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(see [9]), one easily checks that ¢ is in H%(§B2). Proposition 4.2 thus shows
that Extu (H2(8B%) & N, H?(8B?)) is zero. The proof is complete.

For a proper Hardy submodule N of finite codimension in H?(8B?), since
Exty (H?(8B2) © N,N) is never zero, it follows that N is never similar
to H?(8B?) by Proposition 4.4. We refer the reader to [3] for a further
consideration of the rigidity of Hardy submodules over the ball algebra.

REMARK 4.5. The main results of the present paper are also valid for
strongly pseudoconvex domains with smooth boundary by [5, 10].
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Canonical functional extensions on von Neumann algebras
by
CARLQ CECCHINI (Udine)

Abstract. The topology and the structure of the set of the canonical extensions of
positive, weakly continuous functionals from a von Neumann subalgebra Mp to a von
Neurnann algebra M are described.

1. Introduction. The aim of this paper is to give some results about
the structure of the set R(M, Mp) of the canonical extensions of positive,
weakly continuous functionals (called canonical functional extensions, c.f.e.)
from a von Neumann subalgebra My to a von Neumann algebra M (cf.
[3]-[5]). After the nccessary preliminaries in Section 2, Section 3 is devoted
to the intreduction of a set V(wp) of vectors in the Hilbert space of the
standard representation for M, canonically associated with R(M, M) in
the framework of the modular theory of von Neurann algebras. Section 4
contains some topological results on R(M, Mp) and V(wg). In Section 5
structural properties for different c.f.e. are compared and the possibility of
defining Radon—Nikodym derivatives for c.f.e. in the spirit of Connes’ type
cocycles for conditional expectations on von Neumann algebras (cf. [6]) is
considered. In Section 6 we consider the special situation in which a c.f.e. is
dominated (i.e. majorized by some mulsiple of another) in order to obtain
some further comparison results, and we conclude by giving a sufficient
condition for a given c.f.e. to dominate no other c.f.e.

9. Preliminaries and notations. Let A/ be a von Neumann algebra
acting on a Hilbert space H. We denote by S(M) (resp. S¢(M)) the set of
norma). (resp. normal faithful) states on M. For §{ in H and @ in M we set
we(a) = (£, at). Let ¢ and w be in (M.)T. We say that ¢ is dominated by
w (and denote by m(w) the set of such functionals) if it is majorized by
some positive multiple of w. If Mp is a von Neumann subalgebra of M we
set wp = w| My for all w in M,. For w in S(M) we denote by [e(w)] the w
conditional expectation from M to Mp introduced in [1] (see also [4], [5]).

1091 Mathematics Subject Classification: Primary 46L50.
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For w in (M,)7, [0(w)]* denotes the modular automorphism group for w
on M, and if also ¢ is in {M,)T and its support is contained in the support
of w then (D¢ : Dw), will denote the Connes cocycle for w and ¢ in M. This
cocycle admits ([7]) a continaous extension (D¢ : Dw); /g in i/2 as a linear,
densely defined, in general not closable operator which commutes with M’
and whose domain coincides with D{H,w) = {§ € H : we € m(w)}. We
denote the linear operator which coincides with (D¢ : Dw);;» on suppw
and is zero on its orthogonal space by {¢/w}. If in particular ¢ itself is in
m(w), then {¢/w} admits a bounded closure [¢/w] in M.

Let now & be a vector in H, H(M, £) the closure of {af : o € M} and
E(M,£) the orthogonal projection from H to H(M,£). A selfdual positive
cone for M in H is any cone V in H containing a separating vector ¢ for
M in H such that V is the selfdual positive cone for E(M, )M in H{M, &)
in the sense of the modular theory of von Neumann algebras. We denote
the associated isometric involution by J(M, V') (or, briefly, by J(V} when
there is no danger of confusion); in the above situation we also write E(V)
for E(M,¢). Each ¢ in (M,)" is implemented by the unique vector {¢/we }¢
in ¥

Let Vi, V2 be two selfdual positive cones for M in H, and for all w in
S(M) let &(w) € Vi (i = 1,2). There is then a unique partial isometry
u'(Vi, Vo) in M’ with initial projection E(V;) and final projection BE(V3)
such that w'(V1, V2)é1(w) = &e(w) for all w in S(M).

We use the following standard fact from the modular theory of von Neu-
mann algebras [2]:

2.1. THEOREM. Let £ and n be in V. Then
g —nll* < llwg — wafl < 1€ =il - €+l

We now reformulate our key definition introduced in [3]-[5]:

2.2. DEFINITION. Let M be a von Neumann algebra with a von Neu-
mann subalgebra Mp. A mapping ¢ : ((Mg).)™ — (M) is called a (V-
implemented) canonical functional extension (c.fe.) if there is a faithful
representation m(M) of M on a Hilbert space H and a selfdual positive cone
Vo for #(Mp) in H such that o{(we o m)g) = we o 7 for all vectors & in V5.

We denote the set of all c.f.e. for the couple (M, My} by R(M, Mp).

H ¢ is a norm one projection from M to My then the mapping ¢o — doos
{¢o in ((Mo).)*) is in R(M, My). A Vp-implemented canonical functional
extension is of this form iff V; is contained in some selfdual positive cone V
for M in H (cf. (3]}, and will be called regular.

In the following we simplify our notation by assuming, since this is not
restrictive for our purposes, M to act standardly on the Hilbert space H.
- We also fix a reference selfdual positive cone V for M in H together with a
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reference ¢o in S¢(My), denote by £(¢) the unique vector in V implementing
#in (M)t and shorten J(V) to J. All the above recalled objects from the
modular theory of von Neumann algebras will be endowed with a subscript
“0” when referring to the von Neumann subalgebra M.

3. The set V(wy). Any ¢ in (M,)" can be written (uniquely if its
restriction ¢ to My is faithful) as ¢ = g(¢g) with g in R(M, Mp) (cf. [4],
5]); conversely, for all g in R(M, My) and ¢q in {(Mp).)" there is a unique
¢ in (M) satisfying ¢ = o{¢p). A natural object to be associated with the
resulting parametrization of (M,)* through R(M, Mp) and ({Mp).)T in the
framework of the modular theory of von Neumann algebras is the set V (wq)
defined below.

3.1. DeFINITION. For all g in R(M, Ms) we let V(wp, ¢) be the self-
dual positive cone for My in H containing £(g(wg)) (which therefore imple-
ments @), and V(wg) = UQER(M,MD} V{wp, 0).

It is an immediate consequence of our construction that for any ¢ in
(M,)T there are representative vectors [£{V (wp))](¢) (or, briefly, £y(¢) when
no confusion arises) in V(wg). The uniqueness is guaranteed if ¢y is faithful.
However, if ¢ = p(¢q) we denote by £o(o(do)) the representative vector of ¢
in V' (wp, 0), which is unique. If V; and Vy are selfdual positive cones for M
in H, we have Va{wp) = u'(V1, V2)Vi(wg). We also remark (cf. Prop. 4.1 in
the following) that V(wg) does depend on our choice of wyg.

3.2. EXAMPLE (the abelian case). Let M = L*(f2, ¥, u) and Mp =
L®(, T, pio) with Ly a subsigma algebra of X, p(2) = 1 and po = plZo.
Then V(w) is the same as V(wp) and corresponds to the positive functions
in L?(2, I, 1), there is a bijection between R(M, My) and the set of posi-
tive functions in L1(£2, ¥, u) with conditional expectation in L' (£2, Zo, o)
the identity function, and V{wy, ¢) is the set of the positive functions in
L%($2, ¥, u) which can be written as the product of the square root of the
function in L*(2, T, p) which corresponds under the above mentioned bi-
jection to o and a positive function in L?(£2, Lo, tho)-

We can assoclate ([4], [5]) with each couple (g,¢0) in B(M,Mp) x
((Mp)y)" the unique partial isometry wu(o, do) in M satisfying ulg, ¢‘0) =
Ju(V, W)J supp g(cho ), where W is any selfdual positive cone for M in H

containing £o(o{¢o)). .
The proof of the following proposition is straightforward.

3.3, PROPOSITION. Let g be in S;(Mo) and for all ¢g in ((Mo)s)t denote
by v(o, do) the partial isometry obtained by taking in our construction Py
instead of wg as our reference state in Si(Mp). Thenv(g,wo) = u(o, o)™,
and, for all ¢o in ((Mp)s)*, v{e, do) = v(e, wo)u(e, ¢o).
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It is immediate to check that u(g, ¢o) does not depend on the cone V
we start with. For a fixed ¢ in R(M, My) the mapping ¢p — u(g, dp) (¢ in
((Mp}s)™) tells us how far p is from a regular canonical functional extension.
In this case (and only then) u(g, ¢y) coincides with supp g{¢h) for all ¢g in
((Mo)«)t (cf. [3]). The partial isometry u(g,do) is the one occurring in
(3]-[5] in the comparison of the w-conditional expectations [¢(g(¢o))] and
[e(o(wo))] from M to M.

4. Topological results

4.1. DEFINITION. We say a sequence g, converges to g in R(M, Mp) when
on{¢0) — 6(¢o) (in norm) for all ¢o in ((Mp).)™.

We recall that by [5] a sufficient condition for g, to converge to g in
R(M, My) is that gn(wg) — o(wo) in norm.

4.2. THEOREM. Let on and g be in R(M, My), (¢o)n be in ({(Mp)s)T and
$o be in ((Mo),)* and faithful. Then o, — o in R(M, Mo) and (go)n — ¢
i norm iff gn(do) — o(do) in norm.

Proof. With no loss of generality we can assume ¢g = wq. If p,,(dp) —
¢(wo) in norm then trivially (¢g)n — wp in norm. For all natural n let {(ub)n
be a partial isometry in My such that £(gon(wy)) = (uh)né(o(wo)); then also

€o{en((¢0)x)) = {{do)n/wo}s(en(wo)) = (ug)n{(Bo)n/wa}é (2lwo))
= (ug)no(o((d0)n)),

and we get

[1€(en(w0)) = £olon(($o}nhll = [[(uo)nt (o(wn)) — (ug)adole{(do)n )|

< [[€elwo)) — foe((¢a)n))]l — 0

by Theorem 2.1, since &(o{wn)) = €o(o(wn)) (resp. &o{o({do)n))) is the rep-
resentative vector of wy (resp. (¢o)n) in V'{(wy, 9) and (¢o)n — wo (in norm).

Again by Theorem 2.1,

|| on(wo) — on{(d0)n |

< €{en(wo)) — olen((0)n))l - 1€ (en(wo)) + Eolen((go)n)ll,

which implies ||gn(wg) — on({¢0)n)] — 0.
The proof of our first implication is now completed by noticing that

{lon(wo) — e(wo)ll < llon(wo) = en((®0)n)ll + lon({do)n) — o(wo)ll, and that
both the latter summands converge to zero.

The converse implication has a similar proof:
len(($0)n) — e(wo)|l < llon(($0)n) — enlwo)] + | en(ws) — ofwo) |
< M1€o(en{wo)) — €o(on((Ba)n))]
X ||€(en (wo)} +€olen(($0)n))|l + lleniwo) — o(wo)|;
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the first summand tends to zero by Theorem 2.1 since (¢ )y, — wo as earlier,
and the last because g, — ¢ in R(M, Mp) implies pp(wp) — o{wo) in norm.
A slight generalization of the preceding proof shows that the “only if”
part of the above statement also holds when ¢g is no longer faithful.
4.3. THEOREM. Let p,, and ¢ be in R(M, My). Then o, — g in R(M, Mp)
iff V(wo, en) — V{wg, 0) pointwise in norm.

Proof. Let g, — g in R(M, M;). We must prove that &(on(¢o)) —
€o{o(do)) for all ¢g in ((Mp)x)T. Let € > 0. As m(wp) is norm dense in
((Mp).)* there is a 1 in m(wp) such that ||¢g — 1| < &. By Theorem 2.1
we have

ll€0{e(tbo)) — £ale(do))l| < /2,
and, for all n,
|| €a(en o)) — Eolon (o))l < €',
since &n(o(o)) (resp. &o{enltho))) and &o(e(do)) (resp. Lo(en{do))) are the

representative vectors of 1y and ¢p in the same selfdual positive cone
V(wq, @) (resp. V(wo, on)) for Mo in H. Similarly,

1€ Con(w0)) — £(a{wo)) ] < llon{wo) — alwo)|I*/>.
Then

lié0(en{da)) — £ole{¢a) 1 ‘
< fi€o(on{g0)) — olen(ta))ll + ll€o(on30)) — Sole(a)) i

+ [|€o(0(%0)) — Eale(o)) |
< 2™ 4 ||[ho fwoll] - 1€ on (wo)) — E(e(wo)l
< 26M2 + | o fwol | - llen(wo) — o{wo) |2,

and our claim is proved, since | on{wo) — Q(w.g)” - 0. .
Conversely, ||£(gn(wa)) — €(o(wo))|| — O 1111;311&*5, by Theorem 2.1 again,
on(wp) — @{wo) in norm and therefore g, — ¢ in R(M, Mp).

4.4. COROLLARY. Let g, and ¢ be in R(M,My), do and (¢o)n be in
(Mg).)*, and let ¢ be faithful. Then on({$0)a) — o{do) in norm iff
£o{on({d0)n)) — So(elgo)) in norm.

Proof By Theorem 4.2, on({¢o)n) — o{¢0) in norm iff pp — o in
R(M, My) and (¢o)n — ¢o in norm. If this is the case, then

1€0(en{(Bo)n)) — Eole(do))]l < [léo(en ((0)n)) — Sole((Bo)n )l
+ l¢o(2((@0)n)) — Eolelda)}i;
the first summand tends to zero by Theorem 4.3 and the second by Theo-
rem 2.1.
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The converse is trivial (and true even when ¢y 8 no longer faithful).

4.5. THEOREM. The mapping (o, $o) — u(o, ¢o) is continuous from the
product of the norm topology on ({Mp)«)t and the R(M, My) topology to the
strong operator topology.

Proof. Let o, — o in R{M, My) and (¢g)n — ¢ in norm, and let us
shorten u(gn, {¢o)n) t0 U, and u(p, g} to u. For a in M, using once more
Theorem 2.1, we have

1 (en — w)Jag(e(¢a))ll < llall - [iJuné(e(¢o)) — {do/wo}é(o{wo))l
< llall{lTung (e(¢a)) — Juné(on((do)n))|
+ [ Tuaé{en((B0)n)) — {o/wo}é(e{wo))l])
< llafl([1€(e{e0)) — &(en((¢a)n))l
+ [[€o{e(($a)n)) — &ole(@o))))

< llall(lle(@o) = eal(@o))I** + | ($0)n — dol*3),
and by our hypothesis and Theorem 4.4 both summands in parenthesis tend
to zero. This implies ||(uy, — w)€}] — 0 for £ in supp o(¢o), and therefore our
claim, since supp o{(¢0)n) — supp o(¢o) strongly.

5. Comparing the structure of canonical functional extensions

5.1. LEMMA. Let ¢ be in ((Mp)«)™ and R be o subset of R(M,My).
There is o selfdual positive cone U for M in H containing &(o(do)) for all p
in R iff there is o partial isometry u in M with initiol projection the identity
such that u(p, ¢g) = usupp o(¢g) for all o in R.

Proof Let u be as above. Then U = {Ju(¢o)[€(V)}(#) 19 € (M)t} is
a selfdual positive cone for M in H which clearly satisfies our requirements.

Conversely, if U is as above then the partial isometry u(¢h) in M defined
by setting Ju(go)[£(V)]() = [E(U)](4) for a fixed faithful ¢ in (M, )" is
unique and, for all ¢ in R, u(g, ¢q) = usupp g(dp).

5.2. REMARK. If R = R(M, My) our first condition above is the same as

requiring the ¢p section of V(wp) to be contained in some selfdual positive
cone for M in H.

5.3. PROPOSITION. Let ¢ be in ((Mg),)™, 01,02 in R(M,My) and
supp g1(wo) < supp ga{wo). Then u{o1, o) = u(pz, po) iff supp g1 {wo) =
supp oz(wo) end {do/wo}{e1(wo)/e2({wo)} = {o1(wo)/ 02 (wo) Ho/wo}-

Proof. Let u(e1, ¢o) = u(0a, ¢ho); then supp p1(¢bo) = supp pz(bo) since
the former is the initial projection of wu(gy,¢o) and the latter the initial
projection of w(gs, ¢o). So {o1{wo)/02(wo)} is well defined, as are {ho/wa}
o {e1{we}/@2(wo)} and {o1{wo)/02(wo)H¢o/wo}, whose domains coincide
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with {a’é(e(wp)) : ¢ € M'}. By Lemma 5.1 there is a selfdual positive
cone UU for M in H to which both the vectors

£o(01{¢0)) = {¢o/wot{e1(wo)/ 02 (wa) }§ (g2(wo))
and
£o(e2(d0)) = {do/wo}&(0z(wa)),
and therefore {g1(¢o)/o2(do) Heo/wo}€(oa(wo)), belong. The state o1{¢o)
on M is implemented by the vector {¢o/we }{o1(wo)/02(wo)}é(e2(wo)) and

the vector {o1{¢0)/02(¢d0)H{do/wott(ea(ws)), which are in the same self-
dual positive cone for M in H; so they must coincide. We can now con-
clude by noticing that both the operators {gg/wo}{e1{wo)/02(we)} and

{o1(¢0)/e2(¢pa)}{bo/wo} commute with M'.
Conversely, supp g1(o) = supppa(¢o) guarantees that the vector

{do/wa}€(o2(wo)) = &olea{po)) belongs to any selfdual positive cone for
M in H to which {o1(¢0)/02{¢b0) o /wa}€(e2(wo)) belongs. This last vec-
tor coincides by our hypothesis with {¢g/wo}{o1(wo)/0a{we)}E(02(we)) =
éo(01(d0)). Now Lemma 5.1 and supp o1 (¢0) = supp g2(¢o) imply our claim.

5.4, DEPINTTION. Let o; and g2 be in R(M, My), and Sy be a subset
of ((Mo).)*. We denote by {¢1(S0)/02(S0)}, when it exists, the linear (n?t
necessarily bounded or even closable) operator which coincides, for all ¢p in
Su, with (Dg1(go) : Doaldo))isa on D(H, g2(¢o)) and is zero on the linear
subspace of H orthogonal to the linear span of J $o€ S, SUPD o2(¢0)- .

If {01(S0)/02(S0)} is bounded we denote its closure by [01(S0)/2(S0)]; if
Sy = ((Mo).)* we shorten {21(S0}/02(S0)} and [e1(Se)/ 2(50)] to {e1/e2}
and [g1/02].

OQur next proposition shows that the existence of [g1/02] is a rather
restrictive condition.

5.5. PROPOSITION. Let p1 and oy be in R(M, My), So_ be o subset of
S(Mq) and assume [01(S0)/02(S0)] exists. Then for all ¢q in So we have

(e (02(¢b0)))(1[21(S0)/ 22(S0)]I*) = supp do.
Proof For all ag in My we have

(a0t (02(60)), Tale(2(60))] (|[e1(So) /02 (S0))I* )€ (02{0)))
= (aot (02 (o)), J(|[e1(So)/e2(S0)]1*)€ (02(0)))

= {aolox(d0)/2(0)E(e2(d0)), Jo1(0)/ (0} (2(0)))
= {aot (01 (d0)), E(e1 (o))} = do(ac) = {ao€(ea(g0)); {(e2(b0)));
so [e(o2(b0))](le1(So)/22(Sa)lP)é(ez(do)) = £{pa(¢o)), which implies our

claim.
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5.6. THEOREM. Let g1 and g2 be in R(M, My) and assume {01/ 02} exists.
Then u(g1, do) = u(oa, do) for all do in ((Mo).)™ iff for all ¢g in m(pg) the
operators [do/wo] and {g1/02} commute and supp g1{¢o) = supp g2{do)-

Proof. The “if” part is proved by noticing first that our hypothesis
implies by Proposition 5.3 that w(p1, o) = u{02, ¢o) for all ¢p In m (o). As
m(¢o) is norm dense in ((Mp).)*+, Theorem 4.2 yields our claim.

The converse implication follows mmediately from Proposition 5.3.

5.7. THEOREM. Let g1 and gy in R{M,M;) be such that supp 01({wp) =
supp 02{wo), and assume there is o linear extension T of {01(wo)/02(wo)}
whose domain is the linear span of the union of all D{H, pa(do)) with ¢¢
in ((Mp)«)T and which commutes with M' and with {¢o/wo} for all ¢o in

((Mo)w)t. Ifu(or, do) = wloa, ¢o) for all g in {(Mo)s)" then {o1/02} exists
and coincides with T.

Proof. It is enough to prove that for all o’ in M’ and all ¢g in ((Mo).)T

we have
Ta'€(02(¢0)) = {01(d0)/ 02(¢0)}a'é(02(¢0))-
By hypothesis and Proposition 5.3 we get
Ta'é(02(go)) = Ta'{Po/wo}E(g2(wo)) = a'{go/wo}T€ (02 (wo))
= a'{¢o/wo He1 (wo)/ e2{wo) (02 (o))
= a'{o1(¢0)/ 02(0)}{bo/wa}é(02(w0))
= {o1(d0)/ 02(d0) }a'§(g2(%0))-

6. Dominated canonical functional extensions

6.1. DEFINITION. Let g1 and o be in R{M, Mg). We say that g; is dom-
inated by o if p1(¢o) is dominated by g(¢o) for all ¢g in (M)} ™.

We recall that from [5] it follows that if g1 (wo) in S¢(M) is dominated
by ¢(wq) then g; is dominated by p.

6.2. THEOREM. Let g; and o be in R(M, M), o1{wg) be in (M.)" and
foithful, and o1 be dominated by ¢. Then for all ¢g in ((Mp).)™T,

u(e1, #o)le1(¢o)/o(¢o)] = lea(we)/o(wo)]ule, ¢a).
Proof. We have
u(g1, ¢u)le1{da)/e(¢o)lé(e(¢0))
= u{g1, ¢o){e1{¢o)/ 01{wo}} o1 (wo)/ o(wo)]€(o(wo))
= J{do/wo}e1(wo)/ o(wo)]é(e(wo)) = [o1(wo)/0(wa)] J{po/wo}TE o(wo))
= [01(w0)/ e(wo)]u(e, do){o(da)/ o(wo) H(e(wo))
= [e1(wo)/ e(wo)]u(e, $o0)& (o))

and our claim follows.
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6.3. COROLLARY. Under the above hypothesis,

lox(¢o}/ e{do)lI* = ule, ¢o)*{[o1(wo)/ e(wo)] Pule, ¢o)

and, for all a in M,

[o1(0)](a) < |ilo1(wo)/ o(wo)l|[2{¢0)](a)-

Proof. The first statement is an immediate consequence of Theorem 6.2;
we also have, for a in M™,

[o1(d0)](a) = [la*/*[ex($0}/ e( ) € (o))
= || T{e1(do)/ (o)) Ja £ (o(do) )12
= llule1, ¢0) o1 (wo)/ e(wo)lule, ¢o) Ja'/2¢(a(d0)) I
< llulex, ¢o)* (o1 (wo)/e(wo)lule, ¢o)IPlla*/ £ (e(go))1?
< flex(wo)/elwo)]|*[e(40)] (a).

By combining Theorems 5.6, 5.7, and 6.2 we get as an immediate conse-
quence:

6.4. COROLLARY. Under the above hypothesis consider the following
statements:

(a) ulpr, do) = u(e, ¢o) for all do in ({Ma).)".

(b) [e1/ 0] exists.

(c) {01(wo)/0(we)] commutes with u(g, go) for all go in ((Mp)«)T

(d) For all ¢g in m(do) the operators {p1(wo)/o(wo)] and [¢o/wo] com-
mute, and supp g1(¢o) = supp o(do).

The following implications hold: (a)&(b) = (c)&(d); (a)&(d) — (b)&(e);
(b}&:(d) = (a)&(c).

8.5. The particular case of norm one projections (cf. also [6]). Let g1 and
o be in R(M, Mp), with gy dominated by ¢, supp o1(wo) = supp e(wo) =1,
and ¢ a norm one projection from M to My such that p(wg) = wpoe
for all wg in ((Mp)a)T. Obviously in this situation (a) of Corollary 6.4 is
equivalent to the existence of a norm one projection &1 from M to My such
that g1(wp)} = wp o &1 for all wp in ({Mp)«)". In this case we also have
supp o1 (¢bo) = supp @(go) for all go in ((Mo)«)™.

(a) In our situation (a) of Corollary 6.4 implies [e1{wo)/ e(wo)] and
{¢o/wo} commute for all ¢o in {(Mo).)" and therefore (d); indeed, since
{01(d0)/ 01 (wo)} = {¢o/wo} for all go in ((Mo)s)", we get
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{ o /wo}e1(wo}/o(wo)lé(e(wo))
= {01 (¢0)/ o1 (wo) o1 (wo)/ owo)lE(e{ws)) = {01(¢ha)/ e(wa)}é(0(wo))

= J{p1(¢0)/ o(wo) (e(wo)) = J{e1(¢0)/e1{wo) }J o1 (wo)/ g(wo)|€(@(wo))
= [o1(wo)/ e{wo)]J{o1(d0)}/ 01 (wn0) }£{e(wo))
= [o1(wo)/e{wo){o:(d0)/ o1(wo) }¢(0(wa))

= [e1(wo)/ e(wo)l{go/wo}€ (e(wo))-

By Corollary 6.4, [01/¢] exists and coincides with {g1(wp)/e(wq)]. Let A
(resp. Ap) be the modular operator associated with M and &(g(wo)) (resp.
My and &(p(wo))). For all positive ag in M there is some ¢ in m(wo) such

that AV4a,A~1/4 (= Aé/4a0451/4) is the closure of [¢o/wo] (cf. [2]); let
also a be the positive operator in M which is the closure of A~/4[g; /o] AY/4.
We then have
agaé(o(wo)) = A™*[go /wo][e:/elé(o(wo))
= A7M%(01/gl{o/wolé(o(wn)) = aaot(o(wo)),

which implies that o is in (Mp)’ and therefore in the relative commutant
of My in M. Since there is a norm one projection frem M to the relative
commutant of Mp in M, also [g1/¢] belongs to it.

(b) Assume [p; /0] exists and let ¢g be in m{wg). Then

[ho/wo][01/ olé(e(wa}) = [po/wo][e1(wo)/ o(wa)l€(e(wa))

= [¢o/wolJo1{wo)/e(wa)]é(e(wo))

= J[01(wa)/e(we)]J[po/wolé (e(wo))

= Jlo1/elJ[e(¢0)/ o(wo)é{e(wa))

= J]o1(¢0)/ 0(¢0)]e(¢0)/ o(wo)]€ (o{wo))

= [o1(¢0)/ 0(wo))é ({wn))

= [o1/al[do/wolé(o{wo)),
which implies [¢g/wp] and [1/e] commute. Then by Corollary 6.4, u{o1, ¢o)
= u{g, o) = supp o(¢o) for all ¢g in ((Mp).)T, and there is a norm one
projection &1 from M to My such that g1 (wo) = wyoey for all wy in ((Mo).)t.

We can now prove as in (a) that [g1/p] is in the relative commutant of M
in M.

We can prove the analogue of Theorem 6.2 by assuming do to be domi-
nated by wq rather than g1 by ¢ as follows:

6.6. PROPOSITION. Let g1 and g be in R(M, My), o1(wo) and o(wp) be
faithful in (M)* and do in m(wo). Then {oy(w)/o(wo)}ule, do) is an ez-
tension of u(ey, ¢o){e1(o)/e(¢o)}-
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Proof. The equality
u(e1, po){ex(do)/ 2(¢a)}e(e(do)) = {o1{wn)/ o(wo) ule, do)é (e(¢o))

can be proved as in Theorem 6.2, since

I o /wal{er(wo)/ e(wo) }(o{wa)) = Jldo/wolJ{e1(wo)/ o(wo) F(e(wn))
= {o1{wo)/ e{wo}} I [0 /wol JE(0{wo)),
as {o1(wo)/e{wo)} commutes with M’ to which J[¢o/wp]J belongs. If o’ is
in M’ we get
u(er, ¢o){e1(do)/ (o) }a'é(e(d0)) = {e1(wo)/o(wo)}ule, Po)a’é(e(¢0)),
which is our claim.
For a normal faithful state w on M, set L(w) = {a € M : [e(w)](|a|?)

le(@))(@)|?}, Blw) = {a € M : [sw)](la*P) = [[e()](@D)P}, and LE(w) =
L{w) N R{w).

6.7. LEMMA. Let ¢ be a normal state in m{w) such that [o(w)]*([¢/w])
is in L(w) for all real t. Then [o(w)]}([¢/w]) is in L{w) for all real t.

Proof. Since [o(w)!(lg/w)) = [o{w)[*($)/w] with [[o(w)]*(@)](a) —
H{le(w)](a), it is encugh to show our claim for ¢ = 0. If A is the mod-
ular operator associated with M and £(w), our hypothesis is equivalent to

JoEA™*[p/w]é(w) = JoBI A% [pfuw]é(w) = [e(w) o () ([/w]))E(w)
= JoJ A%[p/w]é(w) = JoATH[p/w]é (w)
for all real £. So A¥[¢/w]¢(w) is in Hy for all real t. This implies that
A2 /w)E{w) is in Hy, [¢p/w]TE(w) is in L(w), and our claim follows.

6.8. PROPOSITION. Let p1 and g be in R(M, M), p1 be dominated by

o and o(wy) be faithful. Then g1 = g iff [o(e(we))]*{[o1(wa)/o{we)]) is in
L(g(wy)) for oll real t.

Proof. The “f” part can be proved by noticing that by Lemma 6.7,
[o1(wp)/o(we)] is in LR(g(wg)) and therefore so is |[o1(wp)/e{wo)l|*. As in
the proof of Proposition 5.5, {e(o(wo))]({[e1 (wa)/e(tw0)]2) = T; s0

JoJ|[o1{wo)/ o(wo)] € (e(we)) = &(o(wo)),

which inuplies that |[o1{wo)/e(wo)]|? is the identity, oi(wo) = o(wp) and
finally g1 = p.
The converse implication is trivial.

6.9. THEOREM. Let £(p(wo)) be cyclic and separating for both M and M.
Then there is no canonical g1 in R{M, My) dominated by g ezcept g itself.

Proof In this case F is the identity, LR{g(wg)) = M and therefore any
o1 in R(M, M) dominated by ¢ satisfles the hypothesis in Proposition 6.8.
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6.10. REMARK. In general a necessary and sufficient condition for £(w)
to be cyclic and separating for both M and M is that LR(w) = M.

Theorem 6.9 shows how far the subset of R(M, My) of its elements dom-
inated by o can be from being dense in R(M, M), while this is the case for
m{w) in (M.
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Abstract. We investigate the behaviour of the measure of non-compactness of an op-
erator under real interpolation. Qur results refer to general Banach couples. An application
to the essential spectral radius of interpolated operators is also given.

Introduction. In 1960 Krasnosel’skii [11] proved that compactness of an
operator can be interpolated between Ly-spaces. A motivation for this result
might have been a remark by S. G. Krein on the interpolation character
that certain compactness results for integral operators between Lj-spaces
established by Kantorovich in 1956 seemed to have {see [12], p. 118).

At the beginning of the sixties, with the foundation of abstract inter-
polation theory, Krasnosel'skii’s result led to the investigation of interpola-
tion properties of compact operators between abstract Banach spaces. The
main coutributions during that period are due to J. L. Lions, J. Peetre,
E. Gagliardo, A. Calderén, A. Persson, S. G. Krein, Yu. 1. Petunin and
K. Hayakawa (see [2] and [16] for precise references).

More recently, the paper [4] by Cobos, Edmunds and Potter opened a new
research period in this area, and in 1992, culminating the efforts of several
authors (see the paper [6] by Cobos and Peetre for references) M. Cwikel [9)]
proved that compactness of an operator can be interpolated between any
Banach couples by the real method.

In the present paper we investigate the behaviour under real interpola-
tion of the measure of non-cormpactness, a concept that means more than
only continuity but not so much as compactness. Previous results on this
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