have 1,y € C* and ¢(0p,0F) = Or.

$ly — 2| As in (3), we

from which we get [jg(w)
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Trivially, 7~*(0f) = {(z0 + &, %0 + ¥) : (z,4,¥) € ¥}. Moreover, for
(u,v) € G we have

QDI(OE: OF)(UH ’U) == wt(OEa OF)(us U) - E(U)
= v ~ £ (f (20, %) (1, v)) + &5 (L)
= v — b5 {lyu + £av) + £5 M (£1u) = Op.

So also ¢’ maps zero to zero.

By Lemma 1.1, there exists a continuous seminorm p in F, an open
neighbourhood &7 of zero in E, and § > 0 such that the conclusion of 1.1
holds with U replaced by Up, and g replaced by go = {(z,y) € Us x B(d) :
o(z,y)+4(z) = y}. Then for U = zg+ Uy, we get our claim, since f~1(0F)N
(UxV}={(zo+z,y0+y): (z,9) Ego}. m

1.3. LeMMA. Let f : G 2 domf — F be in G with flxp,y0) = Op
and 8af (zo, o) dijective F —» F. Then there evists a continuous seminorm
p in B, an open neighbourhood U of =y in E, and § > 0 such that for
V = B(y0,6) we have Ux V C dom f and the set g = f~(0p)N({TU x V) is
o continuous function U - V satisfying

(1) 82f(U x V) C Lis(F, F),
(2) (E, F,g) is ME-differentiable,
(3) ¢'(z) = —(8af(z, g(z))) " o (Bif (2, 9(2))) for all z € U.

Proof For jo : F 3 v — (0g,v) € G, the partial composition map
I': Leg(G,F) 3 £ Loy € Leg(F, F) is continuous. From 8af = I'o f' and
the continuity of f, we get the continuity of 8, : G 2 dom f — Leg(F,F).
Applying Lemma 0.1 and recalling 0.13, we see that A = (82f) 1 (Lis(F, F))
is open in G and that (zg,y0) € A.

Let p, U, 4, V be given by Lemma 1.2 applied to f|A : G 2 AN
{(domf) — F. Then the only nontrivial claims are (2) and (3), which
we now prove. For this, let 2y = (21,y1) € g be arbitrary. The func-
tion f’ is continuous G 2 dom f — Leq(G, F). Thus, by Proposition 0.7,
(G, F, f) is MK-differentiable. So, for some MK-small 5 ;: G — F, we have
i+ w) = f(z1) + F'(z1)w + s(w) for 21 + w € dom f. Write & = 8, f(z)
and f2 = 0yf(z1). Then £y € Lis(F,F). Consequently, sy = —£; 05 is
MK-small G — F.

Define r : E — F by h++ s1(h, g{z1 + h) — g(z1)) for 1 +h € U, and by
h = Op otherwise. To show that ¥ = (E, F,r) is MK-small, let Uy € NG
be the U of 0.4(MK) for the map 3; = (G, F, s1). Then, for some U; € NpE
and ¢1 > 0, we have Uy x B(8;) € Uy, Putting now U] = U Np~0,81], we
have U] € MyE.

To show that U] can be taken as the U in 0.4(MK), let W £ AyF be
arbitrary, and let Vo € MyG be the V of 0.4(MK) for the map 3;. Then,
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for some Va € NoE and 8> > 0, we have V5 x B(d3) € V. Putting now
Vi = V2 (—o +T) 0 (57 0,6]), we get V7 € NE.

To show that Vi can be taken as the V in 0.4(MK), let t € K\ {0} and
h € U; be such that th € V{. Then z; +th € U and h € p7{0, §;[. Writing
k =t"Y(g(z1 + th) — g(z1)), we have [|k| < |t| " p(th) = p(h) < §1. Hence
w = (h,k) € Up. Since th & V! C p~1[0, 5], we have |1th]| = |lg(z + th) —
g(z1)]| € p(th) < 85. So tw = (th,tk) € V;. Hence

t™ Y (th) = t™ 51 (th, g(z1 +th) — g(z1)) =t s1(th, tk) = t 181 (tw) € WL

Above we have shown that ¥ is MK-small. To conclude the proof, let
z1 + h € U, and write & = g(zy + h) — g(z1). Then

0p = fle1+ h,g(zs + 1)} = flze + Ry + k)
= f(z) + f'(z1) (R, k) + 5(h k) = £a(h) + Lo(k) + s(h, k).
Hence
glmy +h) = g(z1) +k = gla1) ~ £ (€ (R)) — & (s(h, k)
= g(z1) — & (a(R) +r(h). =
Our Implicit Function Theorem is a trivial corollary of the following

1.4. PROPOSITION. Assume k € NU{oo}. Let f : ExF 2 dom f — F be
in OF with f(zo,y0) = zo and 82 f(zo,yo) bijective F' — F. Then there exists
an open neighbourhood U of xo in E and § > 0 such that for V = B(ya, )
and g = f~1(20) N (U % V), the relations (1)~(4) below hold.

(1) U x V C dom f,

(2) (E,F,g) € C* and domg=U andmgg C V,

(3) B2 f(z, g(z)) € Lis(F,F) forz e U,

(4) ¢'(z} = —(Baf (2,y)) " 0 (81f (=, ) for (z,9) € 9-

Proof. Taking the function w — f(w)— 2o for f in Lemma 1.3, we find
I7 and 6. Then everything claimed is trivial except g = (E, F,g) € C*. Using
induction, we prove this by showing that § € C* for I < k+ 1. For [ = 0 this
is mere continuity of g, which is given by Lemma 1.3.

Assume now | < k and § € C'. We assert that § € C'**. By Proposition
0.5 and Lemma 1.3(2), § is differentiable. So it suffices to show Dg € ch
Write G = Ex F, K = Loq(G, F), L = Loo(E, F)and M = Leq(F, F). Then
Dj = (BE,L,g"). By (4), and with j; : B — G and j3 : F — G the natural
injections, the map D7 can be decomposed as

25 (@,0) = (2,0) D (3,9(z) = 275 F'(2) =5 (4,0) = (£,¢)
AN (€041, & o g2) = (u,v) 8, (u, —v™1) = (u, w) D wou = g (z),

where we have the following maps:
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{1) E — E x E, continuous linear, thus in C* C C".

(2) idg xg : Ex E 2 E X U —» @, which by the induction hypothesis
and by 0.13 is in C%.

(3) (G, K, fyeCck1cCCl

(4) K — K x K, continuous linear, thus in C* C G'.

(6) I x It : K x K — L x M, where we have the partial composition
functions I : K 2f{—fojr € Land I : K 34 + {0 jo € M. These are
continuous linear, hence so is the map (5), thus in C* C C*,

(6) idz x{—inv) : L x M D L x Lis(F,F) — L x M, by 0.13 in C".

(7) comp: L x M — L, in C* C ¢, by what we said after 0.8,

By Proposition 0.11, we have Dg € C'. w

2. Infinite-dimensional manifolds. To define manifolds, assume we
are given a class C; consisting of some G-differentiable maps f = (E, F), f).
Assume also that C; becomes a category S under the composition introduced
after 0.8. We also require the chain rule (g o f)'(z)h = ¢'(F(2))(f'(z)R) to

hold for f,5 € C,, z € f~!(domg), h € E. Let O be the class of objects
of 8, and for E, F € O, let S(E, F) be the set of all functions f such that
(E: F: f) € CS'

We want to build categories whose objects are manifolds. To make this
possible, manifolds, as defined below, have to be sets and not proper classes.
To this end, we use the following technical trick. We call a space E € @
standard, and write E € O,, iff the underlying vector space of E is of the
form K for some cardinal number I. The vectors of K are those of KI
with only finitely many nonzero coordinates. Then, for every E € O, the
class {F : F € O; and Lis(E, F) # B} is always a set. We assume this set
to be nonempty.

Later we choose O to be the class of all Fréchet spaces, and with & &
NU {00} fixed (so k > 0) we let C, be the class C* restricted to those maps
(B, F, f) for which E,F € O. To enlarge the applicability of what follows,
recall Remarks 0.12.

For any class A, recall that dom A = {z : 3y : (z,y) € A}, rug A = {y:
Az : (z,y) € A}, and put Dom A = [J{dom ¢ : ¢ € dom A}.

2.1. DEFINITIONS. A relation A is called an atlas iff Dom A4 is a set,
¢ & dom A, and (¢, E), (¢, F) € A implies that ¢ is an injection, B, F € O
and o ¢! € S(E, F).

For an atlas A, the members of rng A are its model spaces. Anya = (¢, E)
for which also A U{a} is an atlas and dom¢ C Dom A, is called a chart
for A. If also z € dom ¢, then o is called a chart at z. The underlying set

of an atlas 4 is Dom A. An atlas is called standard iff its model spaces are
standard.
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A standard atlas M is called a manifold iff we have (¢, E) € M whenever
M U {(¢, E)} is a standard atlas with dom ¢ € Dom A. Thus manifolds are
maximal standard atlases for some fived set.

Let M and N be manifolds and consider a function f € (Dom M) x
(Dom N) (*). Then f: M 2 domf — N is called smooth (*) iff vbo fo
¢~ € S(E, F) whenever (¢, E) € M and (¢, F) € N. We also say that the
(manifold) map, lLe., the triple (M, N, f) is smooth. Note that we do not
require dom f = Dom M.

Recall that for a topological vector space (7, its closed topological vector
subspaces F, F' are called pairwise complemented, and each is called a topo-
logical complement of the other, iff the function £ : ExF 3 (z,y) v z+y € G
iz a linear homeomorphism F x F' — G. By the open mapping theorem, for
a Fréchet space G, it suffices for £ to be bijective.

2.2. DEFINITIONS. Let M be a manifold modelled on topological vector
spaces and § € Dom M. Then § is called a submanifold of M iff for every
z € 8, there exists a chart (¢, G} for M at = and pairwise complemented
topological vector subspaces E, F of G such that E N (rng¢) = ¢(5), and
#(S5) is open in E. We also call the pair (M, S) a submanifold.

The manifold (structure) S of a submanifold (set) S of M is given by the
following construction. Let Prop[M, N, S| mean that N is a manifold with
Dom N = §, and that for all manifolds P and functions f : Dom P - §
we have the equivalence: (P, M, f) smooth & (P, N, f} smooth. Then 5 =
{a:3N : o € N and Prop[M, N, ]} is the unique N satisfying condition
Prop[M, N, 5]; ¢f. [7; pp. 24-25].

2.3. DErFINITIONS. The manifold generated by an atlas A is the set
{(#,E) : AU {(¢, E)} is an atlas, dom¢ CDom A and E € O,}. If AU R
is an atlas and Dom A = Dom B, then A, B are equivalent atlases and they
generate the same manifold.

The manifold topelogy defined by an atlas A is the topology for Dom A
generated by the base {¢~*(dom f) : 3B, F € O : ($,E) € Aand f €
S(E,F)}.

We call g a local diffeomorphism E — F (at ) iff (E, F, g}, (F, E, g Y e
C, (and z € domg).

Having given our general basic definitions, we now specialize to the case
O ={E: E Fréchet}, k e NU{oo}, C; = {(E,F, f) € C*:. B, Fe O}

2 4. PROPOSITION. Let G be a Fréchet space and F a Banach space.
Let (z0,%0) € f € S(G,F), and let & = f'(z0) : G — F be surjective

(*y Abusively, f C M x N. . ) .
(2) Or a Cy-map; likewise we would say: Cs-atlas / (sub)manifold / diffeomorphism.
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with Ker £, complemented in G. Then there exists a Fréchet space E and a
local diffeomorphism g : E x F — G at (0g,y0), such that g(0g,%0) = 20,
mg g C dom £, and (fo g)(z,y) =y for (z,y) € domg.

Proof. Let E be Ker #; considered as a topological vector subspace
of G. Then F is Fréchet. Let F; be a complement of E. Then F7 is also
Fréchet. Now £, |F} is a continuous linear isomorphism Fy — F. By the open
mapping theorem, also £ = (#;|F;)}~" is continuous. (So F} is normable,
hence Banach.) Letting p: G — F and p; : G — F; be the projections, we
have £ 0 £; = p;. Write £p = 2o — £(yo)-

Put By = Ex F and G, = E} x F, and consider the map :f; = (G1, F, f1),
where fi((z,v),y) = f(z+2o+£(y)) —v for z+ 2o +£(y) € dom f. Then for
wy = (0, %), our map fi satisfies the requirements of the Implicit Function
Theorem with f1{wg, %) = G and daf1(wo,v0) = f'(20) 04 = idp . So we
find open neighbourhoods Uy and V4 of wy and yo In By and F, respectively,
and a function g1 : U3 — V4 satisfying (E1,F, g1) € Cs, 91(0g, ¥0) = 4o, and
flz+ 20 +£(g1(x,v))) = v for (¢,v) € Uy. Differentiating with respect to v,
we get 82g1(0g, o) = idF .

Put go : U1 3 (z,y) > =+ zo + £{g1(x, v)). Then (E, G, go) € C;, and
we have

(%) 9008, %0) =2 and (fogo){z,y) =y for (z,y) € U

Taking into account the direct sum decomposition of &, we can check that
9o 1s injective. However, we do not know whether (G, Fy, g5 1) e Cs. To
prove that a suitable restriction of gg is a local diffeomorphism, we make
another application of the Implicit Function Theorem.

Let (f3 = G x F, and consider the map f; = (Gq, F, f2), where fa(z,7) =
a1(p(z — 20}, y) — fa(z — z0) for (p{# — 2),y) € Uy. Then f, satisfies the
requirements of the Implicit Function Theorem with fa(z0,%) = vo and
82 f2(20, yo) = idr . So we find open neighbourhoods Uy and Vi of zg and yg
in G and F, respectively, and a function gy : Uy — V; satisfying (G, F, g3) €
Cs and g(p(z ~ 20), g2(2)) = yo + £1(z — %) for all z € U,. We also have
92{z0) = %o

Let h: Uz 3 z = (p(z — 20), 02(2)) € By, and put g = go|(mngh). Then
(G,Ey,h) € C, and rngh C domgg. In order to show (B1,G,g) € C4, it
suffices to show that rngh is open in By. For all z € U, we have

90(h{2)) = go(p(z — 20}, ga())
= p(z = 20) + 2o + (g1 (p(2 — 20), 92(2)))
= p(z) — p(20) + 20 — £(y0) + £(y0) + £(41(z — =)
= p(z) — p(20) + 20 + p1(2) — p1(20) = 2.
Hence h C g;''. Then mgh = g7 Y (dom b} = 9o - (Us) is open in Ey, because
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go is continuous. From h € g5 and g = go|(rngh) it follows that g~ = A.
From (%) and (Og,yo0) = h(z0) € rngh, we see that g satisfies the remaining
assertions. m

In Banach space calculus there is a corresponding “dual” theorem to
Proposition 2.4 above; cf. [7; p. 16, Corollary 1s] or [3; p. 215, A.9]. Here
we cannot prove such a theorem, because we would need an inverse function
theorem for maps between general Fréchet spaces.

‘We now prove our Theorem stated at the beginning. Tangent spaces and
tangent maps are defined as in [7; pp. 26-27)].

Proof. For given z € f~2(5), it suffices to find a chart (¢, E) for M at
z such that for some pairwise complemented topological vector subspaces
E' and E" of E, the set ¢{(f*(8)) is included and open in E'. To prove
this, choose charts (¢1,G) € M at z and (¥, F) € N at y = f(z) such that
for some pairwise complemented Banach subspaces Fy and Es of F, we have
Fy (i (eng ) = (S) and the latier set is open in Fy. Let g be the projection
F — By, and put ¢ = gotpo f 0¢7*. Then we have the commutative diagram

M — > »T,N—">T,N/T,S

T

E.
G oereer @ @ 2
where = means linear homeomorphism. To apply Proposition 2.4, note that
@' (1 (z)) = go((xpo fo gbl_l)’(qbl(m))), and use conditions (1) and (2} of
our Theorem. So we find a Fréchet space Eq and a local diffeornorphism
9 : E = By x By — G such that 8(0z,,¢(1(y)}) = ¢1(z) and pBu,v)) =
for (u,v) € dom#@. Writing ¢ = (87" o ¢1)|{f " (dom4})), we get a chart
(¢, E) for M at z. Moreover, we have
S(FHSY) = 07 (g (FH(S) N F 7 (dom 1))
=671 (7T W TSN
= 07 (fTH Y HFL O (xng ¥)))))
= 071 (F ™ (g7 0R)))) = (90 6)7H{0r)
= (Ey x {Op}) N (dom 8),
which is open in the topological vector subspace FE' =E x{0p}ofE. =
9.5. COROLLARY. Let k € NU {oc}, and let f : B 2 dom f — F be 'z'ﬂ,
O* with E Fréchet and F Banach. Let y € rng f, and let ¢ be the zderitzty
either on dom f or on E. Then, under conditions (1) and (2) below, f“ (y)
is a submanifold of the manifold generated by the atlas {(¢, E)}. Condition
(2) is superfluous if F' is finite-dimensional.
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(1) fi(z): E — F is surjective for all 3 € f~(y),
(2) Ker f'(z) is complemented in E for all x € F1(y).

Under the conditions of Corollary 2.5, one can prove that the manifold
topology and the induced subspace topology of FHy) coincide. One can
also see that the submanifcld has an equivalent atlas modelled on closed
subspaces of F having complements linearly homeomorphic to £.
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Embedding of random vectors into continuous martingales
by

E. DETTWEILER (Tiibingen)

Abstract. Let E be a real, separable Banach space and denote by LD(Q, E) the space
of all B-valued random vectors defined on the probability space f2. The following result
is proved. There exists an extension 2 of {2, and a filtration (Ft)ezo on 2, such that
for every X € L%(2, E) there is an E-valued, continuous (F:)-martingale (Mi(X))po in
which X is embedded in the sense that X = M, (X) a.s. for an a.s. finite stopping time .
For £ = [ this gives a Skorokhod embedding for all X' € L%(2,R), and for general E this
leads to a representation of random vectors as stochastic integrals relative to a Brownian
motion.

1. Introduction. In 1960 Skorokhod [11] proved that for any mean zero,
square integrable random variable X there is a Brownian motion (B:)s>o0
and a stopping time 7 such that X and B, have the same distribution. There
now exist a series of different proofs of this so-called Skorokhod embedding
(cE. [1], [2], {5] and [8]). One possibility to get Skorokhod’s result is the
following. First one constructs a continuous martingale (Ms)o<as<1 such that
X = Mj a.s. Then by the theorem of Dubins and Schwarz [6] there exists
a Brownian motion {Bi)syo such that M; = B,,, where 7, = [M](t), the
quadratic variation of (M) at time ¢. In particular, one gets X = My = Br,
a.s.

The Skorokhod embedding is a result for one-dimensional random vari-
ables and in general one cannot expect similar results for random vectors
with values in R™ or—even more general—in a Banach space. For this reason
we consider another type of embedding, which is not so restricted to the real
line. We embed random vectors into continucus vector-valued martingales
with the additional nice property that they are stochastic integrals relative
to a Brownian motion.

In §2 we first consider the case of integrable Banach space valued random
vectors. If L1(2, ) denotes the space of all integrable random vectors de-

1691 Mathematics Subject Classification: 60G44, 60HDB, 60B11.
Key words and phrases: Skorokhod embedding, martingale, stochastic integral, Brow-
nian motion.
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