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(1) fi(z): E — F is surjective for all 3 € f~(y),
(2) Ker f'(z) is complemented in E for all x € F1(y).

Under the conditions of Corollary 2.5, one can prove that the manifold
topology and the induced subspace topology of FHy) coincide. One can
also see that the submanifcld has an equivalent atlas modelled on closed
subspaces of F having complements linearly homeomorphic to £.
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Embedding of random vectors into continuous martingales
by

E. DETTWEILER (Tiibingen)

Abstract. Let E be a real, separable Banach space and denote by LD(Q, E) the space
of all B-valued random vectors defined on the probability space f2. The following result
is proved. There exists an extension 2 of {2, and a filtration (Ft)ezo on 2, such that
for every X € L%(2, E) there is an E-valued, continuous (F:)-martingale (Mi(X))po in
which X is embedded in the sense that X = M, (X) a.s. for an a.s. finite stopping time .
For £ = [ this gives a Skorokhod embedding for all X' € L%(2,R), and for general E this
leads to a representation of random vectors as stochastic integrals relative to a Brownian
motion.

1. Introduction. In 1960 Skorokhod [11] proved that for any mean zero,
square integrable random variable X there is a Brownian motion (B:)s>o0
and a stopping time 7 such that X and B, have the same distribution. There
now exist a series of different proofs of this so-called Skorokhod embedding
(cE. [1], [2], {5] and [8]). One possibility to get Skorokhod’s result is the
following. First one constructs a continuous martingale (Ms)o<as<1 such that
X = Mj a.s. Then by the theorem of Dubins and Schwarz [6] there exists
a Brownian motion {Bi)syo such that M; = B,,, where 7, = [M](t), the
quadratic variation of (M) at time ¢. In particular, one gets X = My = Br,
a.s.

The Skorokhod embedding is a result for one-dimensional random vari-
ables and in general one cannot expect similar results for random vectors
with values in R™ or—even more general—in a Banach space. For this reason
we consider another type of embedding, which is not so restricted to the real
line. We embed random vectors into continucus vector-valued martingales
with the additional nice property that they are stochastic integrals relative
to a Brownian motion.

In §2 we first consider the case of integrable Banach space valued random
vectors. If L1(2, ) denotes the space of all integrable random vectors de-
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Key words and phrases: Skorokhod embedding, martingale, stochastic integral, Brow-
nian motion.
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fined on a probability space {2 and taking values in a real, separable Banach
space F, then we prove the following result {Theorem 1). There is a uni-
versal extension {2 of {2 and a universal filtration (§;)o<t<i on §2 such that
every X € L1(£2,E) can be embedded into an E-valued (F;)-martingale
M(X) = (Mi(X))o<t<1 on §2 in the sense that M;(X) = X. The map
X — M(X) is linear and has also nice continuity properties.

In §3 we analyse the structure of the constructed martingales M(X). It
is proved that there is one Brownian motion {B;)s>0 such that

t
M,(X) =EX + | Fu(x)dB
0
for every martingale M(X), where F(X) is a progressively measurable,
E-valued function, which is explicitly constructed from X. In particular,
for t = 1 we get
1
X =EX +|F.(X)dB,.
0
In the last section we first show that the embedding of random vectors
into continuous martingales can be done even for non-integrable random
vectors (cf. [7] for a related result in a more special situation). If L°(12, E)
denotes the space of all E-valued random vectors, then we show that there
is a universal extension 2 of £2, a universal filtration (3,;) on .Q and for
every X € L°(£2, E) an (§,)-martingale M(X) = (My(X))szo such that

X =M., ({X)

for some a.s. finite stopping time 7x (Theorem 3). Similarly to §3 this leads
to a representation

TX
x =\ F(x)dB,
0
for every X € L°(2, E).

As a by-product we obtain for £ = R a classical Skorokhod embedding
for all random variables, integrable or not.

2. A universal embedding of random vectors into continuous
martingales. Let (¥, || - ||} denote a real, separable Banach space provided
with its Borel fleld B = B(E). We write E' for the topological dual of B,
and for z € F a.nd z' € E' we denote by {2',2) or {z,z') the value of
the linear form 2’ at z. If £2 = (2,F, P) is a fixed probability space, then
L°(£2, E) denotes the space of all E-valued random vectors defined on {2.
IP(2,E) (1 < p < o0} is the subspace of all X € L°(2, E) such that
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| X]p == (B|X||P)YP < oo, and L5(2, B) denotes all X € LP({2, E) with
EX =0.

If 2 = (2,F,P') is another probability space, then the probability

space
R=0x0=02x2,39%,PaP)
is called an extension of {2.

If 7 = £2 x { is an extension of 2, then every X € LO(£2,E) can be
canonically extended to an X € LP(f2, E} by defining X (&) = X(w) for
@ = (w,w') € 2. If there is no danger of confusion, we will write again X
for the canonical extension X of X.

If §7 is an extension of £2 of the form 2 = 2 x...x ' x... with 2/ = (2,
then for every X & L°((2, E) the random vector X' € L%({2, E), given by

X (@) =X fow=(w...,, .. )

is independent of the canonical extension X of X, and we will call X' the
canonical independent copy of X on (2.

For our results we need an additional probability space (S, X, Q) with
a filtration (Z;)s>o such that there exists a (X;)-Brownian motion (Bt)ez0
on §. We agsume that By = 0. Then the hitting time 7 of {—1/2,1/2} is an
a.s. finite stopping time and the stopped Brownian motion (Biar, 2je>0 18
a bounded, continuous martingale such that

QB, =-1/2] =Q[B. =1/21=1/2.
Now we define
L = B(.1og(1-s})Am
(21) Hs = E(—iog(l—s)) (fOI' 0<s< 1),
Li:=B, and H;:=o(Z t>0).
Then (L, Hs)o<s<1 is a bounded continuous martingale with the quadratic
variation
(2.2) [L](s) = (—log(l~s)) AT
‘ 1
Sl[o 1—~exp(—)[{ )

dr (0<s<1).
l—r

For a given ﬁltratmn (Fihier (I C B) on a probability space {2, we
denote by M(£2, (F:)ier, E) the space of all (F:)rer-martingales on {2 w1th
values in E.

TueoreM 1. Let 2 and E be guen. Then there exists an extension 2
of 12, a filtration (§¢)05t51 on (2, and a map
M Ll(nv E) - M(ﬁ, (gt}ﬂéfélﬁE)

with the properties:
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(1) For every X € LY, E) the martingale M(X) = (My(X))oge<1 8

continuous on 10,1] and a.s. continuous at 0.
(2) My(X) = X (more precisely: M1(X) = X, the canonical extension
of X to 7} and Mp(X)=EX.

Proof For every k > 0 we set {2y = {2 and S = .5 and define

(2.3) =[] % = [ 8-

k>0 k>0

Obviously, 7 is an extension of £2, and we identify every X € L*(£2, F) with
its canonical extension to 2. We set Zy = X and denote by Z for k > 1
the canonical independent copy of X on {2%. Similarly, we define for every
k = 0 the process LF = (L Jogs<1 on 2 by

Li@) = La(éx)
for 0 < 5 <1 and @ = ((wy);20,(&)5>0). If mg, denotes the projection

from {2 onto Sy, then H¥ := x5!(H,) defines a filtration on {2 such that

every process L* is an (H¥)-martingale and that the sequence (L*)p>p is
independent. By definttion of the process L we have

BlL¥ = —1/9] = PIL¥ = 1/2] = 1/2,

and hence the sequence (ex)r>0, given by & = 2L’f for every £ > 0, is
an independent sequence of Bernoulli random variables. Now we define, for
every n > (0,

an -1
Xogon =271 Z Zy,
k=0
anttg
(2'4) ch_ﬂ =2 " Z Zk,
P

AXg-n 1= ep{X3-n — X5...), and finally
My(X) = Xy—neny + AXgn - Lnpr,_;  (for 2=(»F1)
‘For t = 27" we obtain from the last definition
My-n(X) = Xgmtness + 62 (Xpmr — X§o) = Xyom,

and the continuity of the processes L™ implies that the process (M;(X))o<i<1
is continuous. By the strong law of large numbers for Banach space valued
random vectors (cf. [9], p. 131) we have X3~ — EX a.s. for n — 0o, and so
the definition Mg(X) = EX gives a process M(X) = (M; (XNo<i<t Wh:l.ch lS
continuous on ]O 1] a.s. continuous at 0, and has the properties M; (X) =

and Mc (X)

<t<27M)
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It remains to prove that there is a filtration (F;)a<e<1 on 2 such that for
every X € L'(2, E) the process M(X) is a martingale relative to (F;)o<e<1-

For every n > 0 we first define
(2'5) On1 1= O'(AX2~'":X2—(m+1);X € Ll(.Q, E),m > n)
Then we claim that G,.1 and the process L™ are independent.

Indeed, we have

Ont1 = o (Xg-tm+n + FAXy-m, Xpominy = FAXgm;

m > n, X € L}{2,E))
O"(.Xz--(n-{—l) -+ %sz—n y XZ—(TI+1) - %Axg—ﬂ B chmm, Lm;
m>n+1, X € LY2, E)),

and it follows that it is sufficient to prove that L™ and o (Xp—tnrn) +3 AXg-n,
Xo—(nsay = —AXZ n; X € LY(2, E)) are independent.

Take X1, ..., X(m & LY, E). Then (2.4) gives the E™-valued ran-
dom vectors

)?2..", = (Xé];)n, PR
such that

AXomu = (AXD)gen,. .,

For 0 <t < ... <ty <1 wewrite L* = (IZ,,...,
A,B e B(E™) and C € B(RF) we get

}3[5(‘2»(“—9-1) + %ﬂj‘fg—n €A, Xz—(n-f—l) — %AX2—n e B, I e G]

—P[X,-nc A X5 €B, en=1, L* (]

XMy and Kgn = ((X®)5n, o, (X™50)

AX™)yn) = en(Xg-n — X5 0).
L}, ). Then for any

+P[Xs.cA XyneB, en=-1 I"€C]
= P[Ry-nc AP X € BlPlen =1, I" € C]

+ PR, € A|P[Xyn € BlP[ea=—1, I" € C]
= B[Xy-n € AP [Xpn e BIP[I" €],

since )?gmn and X¢_, are independent and bave the same distribution. For
C = R* we have in particular
P[Xy-n € AJP[Xy-n € B _ ~
= P[X)-ttn + 58K € A, Xp-tnin) — LAX,-n € B],

and the independence of I™ and Xz ey + 35 LAK -, Xgminin — —AX2 n
is proved.
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Now we define the filtration (Fe)o<i<r as follows. For t = 0 we set Fo =
{0, 2}, and for ¢ € 1270+ 277] (n > 0) we set

(26) @t = G'(gn+1 U U HT L Hgn+1t__1)a

m>n

The definition of Gn41 shows that M;(X) is §;-measurable, hence M{(X)
is (F.)-adapted for every X € L*(£2, E). For the proof of the martingale
property it is sufficient to show that for every n>0 and -t < g ot
we have

E[M;(X) — M.(X)|5s] =0 as
From (2.4} and the G, y;-measurability of AX;-» we get
E{M (X) — M (X) | To] = ElAX g (Lnrssy — Dinrny—y) | 5
= AXy-nB[L3n1y g ~ Lhnt1, EAP
By the proof above, L" is independent of §2~(n+1), and hence
E[Lgﬂﬂtﬁl - Lg"“’ls—l |§S]

=B[LGns1, g — L,y |H3n+13—1I =0 as,

since L™ is an (H})-martingale. This finishes the proof of Theorem 1. w

(2.7) REMARKS. (1} A closer look at the construction of the univer-
sal map M shows that M is linear. Moreover, it follows from the Doob
inequalities that M also has nice continuity properties. Let us define on
M(£2, (Bt)oct<1, B) the following functional: For every (F,)-martingale
Y = (Ift)ogtgl we set

M{Y) =inf{a>0|sP [Os<up Y3l > as] < a for all s > 0}.
<t<1

Then di(Y,Z) = M(Y ~ Z) for Y,Z € M2, (Fi)oce<t, E) defines a
metric on M({2, (§;), E) (cf. [9], p. 12) and we write M1((Z, (§,), E) for

M(12, (%), E) provided with this metric. Now Doob's inequality together
with Theorem 1 gives

5P| sup [M(X)] > o] < B34, ()] = B X,

which implies A1 (M(X))? < E||X|| (cf. [9], p. 13) for every X € L1(42, E).
Hence M : L}((2, B} —» MW({2,(§,), E) is a continuous linear operator.

_ Similarly, let MP(2,(F:), E) denote the space of all p-integrable
(8¢)-martingales (p > 1) provided with the norm

1Y [lp := (E sup |[¥g]|P)Y/>.
0<t<1
The construction in Theorem 1 shows that

M(LP(92, B)) ¢ MP(2, (), B),
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and Doob’s maximal inequality gives
d
MX)|, £ —— .
IMX)lp < - 71X

Hence also the restriction of M to LP((2, E), which we again denote by M,
gives a continuous linear operator

M LP(0Q,E) — Mp(ﬁ, (%), E)
in addition to the properties stated in Theorem 1.

(2) If E = R, then the embedding of X into the martingale M (X) can
be used to obtain a so-called Skorokhod embedding of X into a Brownian
motion. For every single X € L}(2, E} we may assume that M (X) is contin-
wous on [0, 1]. From the theorem of Dubins and Schwarz (cf. e.g. [10}) we get
the existence of a Brownian motion (B{, B );>0 such that M(X) = B
a.s. with 7, = [M(X)](£). In particular a.s. X = B for r = [M(X)](1). For
X € L2(2,E) (p > 1), the Burkholder-Davis-Gundy inequality (cf. [1op
then implies that Er?/2 < CE|X|?, where C is a constant not depending on
rand X.

3. Integrable random vectors as stochastic integrals. In this sec-
tion we use Theorem 1 to show that every X € L}(12, E) can be represented
as a stochastic integral relative to a Brownian motion. We denote by

P2, (Feher, B) (I CRy)

the space of all functions f : I x £2 — E which are progressively measurable
relative to the filtration (Ft)ter-

THEOREM 2. There emist an extension 2 of 12, a filtration (%t)ggtg
on 2, an (%t)-Bmwm‘an motion (B0, ond o linear mop
F L2, B) — P2, (Feoges, B)
such that the following properties hold for every X € L2, E). If we cffnote
by F(X) : § — E the random vector given by Fy(X)(@) = F(X)(t,&) for
T & 2, then for cvery z' € E', :
i
(1) S (F(X),2')?dt <o a.s., and
a

(2) (x,o') = | (F(X),z') dBk.
0

Proof. Let M : L, E) — M(Z,(F.), E) denote the universal map
of Theorem 1, and let (L*)i>0 be the independent sequence of stopped
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Brownian motions introduced in the proof of Theorem 1. Recall that

Ly =Bl ioga—spare (0585 1),

where 7F is the hitting time of {~1/2,1/2} of the Brownian motion B¥. Let
(ax)kz0 be a fixed sequence of positive numbers such that },.,ax < oo.
Since L = B, € {~1/2,1/2}, the series 3", axL¥ converges everywhere.
Now for every n > 0 and 2~ ("+1) < £ < 27" we define

=Y oL} +anllurs,y and No=0.
k>n

Then (N;,§:)o<e<1 i a continuous, bounded martingale on 2.
For a given X € Lj(2, E) we define a function G(X) : [0,1] x Z — E by

Ge(X) 1= {GEIAX;;—" for 27" < ¢ < 277
¢ fort =1.

Then G(X) is left continuous and (§,)-adapted, and therefore progressively
measurable. From {2.4) we obtain

ne-1
X — Myn(X) = Mi(X) - Myn (X) = > AX, 4 I}
k=0
n—1 13
=3 ai ' AXpwarZf = | G,(X)dN,,
k=0 a~n

and limg, oo Mz-n(X) = 0 a.s. shows that

1
(3.1) X ={G,(X)dN,.
0

Next we compute the quadratic variation of (V). From
Ny — Nz—(n-{—l) = GnLgﬂ+lt_1 for 2~(ﬂ+1) <t < 2"
and

&

[271(s) = § 1pp,1-exp-rmyi(r) 5

0

1

dr
—
we obtain

(3.2)  [N(t) ~ [N}(2~(nH1))

— 2
= a,n S 1[2—(n+1)!2—n__2—(n+1)e_,,-n[(u)

2—(n+1)

Now let v [0,1] x 2 — R, be the function defined by

du.
U

2—n
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2 1
H(t) = a/n1]2—[n+1)’2wn_2—(n+l)e——f"](t) E—

for 2= 1) < £ £ 27" (n 2> 0) and (t) = O for ¢ = 0. Then} is (F,)-adapted
and left continuous, and hence progressively measurable, and it follows from
(3.2) that

3
(3.3) [N)(t) = S ¥(s)ds.
0
By a theorem of Doob (cf. [10], p. 170), (3.3) implies that there exists an

extension {2 of 2, an extended filtration (E Jo<t<i, and an ({3‘}) Brownian
motion {B¢)o<i<1 such that

(3.4) N, = | Vils) dB,
1]

Now we define

(3.5) F{X) = Go{X)/1(t)

for0 £t < 1.

1
= AXp-nljg ) {—log(2 - 2"+1t))—~—__2_n —

forn > 0 and 2=+ < t < 27°, and Fy(X) = 0. Then it follows from (3.1)
and (3.4) that

1
(3.6) X = {F(X)dB,.
0
Assertion (1) follows from
1
(3.7) | (F(X), ) db = S (AXgn, @)
0 n>0

= [(M(X),2"}|(1) < o0 as,

where [(M(X),2')] denotes the quadratic variation of the one-dimensional
continuous martingale (M(X),z’). This finisbes the proof of Theorem 2. =

{3.8) REMARKS (1) The proof of Theorem 2 shows that the stochastic
integral S Fy(X) dB; exists as an element of L}({2, E), whereas in general for
a given progxesswely measurable function G : [0, 1] X 2 — E the stochastic
integral S @, dB, need not exist even under strong integrability conditions
such as ]ES |Gy]|2 dt < oo (cf. [3] and [4]). The reason for the existence of
S][; Fi(X) dB; is that F(X) is a very special limit of elementary functions.
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(2) The universal map F of Theorem 2 can easily be extended to all of
12, E). Just define F(X) := F(X — EX). Then for every X € L' ({2, E)
we have the representation

1
X =EX +|Fi(X)dB;.
0

(3) Since Er™ = E(BM.)? = 1/4 and E{AXp-n,z')? = 27"HE(X, 2')2
for X € L*(£2, E) by the definition of AX;—=, it follows from (3.7) that in
that case we have

1
E| (R(X),z)? dt = B(X,2) < 0.
0

Similar to M, also the universal map F' has certain continuity properties.

(3.9) CoroLLARY. Let F be the universal map of Theorem 2. Then F
has the following continuity properties.

(1) For every 0 < v < 1 and every § > O there cxists o constant C > 0
such that for all A > 0 and oll X € L{(12, E),

= c
Pl sup B0 > X < 8+ SE|X].
r<t<1

(2) If E is a Banach space of type p (1 < p < 2), then there emists o
constant Cy, such that for oll X € I5(12, B},

1
S 1E(X)|7 dt < CLE||X |-

Proof Let 0 <+ < 1and 6 > 0 be given. If 2-(™*1) < 7, then it follows
from (3.5) that

(3.10) sup [FUX)| < sup [|AXgen||VEHIeT,
r<i<l 0<n<m

The definition of AX,-» shows that
(3.11) ”AXz—niE = 2H.X2—n - .X2—(n+1) H

We set &, 1= 24/27F1e™ (0 < n < m) and choose the constant € > 0 such
that

(3.12) | _5[0233;{ & > C/4] < §/2.

Then for every A > 0 we get
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P[ sup. £ > A
<F, mae |AXp- VI >3] (by (3.10))

< Pl max [[Xz-n = Xp-enl§n > Al (by (3.11))

< P[nglsxm [ Xo—n [|€n > A/2] + ﬁ[og}gmllxz—wmﬂﬁn > A2
<5+ QP[OS{&%H 1 Xo-n]l =>2X/C] (by (3.12))
<5+ (C/MEXY,

by Doob’s inequality applied to the martingale (Xo—n)p>o (X = X3-0). This

proves (1).
From (3.5) we obtain, for 1 <p < 2,

1 be
613) VB =Y A ]? | @ - e,
0 n>0 Qn
where ap = 2~ and b, = 277 — 2= (D exp(—m). For 1 < p < 2 we
get
bry 9"
jerm-n—ra< | @"-0*Pd= ),
G 2—{n+1}

and for p == 2 we have
br
[ @™ —ptat=rm
If E is of type p, then
E||AX g-n [P = B|| Xp-n — Ya-nllF < 272" T CLE|| X |7,

where €, denotes the type p constant (cf. [9]).
Hence for 1 < p < 2 we have
1
Ef IR X)Pdt < 5 cpEnx;\P Y gregntigmiFRnd)
0 720

al+p P
= Goper-p rE

and for p = 2 we have
1
E{ IR (0] dt < GE|X|? Y272 HE™ = GE|X|,
0 nz0
and the corollary is proved. w
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4. Non-integrable random vectors as stochastic integrals. In this
section we show that Theorem 2 can be extended to the space of all random
vectars. The lemma below is the essential step for this result.

(4.1) LEMMA. Let 2 and E be given. Then there exists an extension 0
of 12, a filtration (Fn)n>0 on 12, and ¢ map

M L0, B) = Mo(82, (Bndnso, B),

whej:e Mg(ﬁ, (%n)nzo,E) denotes the space of all (@n)—ma'r‘tingales (Mn)nzo
on 7 with values in E with My = 0, such that for every X € L2, B),

lim ﬂn(X) =X eventually a.s.,

=00

where limz, = x eventually (zn, z € E) means convergence relative to the
discrete topology.

Proof. We take a probability space 2 such that on 2 there exists an

independent triangular array (ex,;)x>1,1<5<k of Bernoulli random variables.
Then we define

Q = {2 % -Q,,
(4.2) Fn=0a(X €LYR,E), ey (k<n, 1< < k), and
@O = {@, ﬁ}

For every X € L°(02, E) we set X; = 1[j_;<|x(<;X. Then we define an
E-valued process M) = (M;gj))kzo by

M —o
4.3) MY =e;,%;

for k < 4,
for k = 7, and
MY = MO, 4 ey e, =257 X for k> G

Then MY € Mo(82, (Fe)rz0, B) and limy_o MY = X; eventually a.s.
Indeed, for & > 7 we obtain

E[M}EJ) - MJE“L)]_ ng““]-] = -'[E[.']'[F.‘j,j=—1,...,E].;_11 gr— 1 Ek,ij_jX' ‘ @km—l]
M ] M
= 1[53‘73‘:—1:'«--51:—1.:‘:—1]zkaX:iE[Ek,j i%]c—-l] =0,

because of the obvious independence of £,; and Fr—1. Similarly, we have
IE[EW}J) | §5-1] = 0, and we have proved that M) is an (Fz)-martingale.
Now we define

oj :=inf{k > j|ep; = +1}.
Then it is easily proved by induction that

M,Ej) = {2k _ 1)X; for k < oy,
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and it follows that

M@ =X; ifo;< oo,
But Ploy = oo] = Pley; = —1 for all & > j] = 0. This shows that
lirmng oo Méj) = X, eventually a.s.

Now we define Mj, = E?:l M,EJ) for k > 1 and Mgy = 0. Then (Mg)g>0 €
Mo (@, (Bi)kz0, B). For N = |J;5,[05 = co] we have P(N) = 0 and on
[ — 1< IX]| <41\ N we have

My, = M;gj) =X foral k>o;.
So we have proved the lemma. w

(4.4) REMARK. The universal map M is no longer linear as the uni-
versal maps defined before. The reason is the splitting of X into the inte-
grable parts X,;. For L'((2, E) there is indeed a linear universal map into
Mg(ﬁ, (%k,), E) such that the assertion of the lemma holds.

THEOREM 3. Let 2 and E be given as before. Then there exist an ex-
tengion 2 of £, a filtration (Fe)e>0 on {2, and a map M : Lo, B) —
Mo(2, (Fe)izo, B) such that for all X € L2, E),

(1) the martingale M(X) = (M:(X))sz0 is continuous on Unsolm,n+1[
and a.s. continuous at the time points t € Zy,

(2) limgmsoo My(X) = X eventually a.s.

Proof. Let M be the map of Lemma 4.1 and denote by &,, : L(£2, E) —
L3($2, E) the map given by

B (X) 1= Mn(X) — Mp—1(X)
for n > 1. For every n = 1 we set

Q(n) no ﬁ X H -Qn,k x H Sn,k
k>1 k>0

with 2,0 = Gfork>1and S, p=5for k=0 (for the following, cf. the
proof of Theorem 1), and we denote by L™* the copy of L on Sy, x and by
{H?'k)(]gfsl the corresponding filtration. Furthermore, we set
Gkt = U(AXz—j,Xz—u+1);j >k Xe @n(LO(Q:E)))
and define .
(M = ‘T(gn,kﬂ ulJHm UH;ém_m)

m>k
for 2~ (41 <+ < 27k (k > 0) and F5¥ = {8, 2™}
From Theorem 1 we get & map
Mm@, (L2(02,E)) — Ma(2)( Nogier, B)
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such that for every Z € @,(L°(12, E)) the martingale M‘™)(Z) is continuous
on |0,1], a.s. continuous at 0, and has the property Ml(n) (Z) = Z. Finally,

we set
= % [T { TT o % I] S0}

n>l k>l k>0

and use the same notation (E,E”))Osfsl for the filtrations on £ canonically
induced by the filtrations (Eén))oggl on £2{™ . This gives a sequence of maps

M™ : 8, (190, E)) = Mo(Z, (3)ozi<1, E)

with the properties stated above.
Now we can define the filtration (§;):>0. We set

Fo:=c(L°(02,E)) and 3, := or(%_”g U U &&m) u%’ﬁiﬁ”)
mn
forn<t<n+1{n>0).
For a given X € L%12, E) we now define HU(X) =0 and

(4.5) M(X) = Mo (X) + MV (34(X))

forn<t<n+1(n=0).

- By the definition of the filtration (?t)tzg and Theorem 1, every process

M(X) is (§;)-adapted, continuous on every open interval |n,n + 1{ (n = 0),

left continuous at every n € N and a.s. right continuous at every n € Z,.

We now show that M (X) is also a martingale relative to the filtration ().
For the martingale property it is sufficient to prove

(4.6) EMpi1(X) — Ma(X)|Fn] =0 as.

for n > 1. Indeed, let §r, ; denote the o-algebra on the probability space

2, (m 21,7 > 1). From the definition of the filtration (F,);>q it follows
that -

5o co(@ue( U 2@ m)) U | $msu | H0)

men m<n m<n

Jjz1 kS0
CO’({rf.nU U 'S:m,]U U H;nak') = An_
msn man
iz1 k>0

Since Mn11(X) — Mn(X) = M1 (X) — Mo (X) is independent of

U {fm,jU U H;nﬂk’

msn m<n
jz1 k>0
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we get

— — ——

(M1 (X) = Ma(X) | B = BE[Mn 1 (X) = Mo (X) | A] | o]
= BE[Mns1(X) = Mo (X) |Bal Bl =0 s
by Lemma (4.1), and we have proved (4.6).

For a given X € LY, E), from Lemma (4.1) we have lim,_, ﬂn(X)
= X eventually a.s. If we set

Fx =inf{n 2 1| Mo(X) = X},

then ng (X) = ng (X) = X a.s. Now suppose that we have enlarged
every &, by all P-nullsets. We use the same notation {{f;):»o for this enlarged
filtration. If we define

ox =inf{t > 0| My(X) = X},

then the deﬁnition of (@t)tzo and the continuity properties of M (X) imply
that ox is an (F¢)-stopping time, and hence the definition

My(X) = Minor(X) (£20)

yields an (F;)-martingale M (X). Since ox < ox we have im0 My(X)
= X eventually a.s. m

For the case B = R Theorem 3 can be used to get a Skorokhod embed-
ding for every random variable X € L°(2,R).

(4.7) COROLLARY. For every X € LY (§2,]) there exisis an extension 2
of {2, a Brownian motion {By, Bi)izo on {2, and a (B )-stopping time Tx
such that X = B, 0.5

Proof. For every fixed X we may suppose that the martingale M (X)
is continuous. The theorem of Dubins and Schwarz yields an extension {2
of {7, a Brownian motion (B, B)iz0 on 2 and an increasing family (7)e=0
of (By)emo-stopping times (7 = [M](t)) such that M(X) = Bn-a.s..for
every t > 0. Define o = inf{t > 0 | My(X) = X}. Then o is a stopping time
for (B, ). Set

k+1
o =) o o ebn)/ 27
k>0
Then
[y €8] = | rerayer SUR/2" S0 < (k+1)/2"]
k20 .

shows that 7, is a (3B:)-stopping time. Assuming ﬁhat (B )ezo is right
continuous, we deduce that.7, is a (B,)-stopping time. Hence we have
X =M, (X)=B:y as.for7x =75 m
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THEOREM 4. Let 2 and E be given as before. Then there exist an exien-
sion {2 of 2, a filiration (§t)izo on {2, an (§:)-Brownian motion (Bi)i>o,
a@ map

F: LO(.Q, E) — P(Qa (gt)tzﬂa E))
and o map
7 LY, B)Y — ()
(where we denote by (e(F:) the family of all a.s. finite (F1)-stopping times),
such that for all o' € E/,

(X)
(1) S (F(X),z¥dt <o as., and
0
{X)
(2} X,y = | (F(X),2')dB:.
0

Proof We proceed similarly to the proof of Theorem 2. Let M
L2, B) — My(2,(5:), E) denote the universal martingale map con-
structed in the proof of Theorem 3. Again, we take a fixed sequence (ag)k>0
of positive numbers such that ) y-qar < oo and start to define a one-
dimensional continuous martingale (Ny)s>o relative to the filtration ().
We set N = 0. Now suppose that N, is already defined for n > 0. Then for
t€ln,n+1] with n+2-5F) <t <n + 2% we set

(4.8) Ny 1= N o+ Z aﬂ'LTJ + a”"L;’ﬁl(t—n)—l'
F>k
Then (N¢)i>o is a continuous (F,)-martingale, and as in the proof of Theo-

rem 2 one computes that the quadratic variation [N] of IV is of the form
t
[V)(2) = | 9(s) ds,
0
where
B(E) = L1 muny(~ log(2 — 252t = n))) e
2=k — (t —n)
for n+ 27 < g <427k
Now we define G : LU(12, B) — P({2, (F:), E) by Go(X) = 0 and by
Ge(X) 1= a7  A(Mp11(X) — My (X))g-s
for n+ 27+ < ¢ <+ 27%. Similarly to (3.1) we then have
i
(4.9) My(X) = | G4(X)dN, forallt >0,
0
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and also

(4.10) [(M(X), =) ](2)

O e T D by o

(Ga(X), 2y d[N](s)

(Go(X),2"V2(s)ds < 00 as.

forallt >0 and ' € E'.

Since [V] has a density relative to the Lebesgue measure, it follows from
the theorem of Doob (cf. [10]) that there is an extension 12 of {7, an extension
(§)ezo of (Bi)ez0, and an (3;)-Brownian motion {Bi)s>0 such that

¢
Ny = {+/¢(s)dB,
0
for all t > 0. Therefore the definition

Fy(X) := Ge(X)/(2t)
for t > 0 gives a function F : LY, E) — P4, (@Q,E) such that for all

e B and allt >0,
t

(4.11) [ (Fu(X),2')?ds <00 as., and
0
(4.12) My(X) = ﬁFs(X) dB,.
0

Finally, we define 7 : LO(£2, B) — (¢(Ft) by
r(X) :=inf{t > 0| M(X) = X}.
Then (1) holds because of (411}, and (4.12) implies (2). =

References

[1] J. Azériaeb M. Yor, Une solution simple au probléme de Skorohod, in: Séminaire
de Probabilités XITI, Lecture Notes in Math. 721, Springer, 1979, 90-115 and
625633,

2] R.Chaconand ] B. Walsh, One-dimensional potential embedding, in: Séminaire
de Probabilités X, Lecture Notes in Math, 511, Springer, 1976, 19-23.

(8] E. Dettweiler, Banach space valued processes with independent increments and
stochustic integration, in: Probability in Banach Spaces 1V, Lecture Notes in Math.
990, Springer, 1983, 54-83.

4] —, Stochestic integration of Banach space valued fumctions, in: L. Arnold and
P. Kotelenez (eds.}, Stochastic Space-Time Models and Limit Theorems, Reidel,

1985, 53-79.



268 E. Dettweiler

[5] L.Dubins, On a theorem of Skorohod, Ann. Math, Statist. 39 (1968), 2094~-2097.
[6] L. Dubins and G. Schwarz, On continuous marlingales, Proc. Nat. Acad. Sei.
T.S.A. 53 (1965), 913-916.

[7] R.M. Dudley, Wiener functionals as It6 integrals, Ann. Probab. § (1977), 140-141.
[8] —, Real Analysis and Probability, Wadsworth & Broaks-Cole, 1989,
[9] J. Hoffmann-Jgrgensen, Probability in Banach spaces, in: Ecole d’T5té de Pro-

babilités de Saint-Flour VI, Lecture Notes in Math. 598, Springer, 1977, 1-1886.
[10] I. Karatzas and 8. E. Shreve, Brownian Mation and Stochastic Caleulus,
Springer, 1988.
{11] A.V.Skorohod [A. V. Skorokhod), Studies in the Theory of Random Processes,
Addison-Wesley, 1965.

Mathematisches Institut der
Universitdt Tiibingen

Auf der Morgenstelle 10
72076 Tiibingen, Germany

Recesved January 29, 1998 (4043)
Revised version July 12, 1998

icm

STUDIA MATHEMATICA 134 (3) (1999)

Convergence in nonisotropic regions of harmonic functions in B
by
CARME CASCANTE and JOAQUIN M. ORTEGA (Barcelona)

To the memory of Jeaquin M. Cascante

Abstract. We study the boundedness in ZF(S™) of the projections onto spaces of
functions with spectrum contained in horizontal strips. We obtain some results concerning
convergence along nonisotropic regions of harmonic extensions of functions in IF (8"} with
gpectrum included in these horizontal strips.

1. Introduction. This work deals with some topics related to the ex-
pansion of functions in L?(S"), S® the unit sphere in C”, in terms of har-
monic homogeneous polynomials H (r, s) of bidegree (r,s). The projections
K., of L?(S™) onto H{r, s) extend to L'(S") and permit defining for every
f € LY(S™) the spectrum of f, specf = {(r,s) € Zy x Zy : K.of # 0}.
The orthogonal projection from @, , H(r,s) to &, H(r,0) can be identi-
fied with the Cauchy-Szegé projection and it is well known that it can be
continuously extended to LP(S™), p > 1. What happens if we project to
other EB(T’ sgenH (r,8)7? This is a very difficult problem whose answer is not
known even for the Fourier expansions when n = 1. The first object of
this work is to study the boundedness in IF when (2 is a horizontal strip
ok = {(r,8) € Zy x Z : 0 < s <k}

It is well known that the harmonic extensions of LP(S") to B™ have a
limit a.e. along nontangential regions and that if the function is in H?, that
is, its spectrum is in Z, x {0}, then there is convergence along admissible
regions that are tangential in some directions, if n > 1. Is there any relation
of this fact with the spectrum of the function? The second topic of this
work is to study convergence along admissible and other tangential regions
of harmonic extensions of functions with spectrum in fZo.

The paper is organized as follows: in the second section we show that,

1991 Maothematics Subject Classification: 42B20, 32A40.

Key words and phrases: harmonic and holomorphic functions, tangential convergence.
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