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Supercyclicity and weighted shifts
by
HECTOR N. SALAS (Mayagiiez, Puerto Rico)

Abstract. An operator (linear and continuous) in a Fréchet space is hypercyclic if
there exists a vector whose orbit under the operator is dense. If the scalar multiples
of the elements in the orbit are dense, the operator is supercyclic. We give, for Fréchet
space operators, a Supercyclicity Criterion reminiscent of the Hypercyclicity Criterion. We
characterize the supercyclic bilateral weighted shifts in terms of their weight sequences.
As a consequence, we show that a bilateral weighted shift is supercyclic if and only if it
satisfies the Supercyclicity Criterion. We exhibit two supercyclic, irreducible Hilbert space
operators which are C*-isomorphic, but one is hypercyclic and the other is not. We prove
that a Banach space operator which satisfies a version of the Supercyclicity Criterion, and
hag zero in its left essential spectrum, has an infinite-dimensional closed subspace whose
nonzero vectors are supercyclic.

1. Introduction. Let T' be a linear continuous mapping acting on a
linear metric space E. We say that 1" is cyclic if there is a vector x € E,
called a eyelic vector, such that the linear span of the orbit {z, Tz, T?z, ...}
is dense in E. We say that T is hypercyclic if the orbit of z itself is dense in
E; x is then called a hypercyclic vector. An intermediate property that 7" can
have is being supercyclic: there exists an = € E, called a supercyclic vector,
such that {\z, ATz, AT?zx,...: A € C} (or {Az, ATz, \T?z,...: A€ R} ina
space over the real numbers) is dense in E.

Cyclic operators and cyclic vectors have been studied extensively for
many years. A celebrated result of P. Enflo is the existence of an operator
in a Banach space with only trivial invariant subspaces; i.e., every nonzero
vector is cyclic. The corresponding problem for operators acting on Hilbert
spaces is a well-known open problem.

Hypercyclicity is also a well established notion. Its origin goes back to a
1929 paper of G. D. Birkhoff [7] that shows that translation operators acting
on the space of entire functions have hypercyclic vectors. The first examples
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of hypercyclic operators in Banach spaces were given by S. Rolewicz [30].
(Good sources to learn about hypercyclicity are the paper by G. Godefroy
and J. H. Shapiro [13], the third chapter in B. Beauzamy’s book [4], and the
seventh and eighth chapter in Shapiro’s book [34].

C. J. Read constructed in [29] a remarkable Banach space operator in
which every nonzerc vector is hypercyclic. In [1], S. I. Ansari showed that
every infinite-dimensional separable Banach space supports a hypercyclic
operator, thus answering an old question of 5. Rolewicz [30].

Supercyclicity is of a more recent vintage. It was invented by H. M. Hil-
den and L. J. Wallen [20], and it has been studied by several authors since
then. B. Beauzamy [3], in his simplification of P. Enflo’s example, obtained
an operator such that each nonzero vector is supercyclic.

We now describe the content of this paper.

In the second section we present a sufficient condition for supercyclicity
in Fréchet spaces along with some of its consequences. This condition, which
we call the Supercyclicity Criterion, is reminiscent of the Hypercyclicity
Criterion independently discovered by C. Kitai [21] and R. M. Gethner and
J. H. Shapiro [12].

We also recover H. M. Hilden and L. J. Wallen’s result that all unilateral
backward shifts are supercyclic, but show that no vector is supercyclic for
all unilateral backward weighted shifts simultaneously.

In the third section we characterize the supercyclic bilateral weighted
shifts in terms of their weight sequence; H. N. Salas [33] did the same for
hypercyclic bilateral weighted shifts. We also show that a bilateral weighted
shift is supercyclic if and only if it satisfles the Supercyclicity Criterion.

In the (brief) fourth section, we show that hypercyclicity is not preserved
by C*-isomorphisms even when the operators in question are supercyeclic.

The background for the fifth section is the following. D. A. Herrero [15]
and P. S. Bourdon [8] showed, independently, that each hypercyclic operator
has a dense linear manifold {with zero deleted) of hypercyclic vectors. In [5]
L. Bernal-Gonzilez and A. Montes-Rodriguez studied infinite-dimensional
closed subspaces of (nonzero) hypercyclic vectors, and in [26] A. Montes-
Redriguez continued this study in the Banach space setting.

In the fifth section we start exploring under which conditions operators
have infinite-dimensional subspaces (without zero) of supercyclic vectors.
Theorem 5.1 states that if an operator satisfies the Supercyclicity Criterion
and has zero in its left essential spectrum, then it has infinite-dimensional
subspaces of supercyclic vectors. In [19] G. Herzog showed the existence of
quasinilpotent supercyclic operators in any infinite-dimensional separable
Banach space. As a corollary of Theorem 5.1 we deduce that the quasinilpo-
tent supercyclic operator constructed by G. Herzog has infinite-dimensional
subspaces of supercyclic vectors.
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In the last section we present several questions. We also make some

comments on a joint paper with A. Montes-Rodriguez [27], which is now in
preparation.

2. Supercyclicity Criterion. All the Fréchet spaces under consider-
ation will be complex, separable, in general infinite-dimensional, and the
operators acting on them will be linear and continuous. L(E) denotes the
algebra of operators acting on the Fréchet space E. A subspace of E is
always a closed linear manifold.

‘We start out by recalling the Hypereyclicity Criterion (see Shapiro’s book
(34, p. 109]).

2.1. DEFINITION. Let E be a separable Fréchet space. T € L{E) is said
to satisfy the Hypercyclicity Criterion if:

(1) There exist dense sets X, ¥ and aright inverse S such that S(Y) C YV
and TS = Iy.

(2) There exists a sequence {ny} such that 7"z ~» 0 and ™y — 0 for
alze X, yeY.

1t is shown in [34] that operators that satisfy the Hypercyclicity Criterion
are hypercyclic. _

The following lemma consists of two particular cases of a theorem proved
by GroSe-Erdmann [14, Theorem 1.2.2, p. 11]. Tt will be very useful in the
sequel.

2.2. LEMMA. Let E be a Fréchet space and T € L{E).

(1) The operator T is supercyclic if and only if {(=, oT®z) : z € B,
a € Q+iQ, n € N} is dense in E x E. Moreover, if T is supercyclic the
set of supercyclic vectors is a dense G5 subset of E.

(2) The operator T is hypercyclic if and only if {(z,T %) : x € B, n € N}
is dense in Ex E. Moreover, if T is hypercyclic the set of supercyclic vectors
is o dense Gs subset of F.

The proof of Lemma 2.2 is a direct application of Baire’s Category The-
orem. Since a countable intersection of dense G5 sets is again a Gy, it follows
that

2.3. COROLLARY. If {T,, : n € N} is a countable set of supercyclic
operators on E, then {z € B 1z is supercyclic for all Ty} is a dense G5 set.

The following corollary is known [2]. We give here a different proof, which
is similar to the one given for hypercyclic invertible operators in 7.

9 4. COROLLARY. Let B be a Fréchet space. If T € L£(E) is invertible
and supercyclic, then T~ is also supercyclic.
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Proof. This is also a direct consequence of Lemma 2.2. Let y, z be
arbitrary vectors. Since T is supercyclic, for every open neighborhood V
of 0 there exist a vector x and n € N, oo € Csuch that z —y &€ V and
oT™z — z € V. We may assume that neither the vectors z, y, z nor the
scalar ais 0. Set aT™x = y; thenu—ze€ V and (/)T "u—yeV. m

The following definition is inspired by the Hypercyclicity Criterion, and
we call it the Supercyclicity Criterion.

2.5, DEFINITION. Let E be a separable Fréchet space. T' € L{E) is said
to satisfy the Supercyclicity Criterion if:

(1) There exist dense sets X, Y and a right inverse § such that S(¥) C ¥
and TS = Iy.
(2) There exists a sequence {n;} such that

lim pyv(T™*z)py (S™y)=0
k-—00

for all z € X, ¥ € Y and for all convex, balanced neighborhoods V' of zero,
where py is the Minkowski functional associated with V.

2.6. LEMMA. Let E be a separable Fréchet space. If T € L(E) satisfies
the Supercyclicity Criterion, then T 1s supercyclic.

Proof Let V be a convex, balanced neighborhood of zero, V = {z:
pv(2) < 1}. Lete,f € Fand z € X, y € ¥ be such that e — 2 ¢ V/2
and f ~y € V/2. We will choose & = z + (1/c})S™y for some suitable
EeN ¢>0.

First choose k € N such that py (T™z)py (S™y) < 1/6, and then choose,
if py (S™y) # 0, a number ¢ > 0 such that (1/¢)pv{S™*y) = 1/3. Therefore

e—F=e—ax—(1/c)S™y eV,
F—eI™Z=f~cIT™™z+(1/c)S™y)=f—-y—cT™z eV,

since py(eI™(z)) = cpv(T™(z)) = 3py(S™y)pv(T™(z) < 1/2. If
pv(S™y) = 0, then choose ¢ small enough so that cIT™*z € V/2. m

REMARKS. (1} The proof also works if the sequence ny is allowed to
depend on each pair of points z € X, y € Y.

(2) For a Banach space the condition is that limy e [|[T™* |- |S™*y|| =0
forallze X, yeY.

2.7. EXAMPLES. Let T be a bilateral weighted shift acting on I*(Z), 1 <
p < 0o, or ¢g(Z). That is, Te, = wpen—1 and as usual, e, = (...,0,1,0,...)
where the 1 is in the nth position.

Let Tt be the bilateral shift with weight sequence w, = 1 if n < 0 and
wy, = (n+1)/n otherwise, and 7% be the bilateral shift with weight sequence
wy, = nf(n—1) f n < 0 and w, = 1 otherwise.
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Let T3 be the bilateral shift with weight sequence w, = {(n — 2}/(n — 1)
if n <0 and w, = (n+1)*/n? otherwise; and T4 be the bilateral shift with
weight sequence w,, = n2/(n—1)? if n < 0 and w, = n+1/(n+2) otherwise.

Let X be the linear manifold spanned by {e,}, and observe that for all
r& X, x50, we have:

(a) limp oo T3 "z = 0 and lim, . |77z < oo.
(b) limp oo T3z = 0 and limyeo [T ™2|| < co.
(¢) 0 <limp—o [ THxf/n < co and 0 < limp_, 0 72|75 "2zfl < o0.
(d) 0 < n? litnpoo | TP2] < 00 and 0 < limy, . || T3 "z /7 < co.

The following sufficient condition for being supercyclic is in Kitai’s thesis
[21, Theorem 3.2} for the Banach space case, except that there the right
inverse is bounded. It is a particular, but important case of Lemma 2.6, The
proof consists in considering X =Y = [, Ker(T™).

2.8. CorROLLARY. Let B be a separable Fréchet space and T € L(E).
Then T is supercyclic if the following two conditions hold:

(1) UsZ Ker(T™) is dense in E.

(2) There exists S, possibly unbounded, with domain | J,_, Ker(T™) such
that T'S = I|U2021 Ker{Tm) -

For the particular case of the unilateral backward shift in H(C), the space
of entire functions in the cornplex plane, we recover a result of Godefroy
and Shapiro [13]. They also showed that no multiple of the backward shift
is hypercyclic in H(C).

Let T be a unilateral backward weighted shift acting on IP(Z%), 0 < p
< o0, or co{Zt) with positive weight sequence {wy}; i.e., Te, = wpen-y if
n > 0 and Teg = 0. {As usual, e, = (0,...,1,0,...) where the 1 is in the
nth position.) The following result was obtained by Hilden and Wallen [20].

2.9. CorOLLARY. If T is a unilateral backward weighted shift acting on
IP(ZY) or co(Zt), then T ds supercyclic. '

2.10. PROPOSITION. Let E be a Fréchet space. Let E = F @ G and
T € L(E). Assume that G 1is an invariant subspace of T and P 1is the
projection on F with Ker(T) = G. If T is hypercyclic (supercyclic, eyclic),
then so is PTP|p.

Proof We prove the three assertions at the same time. The estimates
given in [33, Proposition 2.7] work in this context too. Since PT(I —P) = 0,
induction on n shows that PT™P = (PTP)".

Let z € B, f € Fand 37 g0;2% be a polynomial. Let W be a neigh-
borhood of 0. The continuity of P implies that there exists another open
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neighborhood V of 0 such that

m . m m
> a;(PTPYPx—f=Y aj(PTPYz—f= P(Zamw ~ f) eWnF
=0 =0 =0

whenever )" a;T7x - f € V. For hypercyclicity choose the polynomials
2", while for supercyclicity choose a,2™. Thus if z is cyclic (hyper, super)
for T, then Pz is cyclic (hyper, super) for PTP. n

‘We remark that the orthogonal sum of hypercyclic cperators may even
fail to be cyclic. See, for instance, [15, p. 189] or [32, p. 768).

The underlying spaces for hypercyclicity must be separable and infinite-
dimensional [21, Theorem 1.2]. For supercyclicity the spaces must be either
of dimension one or separable and infinite-dimensional [19, Theorem 1].
Therefore we have the following:

2.11. CorROLLARY. Hypercyclic operators have no invariant subspaces of
finite codimension, and supercyclic operators have no invariant subspaces of
finite codimension greater than one.

The following result can be found in [34, p. 111] with “hypercyclic” in
place of “supercyclic”. We will use it in the proof of Theorem 3.1

2.12. THE SUPERCYCLIC COMPARISON PRINCIPLE, Suppose E is a linear
metric space, and F' a dense subspace that is itself a linear metric space with
a stronger topology. Suppose T' is a linear transformation on E that also
maps the smoller space F into iself, and is continuous in the topology of
each space. If T is supercyclic on F', then it is also supercyclic on E, and
has an E-supercyclic vector that belongs to F.

It is also possible to have a Cyclic Comparison Principle.

By using Corollary 2.3, we see that a countable set of unilateral backward
weighted shifts has a common supercyclic vector; in fact, it has a dense
G; of such vectors. On the other hand, the set of all unilateral forward
weighted shifts has a common cyclic vector, namely eg. It is then natural to
ask if all backward shifts have a common supercyclic vector. The following
proposition shows that the answer is negative.

2.13. PROPOSITION. Given any vector in I*(Z1), there exists o backward
shift for which the vector is not supercyclic.

Proof. Let & = 377 ) axey; it is clear that the set {k : ap 3 0} must
be infinite. Otherwise for any backward shift T, T"z = O for some n and
therefore » cannot be supercyclic. Let {iy : k € N} with 4; > 0 be the
increasing sequence for which a;, # 0. Note that ap might be distinct from 0.

We will define inductively a decreasing weight sequence wy for which
€o -+ €1 is not in the closure of {zT"z : z € C, n € N}, where T has weight
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sequence wy. Set w; = 1for 1 < j < iy—1. Choose w;, such that 0 < w;, <1
and

21 t2
o | [T ws = laicl = 20as,| [ wye
F=1 J=ig—ig+1
Assume that we have already chosen w; with j < i,. Set w; = w;, for
in < J <in41 and choose w;,,, such that 0 < w;,,, < w;, and

in int1
|a'in| ij 2 2la’fn+1| H Wj.
J=1 J=int1—in+1
It is clear that inf{|jzz — es —e1]] : 2 € C} = min{|j2z — ey — &1 :
zeC} >0
Indeed, if there were a z for which the minimum is zero, then z = 0 since
z has infinitely many nonzero coefficients. However, |[0z — eg — e1]| = 2. Set

p=z Hf::1 wya; and ¢ = zHiZé Wya;41. We now show || zT9z ~ eg — e1|| >
lp~1[+1]¢—1] = 1/4.

The left side above is greater than or equal to one unless j = 4, and
7+ 1 =14 for some n. If [p — 1| < 1/2 then |p| < 3/2 and, from the way
the weights have been chosen, |g| < 3/4. This completes the proof. m

2.14. PrROPOSITION. Ifx = Z;‘il aje; € IMZY), then there ezists a
hypercyclic uniloteral backward weighted shift T with lim, o T"z = 0.

Proof. Assume that ||z = 1 and let 0 < £ < 1/2. Let {ng 1320, 20 = 0,
be an increasing sequence such that if 3°,, . p, ., 0565 = Yk, then [y <
gk, for all k = 1. [33, Theorem 2.8] states that the unilateral backward shift
is hypercyclic if and only if lim sup []}~; w; = co. We choose the weights as
follows: w; = 1 if 0 = ng < i < ng and w; = 2/ Per1=m%) if y < < gy,
Thus ||T"z]| < 3772, 27 lysll € 2524(2€)7 for ng < n. The proof is now
complete. m

The proofs of Propositions 2.13 and 2.14 can be modified to work for
P(Z*) or co(ZT).

3. Bilateral weighted shifts. In [33, Theorems 2.1 and 2.8] a char-
acterization of hypercyclic weighted shifts was given in terms of the weight
sequences. We now do something similar for supercyclic weighted shifts.

3.1, TurorEM. Let T be a bilateral backward weighted shift, acting on
P(Z) with p > 1 or co(Z) with positive weight sequence {wn}; t.e., T'e, =
Wpen—1 forn € Z. The operator T is supercyclic if and only if

H. - Wi i -
1iminfmax{-M§l-—:|g|,|h|5q =0
=00 Hh+1§kgh+n Wk

foraligeN,
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Proof. Let T be supercyclic. Let 2 = y = lelgqej and 1/2 > = > 0.
By Lemma 2.2, there is an arbitrarily large n > 2¢, a vector z = S Txer
and a complex number o such that |z — z|| < € and [|@T™z — y|| < €. Note
that a # 0. Thus |z;| > 1/2 for |j| < ¢ and

/2el [ weslal ]
J+l-n<k<d J+l-n<k<j
On the other hand, for |h| < g, we have |Tpin| < € and

w|zi| < e

1/2<1—|a H 'kamh.q_nwl‘
ht1<k<htn
< ’a H WrThtn| < |0 H WEE.
h+1<k<htn h+1<k<htn

Consequently, for all |k, |4] < g,

ILis1-nghgs We < 462

Hh+1gkgh+n Wi
For the other implication it suffices, by using the Supercyclity Compar-
ison Principle, to prove it for the case I'(Z). Again we use Lemama 2.2. Let
Z= 3 j<q i€ and y = > is1<q Yi€; be both different from 0. Given ¢ > 0,
we want to find z and n such that ||z — 2| < € and [|]AT™z — y|| < e for
some A.
Let £ = z + (1/\)T "y with n to be determined but [|[{1/\)T~"y| =e¢.
Also let T "y = EIhISquhehM' Since T"z = T™z + (1/A)y, it suffices to
find n such that |A\T™z|| < ¢. But

ATz — ylf = AT 2] = | T"2] - 1Tyl /e

<max{ T we:lil<a}lel 3 lul/e

JHl-nsksy |Ri<q

max{ [y 1onpe; wh 1 1] S 0} ) I

< izl

wk|uh|/5)

min{Hh-}-lngh-Fu Wy VL! S Q} |hi<g  h+1SkShtn
I AR T

{Hh+1gk5h+n wy : |h| < q}

asy =T1" E}h]Sq Uh€hin =F Z\h1gq(ﬂh+1gk5h+n wi)unen. Now ||z]| - [ly|l/e
is a fixed quantity, so the hypothesis implies that there is an n large enough

such that the maximum of the quotient in the last Iine can be made smaller
than £2/(||2]] - |l¢])- Thus ||AT™z — y|| < €. The proof is now complete. u

< max

Note that an immediate consequence of Theorem 3.1 is that a supercyclic
bilateral shift has no symmetric weight sequence, i.e., one with w, = w_,.
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This restriction no longer applies to cyclic bilateral shifts; for instance,
{wn = 1} corresponding to M, ¢ L*(@D,df/(2r)) is cyclic. The cyclic
vectors of this unitary operator are known [35, p. 116].

It is shown in [23] that a bilateral weighted shift is hypercyclic if and only

if it satisfies the Hypercyclicity Criterion. An analogous result is presented
helow.

3.2. COROLLARY. A bilateral weighted shift is supereyclic if and only if
it satisfies the Supercyclicity Criterion.

Proof. Let T be a supercyclic bilateral backward weighted shift acting
on IP(Z} or co(Z) with positive weight sequence {w,}. Let X = ¥ = the
manifold spanned by {e, :n € Z} and z = Poli<e € Y = 21| <aq Dits-
Then B -

7@l <max{ ]
JHl-n<k<j
1

min{] ], 11 <cnin e A < ¢}

we : 7] < a}allz)

IT @) < allyl.

Thus

- Ilicionchgi @
i7" @) - T @)l < m“{niﬂﬂg o LIl < q}q2nmn -yl
+1<kShtn

By Theorem 3.1 there exists a sequence {n,} such that

. H'+1An¢<k< jWe
lim maX{ =l — |, Al < q}QQIEmII llgll =0,
r—oo a1k ghn, wi
and consequently limiy..oo |17 (z)|| - |7~ {%)|| = 0. Since the converse is

always true, the proof is complete. m

3.3. COROLLARY. Let T3, ¢ = 1,...,m, be bilateral weighted shifts with
weight sequences {wix :i=1,...,m and k &€ N}. The direct sum @, T;
is supercyclic if and only if

o 1 Wik .
11m1nfma.x{n”l nsksd DR 5] R € g, %:1,7.‘,m}=:0
nboo Hh+1$k§h+n Wi,k

forallg e N,
3.4. BExaMPLES. The following two bilateral backward shifts are super-
cyclic.

1. The shift Ty with weight sequence wy, = 1/n? if n < 0, wg = 1 and
wy, = 1/n otherwise. :
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2. The shift Ty with weight sequence w, such that wq =1 and

( k+1-3%_ my ip e s i i1
=0 "4 : ) - .
——-———-"—~k__2;20nj if i is even and 3°;_omn; < k < 305Ny,
v i i+l
i = 1 if i is odd and 375 g ny; <k < 3 7T5m5,
= s i i1
1 if i is even and 35 _ony < ~k < E}ie ng,

Ik|+1—E§-=o i
STTE Ay
where {n; 32, with ng = 0 is a sequence that increases very rapidly.

The first shift is quasinilpotent, and no multiple of it is hypercyclic.
This is due to Kitai [21, Theorems 2.7 and 2.8] where she shows that any
component of the spectrum of a hypercyclic operator intersects the unit
circle. The spectrum of the second shift is the unit circle. No multiple of
this operator is bypercyclic either [33, Theorem 2.1].

if i is odd and 375 g7y < —k < 2Ly n,

4. Hypercyclicity is not preserved by C*-isomorphisms. In this
section we work with. operators acting on separable Hilbert spaces. The
basics of C*-algebras are given, for instance, in J. B. Conway’s book [11,
Chapter 8]. Recall that operators S, T are said to be similar if there exists
an invertible operator I such that U~1SU = T. Operators S, 7" are said to
be quasisimilar if there exist operators V, W that are one-to-one, have dense
ranges and intertwine S, T, i.e., SU = UT and WS = TW.

Similarity preserves hypercyclicity and so does quasisimilarity. On the
other hand, cyclicity is not preserved by C*-isomorphism, i.e., there exist
T cyclic and 5 noncyclic such that there is a C*-isomorphism = between
C*(T) and C*(S) with #(T) = § and 7(T™*) = §*. Thus one cannot expect
hypercyclicity to be preserved by C*-isomorphism either. This is the case
even if both operators are supercyclic.

In [31] it was shown that there exists an injective bilateral weighted shift
T with [|[T']| = 1 such that for any other shift § with ||S| < 1 there is a
C*-homomorphism 7 with 7(T") = S. Such a T is called a universal bilat-
eral weighted shift, and almost all bilateral weighted shifts are universal. A
necessary and sufficient condition for T to be universal is that its weight
sequence {wn pnez contains contiguous fragments that arbitrarily approxi-
mate any finite sequence sampled in [0, 1]. To be precise: given & € N and
{(815...,8%) with 0 < s; <1 and £ > 0, there is n € Z with |s; — wni4] < ¢
for 1 < j < k (see [28, Theorem 2.4.1} or [31, pp. 335~337]). We remark
that {28, Theorem 2.4.1] still holds for injective shifts, even if they are not
invertible. The method of proof given in {31, p. 343] of [28, Theorem 2.5.2]
works also in this case. A universal bilateral shift is irreducible because the
von Neumann algebra generated by it contains the compact operators.
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4.1. ProPOSITION. There exist C*-isornorphic irreducible operators g , T
such that:

1.5 is supercyclic but not hypercyclic.
2. 1" is hypercyclic.

Proof. S, T" will be universal bilateral weighted shifts and therefore
C*-isomorphic. Let {(a;;)i; : j €N, a;i; € QN (0,1]} be an enumeration
of all finite positive rational sequences.

The weight sequence {wy,} for § is the concatenation

(o vwog, wen, wot Jb) (@i, (b2){ai,2) 2 (Bs) - .

In other words wy = b1, w1 = @13,.--,Wyy = Gyt Winq1 = Da,... We
require that {b,} goes to zero so rapidly that Hm, . |2[™ [Th_, wx = 0 for
all z > 1.

We also require that for n € N, w_p = (1/n)w,. Thus the condition of
Theorem 3.1 is satisfied and therefore S is supercyclic. At the same time,
from the way {w, : n € N} was defined, [33, Theorem 2.1] shows that no
multiple of § is hypercyclic.

The weight sequence {v,} for T is the concatenation

(- vwos, won, won){ein iRy (a4,0)i2 (0i0)ils (@i2)iTh (eis) iy - -
(that is, v, = wy, for n < 0) where ¢;; = 1 for 1 <4 < ny;. Thus g1 3 = vo.
Again {n;} is required to increase so rapidly that limsup,, ., [2|™ [T5y wk
= oo for all |z| > 1. Since limp_seo |2|" [Ty w—r = 0, [33, Theorem 2.1]
says that 2T is hypercyclic for all |z| > 1. By letting 2T = T and 25 = §
we conclude the proof =

5. Infinite-dimensional spaces of supercyclic vectors. In [1] Ansari
proved that every space in a large class of topological vector spaces supports
hypercyclic operators. In particular, each separable Banach spaces supports
hypercyclic operators. Ledén-Saavedra and Montes-Rodriguez [22] showed
that some of the operators constructed by Ansari actually have infinite-
dimensional subspaces of hypercyclic vectors. On the other hand, in [19]
Herzog proved that every separable Banach space supports a quasinilpo-
tent supercyclic operator. To complete this circle of ideas, we show that
some supercyclic quasinilpotent operators, Herzog’s included, have infinite-
dimensional subspaces of supercyclic vectors.

We define HC(E) := {T' € L(E) : T is hypercyclic} and SC(E) :=
{T € L(E) : T is supercyclic}. So both classes are subsets of L(E). On the
other hand, for T € L(E), let HC(T) := {z : @ is hypercyclic for T} and
SC(T) := {z : « is supercyclic for T'}. Thus HC(T) and SC(T') are subsets
of E. Following [23], we denote by HC(E) the set of operators which have
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an infinite-dimensional subspace (with zero deleted) of hypercyclic vectors.
In a similar fashion we define SC (E).

It is clear that HC (E) and SCw (F) are invariant under similarity
since if T=USU~! and z is hypercyclic {(supercyclic) for T' then so is U 'z
for S, and if M is an infinite-dimensional subspace of E then so is U~* M.

Are the classes HC oo [E) and SC o (E) invariant under quasisimilarity?
‘We suspect that the answer is negative.

We should peint out that the Supercyclicity Comparison Principle is not
useful in the context of this section. Indeed, let T &€ SC(F) and M be
an infinite-dimensional subspace of F' of supercyclic vectors. This means
that M is a closed linear manifold in F, but in principle it is only a linear
manifold in F.

Recall that S € L(E} is said to be semi-Fredholm if the range of S
is closed and either dimKer(S) is finite or codimRan(S) is finite. In the
first case we write S € ¢, (F) and in the second case S € ¢ (E). The left
essential spectrum of S is op.(S) = {A : A~ 5 & ¢ (E)}. See for instance
J. Zemanek’s paper [36].

The following theorem was inspired by [26, Theorern 2.2]. The condition
there that there exists an infinite-dimensional By C E with T™e — 0 for
all e € Ey is not useful for supercyclicity since we can always consider that
|Tl] < 1. This condition is replaced by: There exists a normalized basic
sequence {u;} such that Tu; goes to zero. We will show in Proposition 5.4
that this happens if and only if 0 € o7.(T).

5.1. THEOREM. Let E be o separable Banach space. Assume that:

(1) T € L(E) satisfies the Supercyclicity Criterion with X =Y.
(2) There ezists o normalized basic sequence {u;} such that Tu; goes to
zero; or equivalently, O is in the left essential spectrum of T

Then T has an infinite-dimensional subspace such that all its nonzero
vectors are supercyclic.

Proof. Without loss of generality we may assume that T is a contrac-
tion and that {u;} is contained in X. As in [26, Theorem 2.2], we find it
convenient to consider i(m,n} = (m +n —1L}(m+n)/2 —n+1, the natural
numbers distributed in matrix form as

1 3 6 ... i(m1)
2 5 9 ... i(m,2)
4 8 13 ... i(m,3)
il,n) 2,n) i(3,n) ... ilm,n)
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Let {yx}i2, C X be a dense subset of the unit sphere of K. We will
construct a sequence {z, = 3 .2, x;,} of supercyclic vectors and a rapidly
increasing subsequence {ri(m ny} of {m;} (where {m,} and S are given by
the Supercyclicity Criterion) such that:

1. {1} is a subsequence of {u;}.

2. ¥or j > 1, zjn = a;nSTi0my; where a;, are positive numbers.

8. Yoot 2gep lzinll < 1/(2K) where K is the basis constant corre-
sponding to the basic sequence {u;}.

The conditions above will be shown to imply that {z,} is also a basic
sequence, The infinite-dimensional subspace we are looking for is the one
generated by {z.}.

We now build simultaneously the sequence {riim,n)} and the vectors
{Zm,n}- Let rin 1) = my, a2y = me and 211 = uy, T12 = uz. Choose
ri2,1) Such that

|Tr e, | S| < (K272 6
for v = 1,2. Choose ap 3 such that
an 1| STy, | = K02 = 1S,

Set mg 1 = ag 15N yy. Assume that we have already chosen the vectors
zg,s and the positive numbers ax, for i(k,s) < i(p,q). For convenience
asswme that a; s = 1. We need to consider two cases:

(i) If p = 1, choose 1wy such that w # x1,, for 1 <5 <g—1 and
(1) [T < min{ag, . : i(k,s) < i(1,q) K L2702,
Set 1,4 = w; and choose ri(1,) > Ti(g-1,1)-

(i) If p > 1, choose rig gy such that for each i(k,s) < i(p,q) we have
Ti(k,e) < Ti(p,g) a0d

Q) [Ty | - |57
< (min{ag,; : i(k, 8) < i(p, @) YK =127 PD=2)2/(24(p. q)).
We still have to choose ay q; we do it in such a way that
(3)  apgllS o0y, = minfan,, : ilks ) < i(p, @)} T2,
Define Zp,q = ap ¢S i»0y,. The last inequality and the fact that a3, = 1
imply that
lzp,qll = apg|STHP Oy < K12THRO2,

Therefore if {zn = ¥ ;2 ©jn}, then {zx} is a basic sequence since

o0 oo oo
3 llzn ~ 21l £ D0 msall S 1/(2K).
ne=l

n=1j=2
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ASSERTION. If z = Y 0. by2, # 0, then 2 is supercyclic.
Since for j > 1 we have
Trioa gy = T 50D a; 5 = a4,4Y;

it follows that

1 TrDy —y; = Z LT”(J‘J)Q;R,,&
bqaj’q i(k,8}<i(d,q) betj,q
+ Z z Zk 2 Titi g §Titk, 3)yk
i(G,q) il 8 )ihompl 1 01
b,

t D T e
i(q)<i(1,s) "%

Let ¢ be such that
(4) lbg| = |bn]

for all n. For i(k,s) < (4, q), the first inequality below is due to (4}; the
equality is due to (3); and the last inequality is due to (2).

bs PRy L 16 q)g;k ol < iTTi(j.q)mk s
byttj,q ~ g ’
. Srsn,|
= [ITrGaogy, | - Y
I Ths | min{ag,s : 4(k, 8) < i(j,q) 1 K ~12-30:a)—2
_ minfa, - ik, 5) < 4, QK260
- 2(5,9)
Therefore

23—
—T”m(a,q)xk‘a

i(k,5)<i(d,q) bytis,q

For k # 1 and i(5, ¢) < i(k, s), (8) and (4) and ||T'|| € 1 imply that

(5)

} < Klg-ila)-2g,

bsak 28T S ritsa STtk s)yk ‘ Ei’isf‘i(k,a)yk < K-—lz—z‘_(k,a)mz
bet,q Gjq
Consequently,

baks

(6)

—— = TTitha) Gk, e g

i q)<ilh,s)skl Y

< Z Klo—ilk,s)~2
i(7,q) <ilk,0); kel
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For i(j, q) < (1, 5), inequalities (1), (4) and ||T| < 1 imply that

by Tt || < LT&n S| < Etgmitle-2
9%.q g e /e
which implies that
by

(7) T, Q)ml s $ Z K—lz-—i(l,s}-—z.

(4,q) <i{1,8)

a(j,q)<z(1 a) bq 5q

By using (5), (6) (7) we have
Z K—lg—i(k,s)—l.

o
(j:Q’)Si(k:B)

Since the right hand side in the last inequality goes to zero, the vector z is
indeed supercyclic. The proof is complete. w

r
Trithe) z — Yy

q04,q

The next two corollaries are immediate consequences of the above theo-
rex.

5.2. COROLLARY. Let E be a separable Banach space. Let T € L(E) and
5 be a map such that:

(1) The linear manifold | ), Ker(T™) is dense in B.
(2) S{Unwy Kex(T™)) € UpZy Ker(T™) and TS = I| = | Ker(Tm)-
(3) There is a normalized basic sequence {u;} such that Tu; goes to zero.

Then T € SCo (E).

5.3. COROLLARY. (1) If T € L(I2(Z)) is a supercyclic bilateral weighted
shift such that a subseguence of ils weight sequence goes to zero, then T &
5Cao(I2(2).

(2) If T € L(I*(Z%)) is a unilateral backward weighted shift such that a
subsequence of its weight sequence goes to zero, then T € SCo (I2(Z1)).

The following proposition is probably known to experts, but we have
been unable to find a reference.

5.4. PROPOSITION. Let E be a Banach space and T € L(E). There exists
a normalized basic sequence {u;} such that Tu; goes to zero if and only if
0 € o1(T").

Proof. Equivalently, we have to show that there exists a normalized
basic sequence {u;} such that Tw; goes to zero if and only if Ker(T) is
infinite-dimensional or E = Ker(T) ® By and T'|g, is one-to-one but not
bounded below. Since every infinite-dimensional Banach space contains a
basic sequence, we need only consider the case in which 0 < dim Ker(T)
< o0,
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Suppose 0 < dimKer(T) < oo and there exists a normalized basic se-
quence {u;} such that Ty, goes to zero and T'|p, is bounded below. We can
write u; = k; + e;, with k; € Ker(T) and e; € Fy. Let inf{||Tz]} : ||z|| = L,
z € By} = ¢ > 0. Then |lesl| < (1/)[Te;1| = (1/0)[[Tus] — 0.

Since |/k;|| — 1, the sequence {k;} in the finite-dimensional space Ker(T')
has a subsequence that is convergent to a nonzero vector k.

Consequently, k € (oo, span{u; : n < j}. However, this contradicts the
fact that u; is a basic sequence.

Lastly, we have to consider the case when T'|g, is one-to-one but not
bounded below. As in the proof of [24, Lemma 1.a.8], assume that we have

found unit vectors z;, i = 1,...,n, such that
k-1 ‘
[Tkl <1/k and |yl < TTC+27)ly + 2]
j=1

for any y € span{z; : 1 < j < k -1} for any k& < n and scalar 2.

As in the above-mentioned proof, let {y;}7, be vectors of norm 1 in
span{z; : 1 < j < n} such that for every y & span{z; : 1 < 7 €< n} with
lyli = 1 there is an 5 for which ||y —y:|| < 272 Let {y}}2, be functionals
of norm 1 such that yfy; = 1. Note that we are assuming that 4 € Ef. Thus
we need z € (.=, Ker(y}) with ||z|| = 1 and ||Tz]} < 1/(n + 1). Such an
would satisfy [ly|| < [T;—,(1+277)lly+zz|| for any y € span{z; : 1 < j < n}
and scalar z. Now By = Eg®(, Ker(y}), where dim Fy < oo. Since T|g, is
one-to-one, T'| &, is bounded below. Therefore Tinm ker(yy) is not bounded
below.

Indeed, if it were, then (], Ker(y})) would be a closed subspace. Let
u; = kj-+ej, with k; € By and e; € (-, Ker(y}), be such that ||u;|| = 1 and
Tu; — 0. Again, we may assume that k; is convergent to k and therefore
Tk; — Tk. But then Te; — —Tk, and there would exist an e € (v, Ker(y})
with T'e = —T'k. Since T'|g, is one-to-one, this means that k = 0. Therefore
Te; — —Tk =0, and T|nm | Kex(ys) is not bounded below, a contradiction.

Thus we can choose = & (-, Ker(y}) with ||z] = 1 such that ||Tz| <
1/{n—+1); set & = £r11. Asin [24, Theorem 1.ab), {z, }°2, is a basic sequence
with basis constant [152, (1 +279).

We have proved that there exists a basic sequence {z,} such that |7z,
<l/n. wm

Recall that A € ¢(T) is a normal eigenvalue if it is isolated and the
corresponding Riesz spectral invariant subspace of T' is finite-dimensional.
It is known that if T' € L(E) and A € 8¢(T") and X is not a normal eigenvalue,
then A € o3 (T"). In the case where E is a Hilbert space this fact can be found
in [11, p. 366].
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5.5. COROLLARY. Let E be an infinite-dimensional Banach space and

T € L(E) be quasinilpotent. Then there exists a normalized basic sequence
{u;} such that Tu; goes to zero.

Proof 0is not a normal eigenvalue of T. Thus 0 € ¢1.(T). =

6. Concluding remarks and questions. 1) Does there exist a “nice”
characterization of cyclic bilateral weighted shifts in terms of their weight
sequence? An answer to this should also answer:

a) Herrero’s question [35, question 27]: must T or T have a cyclic vector?

b) Shapiro’s query: There are examples coming from function theory
of T cyclic but T~ not cyclic. Are there “easier” examples, for instance,
invertible bilateral weighted shifts, of this behavior? [2, Proposition 4.2]
does not exclude in principle this possibility since 0 belongs to the bounded
component of the resolvent of such operators.

2) In [18] Herrero and Wang showed that a compact perturbation of the
identity is hypercyclic. This compact perturbation can be in any Schatten
class but cannot be of finite rank, as shown by K. C. Chan and J. H. Shapiro
(10, Theorem 3.2 and Corollary 4.2]. On the other hand, in [9] Bourdon
showed that hyponormal operators are not supercyclic.

If T is hyponormal plus finite rank, must 7' be nonsupercyclic? A con-
sequence would be that the Volterra operator Vf(z) = {7 f(t)dt is not
supercyclic since V' can be represented as a sum of a normal operator and
an operator of finite rank. This representation can be seen by considering the
matrix of T' with respect to the basis {exp(i2nnz) : n € Z} of L*([0, 1], dx).

3) In [16] Herrero asked if T & T is hypercyclic whenever T is. Although
the question remains open, J. P. Bés has reformulated the problem in a tan-
talizing way. In [6, Theorem 1] he shows that the following three conditions
are equivalent (there are two more equivalences):

(1) T @ T is hypercyclic.
(2) T satisfies the Hypercyclicity Criterion.
(8) T is herecitarily hypercyclic.,

His Hypercyclicity Criterion is a little more general than the usual one;
namely, the “inverse” mapping is actually an asymptotic inverse,

We can ask then the equivalent of Herrero’s question: Is T@T supercyclic
whenever T is supercyclic and T* does not have an eigenvector? The last
condition is necessary by [15 , Lemma 3.1].

4) Herrero's Conjecture 1 in [16] is that multi-hypercyclicity implies hy-
percyclicity. In other words: If T’ € L(E) is such that there is a finite set
F C E with {T"z : n € N, # € F} dense in E, then T is hypercyclic. He
also conjectured that multi-supercyclicity implies supercyclicity. The prob-
lem remains open but V. G. Miller made progress in [25]. By using argu-
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ments similar to the ones used in the third section, we can show that a
multi-supercyclic bilateral weighted shift is supercyclic.

5) Let B be the unilateral backward shift whose weights are all 1. What
are (51 HC(2B) and U5, HC(2B)?

Corollary 2.3 says that [,., HC(2B) is a dense G5 whenever A is a
denumerable subset of {|z| > 1}. What can we say about [, HC(2B)7

Going in the other direction, since there is a supercyclic vector z such
that given |z| > 1, the sequence ||2"B™z|| is bounded for all n, it follows that
U[Zi>l HC'(zB) is properly contained in SC(3).

Consider the unilateral backward shift T with weight sequence {w, =
(n+ 1)/n : n € N}. Since its essential spectrum o, (T) is the unit circle,
(23, Theorem 3.3] says that there exists an infinite-dimensional subspace of
bypercyelic vectors of T. Is (), oy HC(2T) = HC(T)?

On the other hand, if {z| > 1, then o.(2T) = {|A| = |z|}. [23, The-
orem 3.4] says that 27" does not have an infinite-dimensional subspace of
hypercyclic vectors. But 2T still has an infinite-dimensional subspace of su-
percyclic vectors; namely, any infinite-dimensional subspace of hypercyclic
vectors of 7.

6) In [26, Theorem 3.4} and [23, Theorem 3.4] the proof that certain
hypercyclic operators do not have an infinite-dimensional subspace of hy-
percyclic vectors consists in exhibiting a vector whose orbit goes (in norm)
to infinity. Nonetheless, the possibility remains that the orbit of such a vec-
tor could be “tamed” by appropriate multiples and thus be dense in H.
In a joint paper with Montes-Rodriguez [27], which is now in preparation,
it is proved that this is not always the case. For instance, the closed sub-
spaces (without zero) of supercyclic vectors of the unilateral backward shift
B = M acting on the Hardy space H2(DD) are all finite-dimensional.

A result in [27] states that certain bilateral shifts, which are compact
perturbations of a unitary operator, have infinite-dimensional subspaces of
supercyclic vectors. The spectra and the essential spectra of these operators
are all the same, namely, the unit circle. On the other hand, a related result
states that for the inverses of the above-mentioned shifts all their subspaces
of supercyclic vectors are finite-dimensional. These results complement the
recent work of A. Montes-Rodriguez and F. Leén-Saavedra for hypercyclic
operators [26], [22] and [23].
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Averages of uniformly continuous retractions
by

A JIMENEZ-VARGAS (Almeria), J. F. MENA-JURADO (Granada),
R. NAHUM (Haifa) and J. C. NAVARRO-PASCUAL (Almeria)

Abstract. Let X be an infinite-dimensional complex normed space, and let B and §
be its closed unit ball and unit sphere, respectively. We prove that the identity map on
B can be expressed as an average of three uniformly continuous retractions of B onto S.
Moreover, for every 0 < r <« 1, the three reiractions are Lipschitz on rB. We also show
that a stronger version where the retractions are required to be Lipschitz does not hold.

1. Introduction. Let Y be a strictly convex infinite-dimensional normed
space, and let T be a topological space. Let C = C(T,Y) be the normed
space of continuous bounded functions from T into ¥, with the usual uniform
norm. Let By and Bgo be the closed unit balls of YV and C, respectively,
and let Sy be the unit sphere of ¥. Note that f is an extreme point of Bg
if and only if f maps into Sy. Finally, for every metric space M denote the
identity map on M by In.

Peck [8] proved that if T is a compact Hausdorff space, then Bg is the
convex hull of its extreme points. In [2] it was proved that every f € Bg
can be expressed as an average of four extreme points of Be, a fact which
implies that Ip, can be expressed as an average of four retractions of By
onto Sy. Cantwell [3] conjectured that the number of retractions can be
reduced. Indeed, the number of retractions was reduced in [6] to three, the
lowest possible number, and in [4] it was proved that this result holds in
every infinite-dimensional complex normed space.

In this paper we focus on two subspaces of C(M, X}, where M is a metric
space and X is an infinite-dimensional complex normed space. Namely, we
consider the subspace U = U(M, X)) of uniformly continuous functions, and
its subspace L = L{M, X} of Lipschitz functions.
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