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Averages of uniformly continuous retractions
by

A JIMENEZ-VARGAS (Almeria), J. F. MENA-JURADO (Granada),
R. NAHUM (Haifa) and J. C. NAVARRO-PASCUAL (Almeria)

Abstract. Let X be an infinite-dimensional complex normed space, and let B and §
be its closed unit ball and unit sphere, respectively. We prove that the identity map on
B can be expressed as an average of three uniformly continuous retractions of B onto S.
Moreover, for every 0 < r <« 1, the three reiractions are Lipschitz on rB. We also show
that a stronger version where the retractions are required to be Lipschitz does not hold.

1. Introduction. Let Y be a strictly convex infinite-dimensional normed
space, and let T be a topological space. Let C = C(T,Y) be the normed
space of continuous bounded functions from T into ¥, with the usual uniform
norm. Let By and Bgo be the closed unit balls of YV and C, respectively,
and let Sy be the unit sphere of ¥. Note that f is an extreme point of Bg
if and only if f maps into Sy. Finally, for every metric space M denote the
identity map on M by In.

Peck [8] proved that if T is a compact Hausdorff space, then Bg is the
convex hull of its extreme points. In [2] it was proved that every f € Bg
can be expressed as an average of four extreme points of Be, a fact which
implies that Ip, can be expressed as an average of four retractions of By
onto Sy. Cantwell [3] conjectured that the number of retractions can be
reduced. Indeed, the number of retractions was reduced in [6] to three, the
lowest possible number, and in [4] it was proved that this result holds in
every infinite-dimensional complex normed space.

In this paper we focus on two subspaces of C(M, X}, where M is a metric
space and X is an infinite-dimensional complex normed space. Namely, we
consider the subspace U = U(M, X)) of uniformly continuous functions, and
its subspace L = L{M, X} of Lipschitz functions.
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In Section 2 we prove the main theorem (2.1) of this paper: Let X be
an infinite-dimensional complex normed space. Then I, can be expressed
as an average of three uniformly continuous retractions of By onto Sx.
Moreover, for every 0 < r < 1, the three retractions are Lipschitz on rBx =
{rz | 2 € Bx}. We do not know if this is true for every infinite-dimensional
real normed space.

In Section 3 we show (Lemma 3.4) that if X is a Hilbert space, then Ip,
cannot be expressed as an average of any finite number of retractions of By
onto Sx which are Lipschitz (or even Holder with exponent p > 1/2). We
do not know if this is true for every normed space.

We also show (Corellary 3.3) that if X is strictly convex then the convex
hull of the extreme points of By (respectively, By) is equal to By (respec-
tively, contains Bz \ 51.).

2. Main theorem. Let X be an infinite-dimensional complex normed
space, and let B and S be its closed unit ball and unit sphere, respectively.
In this section we prove the following theorem:

THEOREM 2.1. Let o, cez, v € (0,1/2) be such that Zle a; = 1. Then
there are three uniformly continuous retractions fi, fa, fa: B — 5 such that
Ip = Ef’zl o fi. Moreover, the restrictions fi|.g are Lipschilz for every
0<r<1.

We use the following theorem which was first proved by Nowak [7] for
some Banach spaces, and later by Benyamini and Sternfeld [1] for arbitrary
normed spaces (see also {5]).

THEOREM 2.2. For every infinite-dimensional normed space Z, there ex-
i5ls a Lipschitz retraction from Bz onto Sy.

We also need the following three lemrmas. The first one (and its proof)
also holds for real spaces.

LeMMA 2.3. Let o € [0,1/2). Then there are two Lipschitz functions
g:B— S8 andh:B— B such that g|g = h|g = Is and Is = ag+ (1 —a)h.
Moreover, h[rB] C rB for every 1/{(2(L — a)) € r < 1.

Proof. Let 6 := (1 — 2c}/2 and note that 0 < § < 1/2. By Theorem 2.2
there is a Lipschitz retraction f : §B — §9.

Define the two required functions g: B — Sand h: B — B by

L R

TR z ~ ag(z)
g(z) = h(z) = 2222

10 ot <, 1-o

]
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Clearly, g and h are Lipschitz, Ip = ag + (1 —a)h, and g|g = hig = Is. To
see that i maps into B and the second property in the theorem holds, let
z € B and let 1/(2(1 — o)) <r < 1. Note that 20 < r. Hence,

(%) [t~ <r—a
for every 0 < t < r. Consider three cages.
1.IF0 < ||z € 4, then

h s ool Bre Lo
2. If 6 < [Jw|| < r, then
Hh(m)” — “m _lainéyf“"H ” — I”‘f”—*aa' < ;:z <r by (*)

3. Ifr < ||z|| €1, then

h = = < 1.
th(z)|| 1—a o = 1w
NozrATION. For every 0 < ry < 7o, define R(ri,m) = {z € X | r <

izl < 2}
The next lemma is the only place in the proof of the theorem where we
use the fact that X is a complex space.

LEMMA 2.4. Let o € (0,1) and let 8 € [1/2 — «/2,1/2]. Then there
are two uniformly continuous retractions @1, @ R(a,1) — S such that
Iria1) = Bpr + (1 — B)ipa. Moreover, the restrictions ¢i| p(a,m are Lipschitz
for everya <r < 1.

Proof. Define a Lipschitz function I' : [a, 1] — [-1,1] by

B +25-1
@)= —m
Define two functions z1, 23 : [@, 1] = S by
t— t
2By =) +iy/1— [D(E)}? and 20(t) = _1ﬁ__z1ﬂ()

Then 21(1) = 29(1) = 1, t = P21 (t) + (1 — B)za(t) for every ¢ € [a, 1], z; and
72 are uniformly continuous, and 21|[a,, and 22| - are Lipschitz for every
a<r<l.

Define the required retractions 1,wq : R{a, 1) — § by

e:(@) = o)y and e(@) = (el

Leymma 2.5, Let 0 < d < e <b<a#dbesuch thata+d = Db+ c.
Letg: B — § and h : B — B be two uniformly continuous functions such
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that glsg = h|s = Is. Then there ore two uniformly continuous retractions
f1, fo: B — S such that:
(1) ag + dh = cfr + bfs (as functions from B into X).
(2) For every 0 < r < 1, if glrp and hi,p are Lipschitz and h[rB] C »B,
then fil-p are Lipschitz.
Proof. Let
a—d c

az:a-l—d and ﬁ:=a+d.

Then @ & (0,1) and
£> e __¢ =8> d l_g_
2 7"b4+c a+d

at+d 2 2
Let 1 and 3 be the retractions from Lemma 2.4 with respect to & and §.
Define a uniformly continuous function f : B —+ X by

_ ag(z) + dh(s)
f@) ==
Then f maps into R(w, 1) because for every z € B,
|2llg (=)l - d]|A{z)]l]
1> [[f{=)] = P
_ la—dla@)| _a—-dlh@)  a-d _
a+d a+d “a+d

Also, f|s = Is. Hence, we can define the two required uniformly continuous
retractions by fi=p;0c f: B = §.
(1) holds because for every z € B, by Lemma 2.4,

99(0) £ARE) _ ¢y~ g (Fla)) + (1 B)ez(f(z))

a+d
__¢ b - ep1(f(2)) + bpa (f(=))
(2) bolds because if we let 0 < r < 1 and let g and h be as in (2), then
flrp is Lipschitz. Let

PR +dr
=T
Then o <t < 1. By Lemma 2.4, il R(a,zy are Lipschitz.
Since h{rB] C rB, for every z € rB we have

a < (@) < 9@+ dIr@)] _ allg(@)|| +dr _
. - o+d - ae--d
Hence, flrp maps into R(a,t). Therefore fil.5 = (p; 0 f)|rp = il ©

Flrp- Thus, f;|.5 are Lipschitz functions as compositions of two Lipschitz
functions. m
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Proof of Theorem 2.1. Let a1, aa, o3 € {0, 1/2) be such that ngl a; = 1.
Assume that a3 < a2 < 1. Choose ag such that oy < ag < 1/2. Let
g: B~ Sand h: B — B be the Lipschitz functions from Lemma 2.3 with
respect to ag. Then

(1) Ip = aog+ (1 — ag}h = ciog + ah + (o1 + a3 — ag)h.

Applying Lemma 2.5 with respect to 0 < az < ap < o < avp, g, and h, we
obtain two uniformly continuous retractions fs, fo : B — § such that

(2) ang + anh = C\{Qfg -+ Ozofg.

Applying Lemma 2.5 again but with respect to 0 < aj+az—ag < as < @y <
o, b, and fo, we obtain two uniformly continuous retractions fi,fi: B— 8§
such that

(3) aofo -+ (0!1 + g — ao)h = Od;gfg + O{]_f]_.

Combining (1), (2}, and (3), we get Ip = 30, i fi.

To prove the second property in the theorem, let 0 < » < 1. Choose 7
such that max{r,1/(2(1 — a))} < rp < 1. By Lemma 2.3, h[rgB] C ro.B.
Therefore, by Lemma 2.5, fa|r, 5 and fo|,,5 are Lipschitz. Again by Lemma
2.5, f3|rym and f1|r, 3 are Lipschitz. Thus, f;|,p are Lipschitz since r < rp. =

3. Observations. First, we have two irnmediate corcllaries of Theo-
rem 2.1.

COROLLARY 3.1. There are three uniformly continuous retractions
fisfa, f3: B — 8 such that Iy = 3(fi + fa + fa)-

COROLLARY 3.2. Letn > 3 and let 0 < an < ... < o, < 1/2 be

such thot Z?El a; = 1. Then there are uniformly continuous retractions
Ji,-- o fn B — S such that Ip =31, o f;.

REMARKS. 1. Each retraction f; : B — S in Theorem 2.1 iz a uniform
limit of the Lipschitz functions f* : B — .5 defined by fP(z) = fi((1 —

2. Corollary 3.2 fails if @, > 1/2 since otherwise it follows from 0x =
Z?:l o fi(0x) that
el o n—1 -

=1 < =40 =
S 2w s X 2 1502)]

i=1

1— oy,

L=~ fal0x)| = <L

1)

This argument also shows that for strictly convex spaces the corollary fails
if oy =1/2.

Let U, L, By and By, be as in the Introduction, and let £y and Ef be
the extreme points of By and By, respectively.
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COROLLARY 3.3. Assume that X is strictly conver. Let o, en,003 €
(0,1/2) be such that E?zl o; = 1. Then there exists o uniformly contin-
uous function F : By — By x By x Ey such that for every g € By,
ZLI oi(F(g)): = g. Moreover, for every 0 < r < %, Fleg, is a Lip-
schitz function into Ep x B x Er. Hence, By = —:;—(EU + Ey 4+ Ey) and
B\ 5. € 3(Fr + EL + Ez).

Proof. Let f; be the retractions from Theorem 2.1. We leave it to the
reader to check that F(g) 1= (fi 29, f20 ¢, f3 09) is as required. w

LEMMA 3.4. Let H be an infinite-dimensional real Hilbert space. Let
n> 3 and let oy,...,0n € (0,1/2) be such that Y oy = 1. Let f1,..., fn
be retractions of Bg into Sy such that Is, = >..., aifi. Then there is
1 < j £ n such that f; is not a locally p-Hélder function for any p > 1/2;
in porticular, f; is not a locally Lipschitz function.

Proof Let ¢ € Sy. Assume, for contradiction, that for every 1 <i <n
there is a neighborhood N of z. and there are 1/2 < p; < 1 such that f;|n
is a p;-Holder function with constant k; > 0. Let p := min{p1,...,pn} and
k = max{ks,..., kn}.

Let 0 < t < 1 be large enough so that

———M>k and tx € N.
1=ty
Then there is 1 < j < n such that (z, f;(¢z)} < t, since otherwise

n n

t=(z tzr) = <m,2aifi(tm)> = Zai(m, filtz)) > Zait =,

i=1 i=1 i=1

Therefore,
1/ () — £ ()|l = \/IIJ“j(ﬂG)II2 + 1A (E)1? - 2(f5 (=), f;(tz))

= \/1 +1—2(z, f;(tz)) = \/2(1 — (=, f;(tz)))
> V201 =1) > k(1 =) = kljz - ta|* > klz — tz]|?,

contradicting the fact that f;|n is a p;-Hélder function with constant kj w
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