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Convergence in nonisotropic regions of harmonic functions in B
by
CARME CASCANTE and JOAQUIN M. ORTEGA (Barcelona)

To the memory of Jeaquin M. Cascante

Abstract. We study the boundedness in ZF(S™) of the projections onto spaces of
functions with spectrum contained in horizontal strips. We obtain some results concerning
convergence along nonisotropic regions of harmonic extensions of functions in IF (8"} with
gpectrum included in these horizontal strips.

1. Introduction. This work deals with some topics related to the ex-
pansion of functions in L?(S"), S® the unit sphere in C”, in terms of har-
monic homogeneous polynomials H (r, s) of bidegree (r,s). The projections
K., of L?(S™) onto H{r, s) extend to L'(S") and permit defining for every
f € LY(S™) the spectrum of f, specf = {(r,s) € Zy x Zy : K.of # 0}.
The orthogonal projection from @, , H(r,s) to &, H(r,0) can be identi-
fied with the Cauchy-Szegé projection and it is well known that it can be
continuously extended to LP(S™), p > 1. What happens if we project to
other EB(T’ sgenH (r,8)7? This is a very difficult problem whose answer is not
known even for the Fourier expansions when n = 1. The first object of
this work is to study the boundedness in IF when (2 is a horizontal strip
ok = {(r,8) € Zy x Z : 0 < s <k}

It is well known that the harmonic extensions of LP(S") to B™ have a
limit a.e. along nontangential regions and that if the function is in H?, that
is, its spectrum is in Z, x {0}, then there is convergence along admissible
regions that are tangential in some directions, if n > 1. Is there any relation
of this fact with the spectrum of the function? The second topic of this
work is to study convergence along admissible and other tangential regions
of harmonic extensions of functions with spectrum in fZo.

The paper is organized as follows: in the second section we show that,

1991 Maothematics Subject Classification: 42B20, 32A40.

Key words and phrases: harmonic and holomorphic functions, tangential convergence.

Both authors partially supported by DGICYT Grant PB95-0956-C02-01 and CIRIT
Grant 1998-SGRO0052.
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as it happens with the Cauchy—Szegé projection, the orthogonal projection

o from L2(S™) onto L}, the space of functions in L?(S™) with spec-
trum in {2z, induces a bounded operator from LP(S") to L%, p > 1.
This will be proved by obtaining an explicit formula for the projections,
from which we deduce that they are operators of order 0, in the sense
of [NaRoStWa].

In the third section we show that the space of harmonic transforms of
functions in LP(S™) with spectrum in (%, behaves, with respect to admis-
sible convergence, very much like the space of holomorphic functions in
HP(B™). In particular, for such spaces of harmonic functions there exists a
strong I* estimate of the admissible maximal function. We also prove that
the theorem of Nagel, Rudin and Wainger ([NaRu] and [NaWa]), which
shows that for any function in H*°(B"}, there exist radial limits at almost
every point of a transverse curve, extends to bounded harmonic functions
with spectrum in 2g-

In the fourth section we study convergence in tangential approach regions
of harmonic transforms of nonisotropic potentials of functions in L, . The
spaces of potentials in Z*(S™), given by nonisotropic convolution with Riesz-
type kernels, coincide, in the integer case, with nonisotropic Sobolev spaces
on the unit sphere, and for the general case, when restricted to L%, | can be
obtained by the complex interpolation method. A direct proof of this last
fact is given in the appendix.

2. Boundedness in L*. We begin the section with some definitions.
Given 2 C Z%, Zy = {r € Z : r > 0}, let D syeaH (r,5) be the alge-
braic sum of all spaces H(r,s) with (r,s) € £2. Here H(r, s) is the space of
harmonic homogeneous polynomials in C* that have total degree r in the
variables z;, ..., 2, and total degree s in Z1y. .-, 25 Ik < m we will write
Qo = {(r,s) € Z2 1 k < s < m}. If X is a Banach space of integrable
functions on §", containing the spaces H(r,s), X will denote the closure
of 6_9(7,’5) en H(r,s) in X. The space of harmonic extensions of functions in
Xn will be denoted by Q[Xp]. The Poisson kernel in the unit ball is given
by ‘

_1-]#?
Q(z, () = W’
and if f € L*(S") and # € B", we denote the Poisson transform by
Q=) = § Q2 Q) F(C) dol(¢).
Sn

When X = L?(S"), the identification of the Hilbert space L% (S") with
its harmonic extension gives for each z € B" a function Cp(z,.) € L2(8™)

z& B, (e§®,
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such that for any f in Q[L3],
fz) = Ca(z,08(Q) do(0).
Sn
If K., is the kernel associated with the orthogonal projection from L2(S™)
onto H(r, s), it is shown in [Do] that for ¢ € S and z € B,
(2.1) Colz () = Z Krs(2,C).
(r,8)Ef.

The convergence is uniform in ¢ € $* and 2 in compact subsets of B*.
An explicit formula for the kernels K,, can be found in [All (see also
[Ruj). If z € B*, { € S", and n > 2, then

@2 Keulz:0) = Dlr, m(EL) (20°F (<1, ~s:n = 1,1- |LZEII2)’

where
(2.3) D(r,s,n) = (

is the dimension of H(r, s), and

_ - (@)
F(a,b,c,z) = kz_—_o ka

is the hypergeometric function (here (a); = a(a+1)...(a+k— 1)).
It is also well known that if z € §", then

(2'4) ”Kf‘s(za )I]z = KTS(ZVZ) = D(""s 8, 7’?,)

For r > s, it is also shown in [Al] that

r+n—2\/s+n—-2\r+s5+n-—1
7 3 n—1

12
(25)  Ka(20) = D{r, s,m)(aly ~*PL=m~" ('ﬁ“i)u

||?

8
= (27) (2}
L

are the Jacobi polynomials, orthogonal in L3([0,1},z%(1 ~ z)Pdz) to all
polynomials of degree less than s, normalized by the condition PA(1) = 1.
Observe that when 2 = 2o, Cy(2,¢) is the Cauchy-Szegd kernel and
when (2 = 72, Cp(2,¢) is the harmonic Poisson kernel Q(z().

First we will calculate, for any k € Z,., the kernel Cp,, (2, (). We want
to obtain an expression to which we could apply the theory of operators of
order 0 (in the sense of [NaRoStWal).

where
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For s € Z,, z € B*, and ( € §", we simply write C,(z,{) instead of
Cn,.(2,¢) and Gy, instead of Cg, -

THEOREM 2.1. Assumen > 2. Then for any z € B™ and ¢ € 8", we have

8 s{-n—2
B C(z¢) = Z%(w 212 (3)™

n-m+s-11  sn-m+s—2)!
x ( (]_ _ ZZ)n—m-(-s + (1 _zz)n—m+s—1)
(i) Conlz,¢) = (“ e 1) %1%
n =2 (B — 27)7H(1 - |f?)
+ Z ( ) (1 — 20y ti-1 :

REMARK. Since sz — 22| < |1 — 2|, the limit as k — oo of the first
summand in (ii) is zero, whereas the second summand tends to

1- [z (1_24—{#2)‘”” 1~ |of?
G=20n\ " ) T

the harmonic Poisson kernel in B",

Proof (of Theorem 2.1). If we use (2.5), we obtain

ZK‘-“-?(zi C)

r>s

_ Z (r+:—2) r+s+n-~1) (B

r>s -1

S ) ()
= Z—; ’“+n 'r’~f—i+n-—1)( )T‘—a

x {mi::o (s+n 2)( ) (12¢1% — |2%)° m|zC|2m}
= (r+f—i’; 2) (T+25+n )

>0

g {Eo (H:f 2) (;" “)(lzqu rz|2)“-m|z312"*}
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=~ ()
= mZ:U (n— 1)!(s —m)!
2 -1 =
o R e T (- Py
720
) (s+n——2) _
= X G T RO A 2,00
m==0

where we have defined

Aun(2,Q) = D (r+2s+n—1){r+stn=2)(r+s+n=3) ... (r+m+1)(20)" ™.
rz0
Next
Am(ar0) = 3 (0428 =mpn— plrtemmin -2 oy
_ (;—m-l-S—l)! s{(n~m+s—2)!
B (1- zE)ﬂ"m“ (1— zf)n~m+s—1
_ Z ('r‘+23—m+n—13!(r+s—m+n—2)!(zzyl

So we have obtained
(2.6) Ci(2,Q)
= ZKM 2, C)
5+n 2)

Z KTS(Z C Z (nF 1)' m)'(lzaz_, EZ|2)3”W(ZZ)W

r<ag~1

(r+2—m-+n—1)(r+s-m+n—2)! Y
g { Z (n—1)}(s — m)!rl (=€) }

rEm—1
- 5+Tl-— ) 2 811 m
+Z i e T )
(n—m+s—1)! (n-—m—l—_s—2)!}.
{ (1= 2)n—mbs (1-=0)m

Now, for each r < s,
1— |22

Kra(z: C) = D(?", s,n)(zf)’"(ig)aF(——r, -s5n—1 W’)
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_fr+n—=2\(s+n-2\r+s+n-1
- 7 § n—1
- rls! -2 2\m = s—1] 7 (2(r—m)
Y W(EZQ — 12[*)™(Z0) =] :

m=0

If we use this formula, a careful calculation of the sum of the first two
sumands in (2.6) shows that its value is identically zero, and consequently
we obtain part (i),

(i) is a consequence of the following lernma.

LEMMA 2.2. Assumen > 2 and let s > 1 be a nonnegative integer. Then
for z € B and ¢ € §", we have

n+s—2\ (2 — |z[*)!
Co(2,0) + ( .1 )m—_(l g g e

= (T ()

Proof. In the formula obtained in Theorem 2.1(i) we write
(12C]* = 127)°™™ = (=0 - 1)2¢ + (2¢ - |21*))*~™,

develop the above sum, and group together the terms which have the same
power of 1 — z( in the denominator. We then obtain

8 g+n—2 n—m
D I e
Ty
x ((n —m s~ 1) (5 ‘; m) (3)I ™ (3¢ — |22y md
=sto=moto= 217 (et — ey

+ (_l)swms(n—m—f—s

_2)! = 8
- } '

Since
~ (" 2) o—m (s+n—2)! & _
= '(S——)— 1) (n M+8— 2)' ‘—s"'T‘“__"’?;J (’.:’L) (—1)8 m = 0,

the right-hand side above can be rewritten as 4 + B, where
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A% 2 T D= | g D)
P T e eV G 1ot Sl \
; (1= )=o) |

=
5 atn—2
B=s Z ( m )

(n— V(s —m)!
a—m 1y (n m+s—2)'(

) (ZC)J 1+m(zc ‘z|2)s—m—j+1

=1 (1= z{yr—mtes

For each 0 < k £ s— 2, we will check that the sum of the terms in A4 that
have (1 — zC)**+* ag common denominator is zero. Indeed this sum equals

stn— kE-1)!
(2)**(z¢ - }z|2)k{ Cs (n)(_n:)_!k! L
s—h—1 (s+n-—2)

But

(s+n—2){n+k-—1) +3i1 Jsk=m (n—m+s—1)(s+n—2)!

(s~ K)(n—1)k! (n — Dlml(s — m — k)!k!

s+n—-2)[n+k-1 ot s—hem B—m-+s—1
( jl)'ic {(s k)! * Z:O( 2 m!(s—m—k)!}

s+n—2'{Sk skmn—m+s~1}

OM

k! ml(s —m — k)!
and
~k
; (...1)3“"7""’”‘ n-=m-+s—1
— mi(s ~ m -~ k)!

- S ) e tm 205}

m=0

The fact that :
—k
d - < g — k 1™ m—lm

m=l

easily implies that the above sum is zero, since E<s—2
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In consequence we obtain

n+s—2Y (2~ |2}
A+ ( g1 ) (l_zz)n+s~1

= {(n+s«~2)(’“:zz)_(n+z—l)s+(njjzz)}%}gf_ﬁj

n (n +s5— 1) (2¢ - |2)?)*

s ) (1- 20
_(nks=2\ (B Pyt o (s 1) (B (2
- (e (T )i

An analogous calculation shows that

_ (n+s—2) _(F - [z
o= (et

Adding both formulas we finally obtain the lemma. =

Now formula (ii) of Theorem 2.1 is deduced from Lemma 2.2 and the
expression of the Cauchy kernel. w

We will next check that the limit as |z| — 1 of the kernels Cp,, is a
singular operator of order 0 in the sense of [NaRoStWa]. We recall some
definitions.

Let 13, 1 €1 < 3 <m, be the complex tangential vector fields
] ) = e) &

Lo =Zig— —Zj5—, i g — B
1= gy Hagy T T gy gy
We denote by X! = X1 ... X,, a complex . differential operator whose vector
fields X1, 1 £ 1 < m, are of type Tj; or T, for some i < j. The weight of
XTiswX)=m/2if X' =X1... X0

Let Kf(() = {gn K((,w}f(w)do{w) for f € C=(S"), where K(¢,w) is a
distribution which is C* outside the diagonal. The operator K is of order
. if there exists a family of operators K.[f]({) = {;. K. (¢, w)f(w) do(w),
such that

(a) K(¢,w) € C(S™ x §").

(b) K. f — Kf in C®(8"), for each f in C>(S").

{¢) The following conditions hold uniformly in &:

(¢-1) For any XT, X7,

| XX K¢, w)| < Oxy]1 — ([T (X ) —w X )

b
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(¢-2) For any [ > 0 there exist Ny, C; > 0 so that for any smooth
function ¢ supported in B({y,8) = {¢ € §™ : |1 — (o < &} and
every X1 with w(XT) = /2,

XTE el < a2 meup 37 6N X0 (0)).
w(X I\

The same estimates must hold for the adjoint operator K* with associ-
ated kernel K(w, ().

If ! is a nonnegative integer, and L¥(S") is the nonisctropic Sobolev space
of functions with tangential derivatives up to weight [ in L?, p > 1, and K
is an operator of order m, then (see [NaRoStWa]) K maps continuously
LY(S") in L., (8).

It will be convenient for some computations to consider, for 1 <4, < n,
the generators of the tangent vector fields to S™

a _ 8
NIL' = z-ia—zj - Zja—zi,
which have the property (see [Ge]) that for any smooth functions f : 8" — C
and $: C — C,

§ Ny#(0)F () da(() = | DNy ({) dar(().
gn §n
By induction it can be proved that if X = X ... Xj is a differential operator
with X;, 4 =1, ..., k, tangent vector fields with coefficients in C*°(B"), there
exist differential operators Y* = ¥* ... Y3, with || € k, Y;* tangent, and
smooth functions ¢4 (2, ¢) satisfying
|Zz(Pa(zy C)I < O!l _ zzlmax(ﬂ,w(l’“)~w(X)—w(Z))
such that
27 X. | S0 do()= D | 2(0walz OYF(C) do(Q).
& || <k ST

As already mentioned, the operators Cs(z, ¢) when |2| — 1 can be real-
ized as operators of order 0. It is easy to verify that if we define Chw,() =
Co(rw,¢) for {,w in 8" and r < 1, then lim,,; CY [f1(¢) exists for any f in
€*(§"), and it defines a function in C*(8"). We will write C[ f] for the
value of this limit. We then have

PROPOSITION 2.3. For each s > 0 the operator C} is of order 0.

Proof. Since the case s = 0 is the Cauchy—Szegd projection and the
result is well known, we assume that s > 0. From the definition of C7 it
is clear that conditions (a) and (b) are satisfied. We next check condition
(c-1). Theorem 2.1(1) shows that for any ¢ < J,
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7567 (w,)
8+n—2 .
= 2 i

m={

(n
(hzmaec,

1 — rwl)n-mts

)s—m~1

~ @) @)™ (jwd* - 1

(Sl("jw”g;fm;ffi) (@)™l — 1)

(n—m+s—Dl(n—m+s) sz
( (1 — rwl)n—m+stl (@il —w;5(;)

sn—m+s—-2Dln—m+s-—1) - ‘
(L~ roQ)r-mte @ "C‘))}

+

Now the fact that 35, ; lwi(; — w;Gil* = 1 — [w(]? gives
1
s ™ —
Tijos (w: C) - O(ll _ wan+1/2) :
The same argument can be used to show a similar estimate for T3 Cl {(w, ¢),
and that for any composition of complex tangential vector fields X/, X g ,

1
I yvJer —
| XoX Cilw, Q)| =0 (11 Z wEIn+w(Xf)+w(XJ))

uniformly in 7.

In order to finish we just need to check that the kernels C7 satlsfy con-
dition (c-2) uniformly in 7. We will use the following

LeMMA 2.4. Let % be a nonnegative integer. There exists C > 0 so that
foralle >0 and z € B",

| | onnodr)<c.

[1—z{|>=

Proof It is immediate to verify that all the summands in formula (ii)
of Theorem 2.1 have the property that the integral over 8" of their modulus
is bounded independently of z, except for

(n+ k- 1) (2] —~ |21*)*
Eo)a-agne
So we are led to prove that for z € B",

(2.8) i (=8P~

(1 gy =00

[Lwzl|>e
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Since for any 0 < s < &,

S (L— 12 (1 = [«CP)ee

1 — zln+k

do (¢} = O(1),

§n I

the estimates in (2.8) will hold once we prove that
(ol

(1~ z()nth

uniformly in 1/2 < |z| < 1, & > 0. Let A == |z|. Then a unitary change of
variables shows that the above is equivalent to

(L= X2G ) -
| Gz g O =0,

do(() = 0(1)

[1-2|>e

1-Xq|>e

But the above integral equals

SN = L
T {TE‘IQED:E<|1—}\T‘GW!} (]- — )\‘T’e"ig)n-l—k
==l S W_ng do
Y (1 = pe—if)n+k ’

{oet®el: g<X, £<[1—ge(}
and the last integral can be easily seen to be bounded uniformly in £, which
completes the proof. m

Going back to the proof of condition (¢-2), we have to prove that

IXICT[0l(Co)] < 67D sup 6 Y g
w(YT)KNL

for any C* function ¢ on §" such that suppy C B((p,8) for {p € 8§, 6 > 0,
and any composition X I = x,... X, of complex tangential vector ﬁelds If
§<1—r, then

XTCrlpl o)l 5 | 1XTCa(rGe, O (Ol de()
B(Co,cs) ;
< (1 =)D oo 2 87 pllo
Thus it is enough to assume that 1 —r X 4.
Now, let X = X; ...Xj be a differential operator with X; complex tan-

gential vector fields. By (2.7),

X} (Go)
= > | Clr, O {@alrCo: ()Y *@(C) — pa(rto, ()Y ¢ (¢0)} do (O)-

|ee| Sk B
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Since ¢ is supported in B({g, 4), the previous lemma shows that the part of
the above integral over S* \ B({p,d) is bounded by

Z 5max(0,w(Y“)—k/2)Hyo¢(P“m < Z 5~k/25w(y‘“)”l/atp”oo'
|| <k | <R

For the integral over B((y, §), the regularity of ¥®¢ together with the prop-
erties of the functions ¢, show that (see [BrOr])

[V0(¢) = Y¥0(C)l 2 D Ty Y *¢soll — ¢Co|*2,
i<
l0a (o, C) = @alro, (o)| < §m Qe TI—wlX)=2/2)) _ (7 |42

which easily gives

[ Calrto, Ofealrto, Y () = 0alrto, Co) Y0 (¢o)} dor ()

B(gﬂzé)
<8R Y | oo m
Y
As a corollary we obtain

' COROLLARY 2.5. For any nonnegative integers k, [, and | < p < oo, the
singular operator Cf, ~maps continuously L (S™) to itself.

One consequence of the above corollary is that the functions in L7 o (S™)
can be characterized in terms of their spectrum. e

- COROLLARY 2.6. Let 1 < p < oo, and let k, 1 be nonnegative integers.
en

L} 0o (S™) = {f € LP(S™) ¢ frs = Ks[f] = 0 for all s > k and any r}.

.REMARK. Obser.ve that for k = 0 this corollary can be obtained directly.
Using a Bochner—Riesz summation (see for instance [BoCl}), every function
[ in LP(S") can be approximated by polynomials in D,y eci H(r, s) whose
spectra are included in the spectrum of f. In consequence, if 2 C Zﬁ_, then

the funct.ions in LP(S"™) with spectrum in 2 can be approximated in LP by
polynomials with spectrum in §2.

Given a smooth function F on B", we will say that 9*F = 0 if
ak
351'1 - B'Z—ik
for any.il,...,i;? € {1,...,n}. Then the following characterization of the
harmonic extensions of LP functions with spectrum in 25z holds:

PROPPOSITION 2.7 ([Dol). If F is in Q[L(S™)] and B*'F = 0, then
Fe¢ Q[LLQ% (8™)). Conversely, any F in (,,)[J_Cf‘ﬁmc (8™)] satisfies 8**+1F = (.

F=0
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3. Admissible convergence of harmonic functions. In this sec-
tion we will show that some assertions relating to admissible convergence of
holomorphic functions in Hardy spaces still hold in the spaces of harmonic
extensions of L? functions with spectrum in (2g;. We recall some definitions.

Given f: B* — C, the admissible mazimal function will be denoted by
Maam f(() = suP,ep, (¢) |F(2)|; where Da(() is the admissible region given
by Da(¢) = {z € B" : |1 - 2(| < a(1 - |2[*)}.

THEOREM 3.1. Let 1 < p < co and let k be a nonnegative integer. Then
there exists C > 0 so that for any [ in LP(8"),

| MaimCap [Flile < Cliflp-

Proof If M.q is the radial maximal operator, it is well known that

HMradQ[f]HP < C”f”p
for any f in LP(S™). By Corollary 2.6, Cp,, [f] = Q[C},, [F]], and

M5 Q[Cag, [f1lllp < CICR, [llp < Cllfllp-

Next, by Proposition 2.7, any F in Q[L%_ ] satisfies 81 F = 0, and [AbBr,
Lemma 4.4] shows that in this case [[MaaqnF|lp < Cl|MracF|lp. =

COROLLARY 3.2, Let 1 < p < co. Any harmonie function in h? whose
spectrum lies in Qo has admissible limil ot almost every ( € S™.

REMARK. Corollary 3.2 could have been obtained from the last remark,
which together with Proposition 2.7 and Lemma 4.4 of [ALBr] shows that
| Maam@[£1llp < CliMraaQlfp < | fllp for any f € L, .

In general, one cannot expect to prove for arbitrary 2 that the admissible
maximal function MaamCp is bounded in L?, even in L?. This would imply
the existence, almost everywhere, of admissible limits of functions in L2,
which is well known (see [Zy]) not to be true. One could ask if for some
other regions, different from the strips 2k, there exist such LP estimates.
We will next see a simple result which shows that if we restrict ourselves to
the case where L% (S™) is a module over the ball algebra A(S™), then the sets
£, are the only ones for which the admissible maximal function MagmCo
is bounded in L?, p > 1. This module condition holds ({Do]) if and only if
for any (r,s) in £2, (k,m) is also in {2 provided k > r and m < s.

We show that if the set {2 has its second projection not bounded, then
the admissible maximal function is not even weakly bounded in L2(S").

PROPOSITION 3.3. Assume §2 C Z4 satisfies the module condition. If the
set of s € T, for which there exists 7 € Zy. with (r,8) € 12 is not boumzi'ed in
Z, then the admissible mazimal function does not satisfy the weak L°-type
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estimate, that is, it does not have the property that for some C > 0,
o({¢ €5 : MaamCalf1(Q) > M}) < C|IFII3/A°
for all f € L*(§™") and A > 0.

Proof If {2 satisfes the module condition, and its second projection -
is not bhounded in Z,, one can easily construct a nondecreasing function
@0 :Zy — Zy sothat 2={(r,s) €eZ% : r > p(s)}.

Assume now that the weak L2-estimate holds, and take {p € " and 0 <

i < 1. Then for any { € B(Co,s(l w)} (e > 0 small enough}, ucy € Do(C).
In particular, for any f € L2 (S*) with [|f]jz = 1, and F = Cqf],

B{Co,e(1 —p)) C {C €8 : MagmF(() 2 |F(1o)]}-
Consequently,

g

(1= )" 2o 8™ MuamP(Q) 2 IFOID) 2 [ipe

and |F(uo)| < || £ll2/(1 — p)™/>.
The above estimate shows that for any f € L*(S?) with ||f|z = 1,

1
| Colute, )7(Q) do(0)] = 1P (o) 2 o
Sn.
which by duality gives
1
(3.1) Ca (o, Mz = =gyl
Next, formula (2.4) together with (2.5) leads to

ICalpto 3= Y 1Knrs(uto, )3

{r,8)€02
-7 (r+n~2) (s+n~2)zim_1 2(rvs),
(r,s)en " ° ~

If ¢1(s) = max(p(s), s), we then have
ICalpco, ME =D u™ 37 (rtn—2)...(r+1)ru®

8 r2p1(s)
1
e - 2(stw1(s))
— (1 _#2)71. ;#

Since 1 (s) = s, the above gives

(_2.)?2 41 < 1 Co (o, ) 2
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Ifg(p) =30 u?108) let us check that glp) —ocaspy — 1. Let N € Z
and consider p < 1 such that p#*®™ > 1/2. Since ¢, is nondecreasing, we
have p#r() > 212D > 1/2 for i < 2N. Hence g(u) > Y2 um® > N,
which together with the previous estimate contradicts (3.1). m

In the last part of this section we study the convergence of hounded
harmonic functions with spectrum in 2g;. Nagel, Rudin and Wainger (see
[NaRu] and [NaWa]) showed that every function in H*(B") has radial limits
at almost every point of a transverse curve in §" relative to its arc-length
measure. Recall that a curve v is transverse if for sach t, v/(£) does not lie
in the complex tangential space at (). We will prove that these theorems
extend to bounded harmonic functions in B with spectrum in 2pg.

We will assume that v : I — S™ is a simple closed transverse curve of
class C!. By making a convenient reparametrization, we may assume that
I = [—m,n], and that v is 2r-periodic. For ¢ € ™, a (-curve is a continuous
map ¢ : [0,1) — B" so that lim,—; ©(¢) = ¢. It is special if

2= D _
=1 1—Jp(#)C]?
and restricted if it also satisfies
e®-1 _ 0
o ~ OW

for0 << 1.
A function f : B™ — C is said to have restricted K-limit L ot ( € 8" if
lims1 f{(t)) = L for any restricted {-curve (.

THEOREM 3.4. Let v : [-m,7w] — C be a simple closed transverse curve
of class C, and let k be a nonnegative integer. If F is a bounded harmonic
Junction with spectrum in flo, then F has restricted K-limit at v(t) for
almost every t € [—, 7|

Proof The hypothesis on F implies that we may assume that F =
Ca, | f] with f € L*°(S™). Next, Theorem 2.1(ii) shows that

(ntk—1)! ¢ (3~ |o2)F .
Fle) = i iR (L0

+Z ”“ )(1-|| y BT o).

gn (l — ZC)H%‘T—I

Now, for each 1<j <k,

[ BEZ T 1) do(0)] = 1 ltoga — 12P)

o (L= Q)71
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and '
Ly [ B 2P
Rt )Ssn (1= 2¢)n+i-1
Thus in order to finish the proof we just need to deal with the function

(2~ =)

F = e — do- .

1(2) Sgn TP RACLU

A direct computation gives 8F;/0z; = O((1 — [2]?)~Y?), 8F /8% =

O((L— |2z, ¢ =1,...,n, and for any complex tangential operator X,

XFy(2)] = O((1 - [%) /7).

Now, the transversality of « allows one to construct (see [Ru, p. 238]) a

“quasianalytic” disc & = ($1,..., P} from the closed unit disc I in € into
B" with the following properties:

(i) ®(e'®) = v(6), 1 — |H(re?®)| = 1 — r, and for any 4 in [—m,7], the
curve r — &(re') is a restricted ~(8)-curve.

(H) 12552, 0:/072] = O(1 — |2]).

The above properties of & together with the estimates on the derivatives
of Fy show that the function U = Fj o satisfies |8U /8z] = O((1— [2)~/2),
and consequently (see for instance [BrCa]) there exists & in Lip; (D) so that
8U /8zZ = Oh/8%. Now, Fatou’s theorem in one complex variable applied to
the bounded analytic function U —h implies that for almost every t € [—m, ],
lim, 1 (U(re™} — h{re®)) exists, and hence so does lim,_,1(F o &)(re®).

Since for each t the curve @(re™), 0 < r < 1, is a restricted y(¢)-curve,
it remains to check that Chirka’s theorem (see [Ch]), concerning sufficient
conditions for the existence of restricted K-limits of bounded holomorphic
functions, extends to our context. In the proof of this extension we follow
closely Chirka’s ideas, modifying some arguments due to the fact that our
functions are not holemorphic.

FE)da(() =0

PROPOSITION 3.5. Let F be a bounded harmonic function with spectrum
in ok, and let ¥y be a special {-curve for some { in S*. If lim,_1 F(%(t))
= L, then F has restricted K-limit L ot .

Proof. Let ¥ be a special;(-curve, and # = (¥¢)¢ be its orthogonal
projection onto the complex line joining 0 and ¢. We first show that

(3.2) im (F((2)) - P((£))) = 0.

We have (& — <) L 1, and if £ € [0,1), then for any |A| < R = R(t) with
R? = (1 - [%]*)/[# — 4|%, the point (1 — M\)e(t) + A¥(t) is in B®. The fact
that ¥ is a special ¢-curve implies that R(t) — oo as ¢ — 1.

Arguing as in Theorem 3.4 we just need to show that (3.2) holds with F =
C o [f] replaced by F1. Since 8F, /0z; = O({L — |2[2)7Y2),i =1,...,n, the
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function g{A} = F1{(1 — A\)¢(t) + A¥(t)) defined in |\| < R satisfies

Og |7 — 4|
a3 | = T N+ T

Now, (1 = A1 + A2 = |[9|? + [A|2|¥ — |2, and the above estimate leads
to

8g 1

RGN [ G E— ,

a2 @y MR

In particular, the function A(A\) = g(RA) defined in the unit disc is in
C(D) and

Bh 1
—(A)| = —_— |
70 =)

Hence there exists hy in Lip; (D) with |51 ||Lip, ,, < [|flleo such that h— hy
is a bounded holomorphic function in . Schwarz’s lemma applied to b — kg
gives
[P (F(t)) — Fu(% ()] = [g(1) — g(0)| = |R(1/R) — h(0)]
< [(h = m)(1/R) = (b= h1)(0)[ + |h1(1/R) ~ h1(0)]
~ ”h_hl“oo ||h1|ELip1/z - 1
- R R/Z ~ Rij2’
which yields (3.2) since R(t) — oo.
If we apply (3.2) to the given special (-curve ¥y, the hypothesis on %
gives

(8.3) lim Fy (0 (t)) = L

with g = ($¢)¢. Next, we want to pass from this particular curve ¥ to any
restricted {-curve by applying Lindeltf’s theorem, as in Chirka’s thecrem.
Since the function A — Fi{A¢) defined in D is not holomorphic, we will
correct it by solving a G-equation. An argument like the previous one shows
that there exists a function f1 in Lip, /(D) with Fy(-¢) — fi in H(D).
And (3.3) implies that limy (F1(¢o(t)) — LB () =L ~ fi(1).

Finally, if ¥ is any restricted (-curve, its orthogonal projection ¢ is
nontangential, and Lindeldf’s theorem (see [Li]) shows that

lim (Fy (4(£)) ~ (#(#)0)) = L - (1)
and lims—; F1(1(t)) = L. Then (3.2) implies that lim.,1 F1(¥(t)) = L. m
4. Tangential convergence. In this section we will show that for har-

monic extensions of nonisotropic potentials with spectrum in 2z, the limit
along tangential approach regions exists at almost every point in 8. We
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first need some definitions. Let o € € with 0 < Rea < n, z € B™ and
¢ € §™. The nonisotropic kernel 7,(z, () is defined by

Cln,a

L) = 20

i o
where C(n, o) = (I'(%£%))?/((n — 1)II'(@)) is a normalization constant. If
1 <p<oo,and f & LP(S*), z € B", the nonisotropic convolution with 7,
is given by

Io* f{2) = | Lu(2, ) £(¢) do(C).
S'n
The space of functions I, * f with f € LP(S") will be denoted by I, * LP.
We recall that if 0 < Rea < n, ur, € H(r, s) and z € B™, then (see [AhCa])
r(eg=)r(ng® +r) ("5 + )
M) (252)I(r + s+ n)

xF(n;a +r,n;a+3,r+s+n,[z]2)um(z),

where F'(e,b, ¢, z) is the hypergeometric function. The fact that if n— Re 24
> 0, then

(4.1) I, *ure(z) =

I(r+5+n)(n - 2a)
I'n+r—a)l'(n+s—a)’
implies in particular that I, =* lsgn = LT = Tij'ﬂj and T =
Eiq' TijTij, then (see [AhBr])

Fla+ra+s,r+s+n,l)=
i<j

(4.2) Turs = —r(s+n~ Dtips, Tps = —3(r +n —1tiy,.

In [Ge], it is proved that Iy is the fundamental solution for the sublapla-
cian
1 1 — —
(T) i<j
This operator can be used to show that the spaces of potentials I,,, * L?,
m a positive integer, coincide with the nonisotropic Sobolev spaces Lz, (S™).
This is the result of the next proposition.

PROPOSITION 4.1, Let 1 <m <n—1 and 1 <p < co. Then I, * LP =
L2 (§™).

Proof. The operators I, are of order m, and hence map L? into L2, (7).
The other inclusion is a consequence of the following facts:

(1) I}_ * *Il *U:Lfn.

(11) Iix Mo« = LP C I % LP.
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The nonisotropic convolution Iy * ™. Iy is an operator of order m (see
[NaRoStWal), and consequently maps L? into LP,. Of course, £™ maps Le,
in LP, Since L™(Iy * ™ I} and {Iy * ™ % ;)L™ are the identity on
regular functions by Geller’s result, we obtain (i).

For (ii) consider the differential operator given by

me1
XM = H (C‘tzT + ﬂIT + ')‘T;Id),
i=D

1 (n+m )
—1-1]},
n—1 2

= — 1 (n—m+i>’

where

o = —

n-1 2

n-—m . mw—m .
’}’i'—‘-( B —’-%)(T—qul*ﬁl)

Applying (4.2) we easily deduce that if w,, € H(r, s), then

e vl wttp, = L, XM % 0 I x Uy

By density, the above equality also holds for L*. The facts that w({X™) = m,
and that Iy » ™ # [; is a differential operator of order m yield finally that
g=X"Ix " xI1+f isin LP, and consequently that Iy * . x Iy % f = I, *g
is in I, * LP. Observe that I,,, gives a topological isomorphism from L? to
FEA

REMARK. It is also easy to check that the operators I, give a topological
isomorphism from L%, to L}, 5, which in particular shows that I, = Lo =
L?rJn, o, - 1 @ is real and noninteger, and k is a nonnegative integer, then the
spaces I, * L%o , arise as complex method interpolation spaces of Sobolev
spaces with spectrum in {2p,. A direct proof of this fact will be given in the

appendix.

In order to state our results concerning the LP-boundedness of tangential
maximal operators, we recall some definitions. Let 1 < p < 00, 0 < @,
m=n—apz0,andlet (€8, C>0Ifm>0andl <7< n/m, we
consider the tangential approximation regions given by

D,(¢) = {z € B : |1 " < C(1~|2])}.

Hm =0 and s > 1, we also consider the regions

£.(0) = {ze]B" L~ 27 <

C }
~Lypu/m |-
(10g1_12|)(17 Yoo/
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If f: B* — C, the corresponding maximal functions will be dencted by

M f(€) = sup,ep, () ()] and My, f(() = sup,ee, () | f(2)| respectively.

It is a well known fact that if ap > n, then the space I, » LT consists
of regular functions. If ap < n, [NaRuSh] proved that in R}*' there is
a strong-type estimate for the analogous tangential maximal functions of
Poisson transforms of Riesz potentials in R™, in the case 7 = n/m. The
holemorphic version for the Hardy-Sobolev space HE in the unit ball, in
the case ap < n and 7 = n/m, was proved in {Krl] and [Kr2]. See also [Su]
and [CaQr| for related results.

‘We will show that these strong-type estimates also hold for the space of
harmonic transforms of functions in I, * L? with spectrum in 2.

THEOREM 4.2. Let l < p < oo, a>0, m=n—ap >0, and let k be a
nonnegotive inieger.

i) If m>0,1 <7 <n/m and v is o positive Borel measure on S"
such that for any ¢ € S* and § > 0,

v(B((,6)) 367,
then there exists C > 0 such that for any f € L?(§"),
|12 Coaon [Ta * Fllt 2o (awy < Cl -

(fi) If m =0, u > 1 and v is a finite positive Borel measure on S™ such
that for any ¢ € 8™ and § > 0,

¥(B((,6)) = 8™,
then there exists C > 0 so that for any f € LP{S"),
M. Corg, [ * f]HLP(dv) < Ol
Proof. The proof is based on the following lemma.

LEMMA 4.3. Let k be a nonnegative integer and 0 < a < n. Then for
eny z € B* and w & §",

|§ a2, OFal(, ) dor(€)]| 5 [
]

1
_ zwln—a :
Proof. Let z = rzg where z € §". Assume first that |1 — 20| < 1 —|2].
Then |1 — 2@ =~ 1 — ||, and Theorem 2.1(ii) gives
d
G OLldo(@)| | _dolt)
s B xu-fspy 1726w

N _doQ)
L= =G — @

Be(w, K (1-|2])
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for some K large enough. The first integral on the right is bounded by

TRy ta iy B 0P = (=Rl L= safe
The second summand is bounded by
S de(¢) < 1 N 1
IR e S N L 2l

Be(w, K (1-[2]))

If1— |z €|1— z®| then |1 — 2| ~ {1 — 2w, and the estimate is deduced
from the fact that the operators Cf, * I are of order o, and hence satisfy

| G (5 OLal¢,0) do Q)] = o

on - Il —_ zOD\”—D‘

uniformly in r = |z|. =

Going back to the proof of the theorem, let f € LP{§") and consider
F=Cqn,, s+ fl. Then the previous lemma gives

P = | § § Con (2 QLa(¢,0) f(w) do(w) do(C)]
§n§n
< §|§ Con (2, OLalC,0) do Q)1 £(w) dor(w)
§n §=»
17w

‘j SSH m do'(u)),

In particular, the above estimate together with [CaOr, Lemma 2.21]
shows that |F(z)| < Pl *|f|](2), with P the Poisson—Szegt kernel in B".
Now Theorem 4.2 is a consequence of [CaOr, Thms. 2.10 and 2.17] together
with Remark 2.20 there (see also [Su]}. m

A straightforward argument using Frostman’s theorem gives the follow-
ing

COROLLARY 4 4. Letl <p<oo,a>0, m=n—ap>0, andletk be a
nonnegative integer.

O Ifm>0,1<7<n/m, and f is o harmonic extension of a func-
tion in Iy = LP with spectrum in (Qog, then there emists o set E C S™ with
H™(E) =0 so that for any { € E the limit of f(z) ezists as z approaches
¢ within D (().

(ii) Ifrn = 0, u > 1, and f is a harmonic extension of a function in InxLP
with spectrum in gy, then there exists a set B C 8" with H**(E) = 0 so
that for any ¢ ¢ E, the limit of f(z) exists as z approaches  within £,(().
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5. Appendix. In this appendix we will give a constructive proof of the
fact that the spaces of potentials I, # Lf?% arise as interpolation spaces, by
the complex method, of the Sobolev spaces L?’ 0, We begin with the case
0 < @ < 1, from which we deduce the general case.

THEOREM 5.1. Let 0 < o < 1 and let k be a nonnegative integer. Then
[Li’ok ! Lg,ﬂokh”‘] =lo* L‘??(Jk'
Proof We first prove the inclusion
1o * L??Dh - {L??Dk’ lejﬂuk][“}'
It is enough, given f in L?)Dk, to construct a continuous vector-valued
function ¢ from the closed strip § = {A+it € C: 0 < A £ 1} to

L?;Ok + LY o, = L%, holomorphic on 8, with ¢(a) = I, = f, and such
that for some v € [,

G1) lells < Ceifly, e+l < Ce||f.

IF0 < A <1, define (A -+ it) = Iyyi * f. Let us first check that for
9 € LP, [ Iyt * gllp < Cetl||g||, for some v € R,
Formula (4.1) shows that if u,, € H(r, s), then
(5.2) Digit * urs(C) = Orpie(r, 8)urs(¢)
with
F(n+)2\:|:z‘t)2 P(r+ nwéﬂit)lﬂ(s_l_ n—é—z’t)
I_,(n_)z\__,;t)fz F(T+ nigizt)rr(s + nié+1t)

Caiz(ry s) =

n—XA—if
r—1 + >
r 1 fid At T
2

n—A—it _ n—A—it n—A—it
2 s—14 %= P

n+é+it ) s—1+ n+3+it n—i—é—)—it

for r,s > 1. Since foreach x > 1 and 0 < X < 1,

T — )\izit
T+ A—;‘Lt —

we have |Cypi(r,s)| € 1. The case of r or s equal to zero is treated in a
similar way. Hence we deduce that ||Iyyig]l2 < ||g|2 for g € L2

Next if z = |z|zp € B* and ¢ € 8", then
1
where C' is a constant independent of A and ¢, and
ek
(A +it) |

Axgit = ‘
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Stirling’s formula implies easily that Ay = O(e”"”) for some v € R.
Since the estimate on the derivatives implies that the kernels Iy 1 satisfy
Hérmander’s condition [GaRu] with bounds Ce?l¥, we finally get || Iapie* 9|l
< Celtl||g||, for g € L.

Next observe that formula (5.2) shows that for any t; € R and w,, €
H{(r, s}, the limit Hmx gty Iagie *trs exists, and equals un, if tg = 0. Since
P H(r,s) is dense in LP, this fact, together with the uniform boundedness
of {|Ix+it||p,p- for ¢ bounded, shows that for any g € L? and ¢y € R, the limit
in IP of I * g exists as A 44t tends to itp. If we denote it by I, * g, we
also have || I, » < Cel* and Iy = Id. Thus we have continucusly extended
@ to all 8, and proved that [[p(it)], < Ce]| fl|,- Since (s +it) is in Lo
so is p(it).

We now show that |[(1 + it)| p2 < Ce™ | fllp. Given 0 < u < 1, we set
If (¢ w) = Ly (pd,w) for ¢,w € S™. Since the derivatives of order two
of I, (¢, w) are pointwise bounded uniformly in u by Ce® /|1 ~ (@|"*+?,
the classical theory of singular integral operators shows that the desired
estimate in (5.1) for ||¢(1 + it)|| » will follow once we show that

(5.3) [ CTipiz * ulle < Ce"M a2
for every w € L%(S™).
Now, if u,, € H(r, 8), then I1 s * ups({) = 14u(7, 8)urs (), where

F(nj:]éiit)z I"(r+ n»——:;—it)lﬂ(s + n—éﬂit)

Iv(n.—dé»—it)? F(’f‘ + ni]2.+it)1-|(s + n+§+£t) :

Y14it(r, 8) =

Since

|n — 1+ 3t]?

(T, 8)| = . -
|"1b1~|»zt( )1 - |r+ n-;+n||s+ n—é-mi’

and L., = (r + ”T“"l) (s + ”T"l)um, we obtain (5.3).

ReEMARK. The above shows, in particular, that for ¢ € R the operator
Sy = LIy satisfies ||Ss[f]|, < Ce?l||f|| for any f € LP. Since for every
Uy € H(r,8), Sg(I1 % Ups) = Ineip * Ups, and Sy o Iy, I1_; are bounded in
L?, we deduce that || iz * b, < Cel!||I) * hl|, for any h € LP.

In R™, the Riesz kernels are additive with respect to convolution. The

next lemma, which will be used to finish the proof the theorem, gives some
results concerning the nonisotropic convolution of the kernels I,.

LeMmA 5.2. Let 0 < j<n—1,0< a <1, and let k be o nonnegative
integer. Then:
(i) Iffelf, and LI1 o * f € Ly, then there ewists g € Lg  such
that L9Iaypi % g = f.
(i) Lo LB ={f€LF L axfEIl g }.
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(ii1) I; ¢ (I * L%y ) = Layg * Ly, -

(iv) If f € LP, then I » f admits an expression Iy = f = I, x g with
lgle = [H1-o * filp.

Proof. Observe that (i) would follow if we could find a bounded operator
S in P such that £ I, ;5L o = Idz». We will show that, except for some
terms with good behavior, this is what happens. The proof is based on the
action of these operators on the spaces H(r, s) and asymptotic developments
of gamma functions.

Assume 0 < 7 < n—1,0 < a < 1 and k is a nonnegative integer. It

suffices to show the lemma for each Lf, , 0 < s < k. Applying (4.1}, we find
that for any u,; in H{r, s},
P(2g= 4 rr(e=ee 4 )
D(%E2 4 ) (M52 4 r)
where C; is a constant depending on i, o and 3.

The asymptotic development in [TrEr] together with Stirling’s formula

implies that there exist A;(a,n), i € Z,;., with Ag # 0 so that for each I > 0,
the numbers

rse4r) n-1\" n—1\*"
et pa () Heoal i) )

satisfy [bu| < (2|A\} +1)/(r + 1) if 7 is large enough.
In particular, there exist A;(a, n), p;(e, n) such that

D(e=g=2 ) D(2=5e 4 r)
D(2HEe 4 ) T (2572 4 r)

— 1\ e gy dta—i+l
X(AD(T'{'nT) +--.+)\1_1(T+nTl) )

n_ 1)\ n— 1) tmemiHl
X | po T+——2'~* + s T"*H*z— =1-cn,

with |eq] = di/(r + 1)F. Next

n— 1) 7T n — 1\ ITe-itl

Po(r+257) w25
m— 1\ 1" o 1N el

x| Mo ?"*1‘““—-2“““ + oo pey T+—2“-

Ij—l-a * Il-——cz * Upg (C) = Cs U‘T‘-S(C)?
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Since Lu,s = ('r + “T“l) (s + “%)um for urs € H{r, ), and
n—1 1
T

Il*uf'r'a = )U"rs,

we can write

1 e 1\ 23 '
Z ”Yk(?‘+ 5 ) Ups = FL T up, + Z’T’Jeﬁj(h* A VT
k=3--21 k=0
with 7 3£ 0.

We define an operator in B, H(r,s) by

Lystirs
Urg if r < 7o,
N . 3-3 .
- (’7&”‘1 + E Vel (I B Il)) #Tgyi*x o *urs/Cy i 7 >y,
k=0

where rg is to be chosen. Then
(Id - Trs)urs = {

We will check that there exists € < 1 such that ||f — Tfllp < || flip for any
fely,

Assume first that p < 2, and take f € L2(S"). In [Al, p. 118], it is shown
that if w, ¢ € 87, then | K5 {w,{)| € D{r,s,n). Since

- > —1
D(f‘,s,n)=(r+n 2)(s+n )r+s+n

r s n—1
we deduce that |K,4(w, )| 2 (r + 1)»}, with constant depending on s and
7. Hence

0 ifr <o,
Crilrs if r > Tp-

Frel@) =] Krol2, 01(©) do(©)] 2 0+ 1"l

gr
This implies that if f € L} , then
1
1 = THI8 = 37 il 2 3 gy | Mrslw)Pdo(w)
8n

r2ro >

(r+ 1)3n-1) 2 2
= e | fllL S €ll 15

provided rq is large enough and [ satisfies 21 — 2(n — 1) > 1.
Finally, since 1 < p < 2,

I = TH2 < | f - TFIE 2 ellfI} = el 2



294 C. Cascante and J. M. Ortega

In particular, the operator 7" is invertible in Lj!’z” and there exists an oper-
ator §: LY, — L5 with ST =15= Idj;,:‘:zas

The case p > 2 can be deduced from the previous one by duality, since
the operator T is selfadjoint.

The definition of 7' shows that we can write

(5.4) T =14+ Ri1 + Ao,
where

T]_ = Clﬁj+11a+j * Il—a

is an operator of order zero,
213

1 — i
Rl = E Z ’}’kﬁj(Il * .I.“. * Il) *Ia«l-j *Il—a

% k=0

is an operator of order greater than or equal to 1, and where

21-3
R = Z (Idm —(’YEJ'H + Z ’}’kﬁj(fl * K *Il)) * Ty * i cx)

r<ry

is an operator of finite rank, and consequently, bounded in L%, . If we apply
S to (5.4), the boundedness in LP of the operators S, 71, and R;, i=1,2,
together with the fact that they commute in L? shows that if we take
f € L},  such that £I;_, = f is also in L%, , then

¥ 1 1.
f= Clcﬂfaﬂ #SLh_a* f + L Lass x Kaf + 5 Lo % Ko f,
8 8 §

where
213

1
Klf— Z'}'kS(Il* Koy xL_oxf
s k=0
is in LP, and K3 is of finite rank. Thus we have shown that if f € L%” andl
LIy o * fis also in LY , then f = LII;1, % g with g in L?. Thus (i) is
proved.
Next, part (1) with § = 0 gives

{felf, th-axfellg }ClaxLy,

The other inclusion follows from the fact that I_, * Ia is an operator of
order 1 and, consequently, maps L? to L.

Since £1I9 = Idp» and P L7 = 1d £z, (iii) will follow once we show that

Iy * LI;?” = ﬂJIa_,.j *L}J}H.

icm
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Now, I1..qL7 14+, is an operator of order 1, and this gives
L jx Ly C{felfy :h-axfellg }.

Part (i) shows that the inclusion in the other direction also holds, and finally
(i1) implies (iii).

If we take § = 0 in (i), and apply S followed by I; in (5.4), it is then
easy to check from the above calculations that {iv) is satisfied. w

Let us now finish the proof of Theorem 5.1. We must show that
(L2 I oo lle) © Jo % Ly,

By a lemma of Stafney (see [St]) it is enough to show that if i are
holomorphic on & and continuous on its closure 8, and ki € LY ok , then

[Semen], ,

. * .
< Omax(m:p el Hg wr(it)l * hk”p, ssp il H; pr(1—dt) Iy xhg

Il*LP)'

By Lemma 5.2(iv),

”Z pr(e)ly * hy
I

To*LP = Hfl"a * (Z Pr (')h’“) H:o

= sup Z‘Pk ali_q * hg(C )g((j)do(()‘.

”gl p"Sl §n k

Now the map defined on S by
w— Y pu(@) -uhi(C)g($) do(()

§n k

is holomorphic in & and continuous on §. By Lemma 4.3.2 of [BeLo], this
implies that

|| (pr(e) Tamahr(0)9(0) do(0)|

gn

lwawan

s( ! DSO‘S(w(if;)h_uhk(g))g(g)da(g)]%(a,t)dt)m

* (';' J lS(‘Pk(l*'“)f—ithk(@)g@) do ($)|P1(e, t) dt)a,

—oo §n
where for m = 0,1,
e~ ("t gin s
sin? 7rs + (cosws — gimm—m(r—t))2’

Pmls+it,r) =
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Taking supremum over g in the previous estimate we get

H}: or{a) T, * hy
k

I #LE
T g

< (Ii_a _OS;”Z}“: @ (6t) T _iz * hk”P'Po(a, £) dt)

X (é j:oHZk: on(L 4 it) g * thp’Pl(a,t) dt) &

l—ox

But we have seen in the previous remark that ||Ji_;: * hjl, < et || Iy * Al
and the definition of I_;; shows that |[T_.(h)|, < e"*!|{R||;. Thus the above
can be estimated by

.
(T}E _Sm ol
< (é jg; evlt:“;{pk(l +it)ha]| Palent) a!t)a

anl S o) el ot )
il e St om] ).

where we have used the fact that

ﬁ S Pola,t) d S

1o
3 r(it)h * thpPo(a, t) dt)
k

IA

1A

ma.x(sup el
i

dt=1.nm

QI?—‘

THEOREM 5.3. Let j € Z1, 0 < <n—-1L, 0<a<l, andlet k be a
nonnegative integer. Then

{Lﬁ?rﬂﬂlc’ L?‘]"lrnﬂk}[a] = Ia+-7 * LI})M "
Proof If j <1, then I; : Ly, L g and ;o If o — LE,, o  are
topological isomorphisms and consequently
I : [l 1,0, )0l = [£5.0,. Li1,0,,]10
is also a topological isomorphism. But Theorem 5.1 gives
{L%an’ L:;-])-Qae][a] = Iﬂ * Lf?us

Hence Ij * (Io x Iy ) = [If o, , L%, . lie- Now, Lemma 5.2(iii) finishes
the proof. =
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