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Some geometric properties of typical compact convex sets
in Hilbert spaces

by
F. S. DE BLAS!I (Roma)

Abstract. An investigation is carried out of the compact convex sets X in an infinite-
dimensional separable Hilbert space E, for which the metric antiprojection gx (e) from e
to X has fixed cardinality n+ 1 (n € N arbitrary) for every e in a dense subset of E. A
similar study is performed in the case of the metric projection px (e) from e to X where
X is a compact subset of E,

1. Introduction. One of the methods used to study the geometry of
convex sets is based, as is well known, on the Baire category. This method,
which goes back to the fundamental contributions by Klee [14] and, inde-
pendently, by Gruber [11], has made it possible ta discover several elusive
and even unexpected properties of convex sets (see Gruber [12], Schneider
[19], Schneider and Wieacker [20], Wieacker [23], Zamfirescu [24]). We refer
to Gruber [13] and Zamfirescu [26] for a survey about this area of research
and for additional bibliography.

In the present paper the Baire category will be used to investigate some
geometric properties of typical compact convex sets. Let E be a real infinite-
dimensional separable Hilbert space. In [6] it has been recently shown that,
for a typical compact convex set X C E and any n € N, the metric an-
tiprojection gx (e) from e to X (that is, the set of all points of X which are
farthest from e) is such that card gx(e) > n-+1 for every € in a dense subset
of I&. The aim of the present paper is to establish a stronger version of this
result, Tn fact, it is proved (Theorem 5.1) that, for a typical compact convex
set X C E and any n € N, one actually has

cardgx(e)=n+1

for every e in a dense subset of E. Similarly, it is shown (Theorem 6.1) that
for a typical compact set X C E and any n € N, the metric projection px (e)
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144 F. 8. De Blasi

from e to X (that is, the set of all points of X which are closest to e) satisfies
cardpy(e)=n-+1

for every e in a dense subset of E. Of course, the latter result fails if X is
also convex since, in this case, px(e) is single-valued for every e € E. So far,
there are no examples of compact convex or compact subsets of E with any
of the above-mentioned properties. The procfs are based on some ideas due
to Klee, Gruber and Zamfirescu, combined with technical details adapted
from [6] and [7].

In the case of the metric projection, the study of typical compact sets
with properties of the above kind was started by Zamfirescu [25] and pursued
by De Blasi and Zamfirescu [7] in finite dimensions, and by Zhivkav [27], [28]
in infinite dimensions. It is worthwhile to note that in [7] it has been proved
that for a typical compact set X C R™, n > 2, we have card px (e) = n—+1 for
every e in a dense subset of R™. For the metric projection, dense multivalued
loci with cardinality two have recently been considered by Zhivkov [28] who
has established, in a Banach space setting, a sharp existence theorem.

Our paper consists of a total of six sections. Sections 2 and 3 contain,
respectively, notation and terminology, and some auxiliary propesitions. In
Section 4, two technical lemmas are proved. The main result (Theorem 5.1)
about typical compact convex sets is proved in Section 5. An analogous
result (Theorem 6.1) about typical compact sets is discussed in Section 6.

2. Notation and terminology. Throughout this paper E denotes a
real infinite-dimensional Hilbert space with inner product {-,-) and induced
norm |}-{[, and C(E) (resp. K(E)) the space of all nonempty compact convex
(resp. compact) subsets of E endowed with the Hausdorff metric . Under
this metric the spaces C(E) and X(E) are complete.

Our notation is standard. If X is a nonempty subset of E, we denote by
ext X, exp X, €@ X, and lin X, respectively, the set of extreme points of X,
the set of strongly exposed points of X, the closed convex hull of X , and
the linear span of X. If X is a linear subspace of E, by dim X we mean the
algebraic dimension of X. The cardinality of a set X is denoted by card X.

In a metric space M, we denote by Uns(z,r) (resp. Ups{2, 7)) an open
(resp. closed) ball with center z € M and radins » > 0. If M is complete, a
set X C M is called residual in M if M \ X is a set of Baire first category
in M. As is well known (see Oxtoby [17], p. 41), X is residual in M if and
only if X contains a dense Gs-subset of M. The elements of a residual subset
of M are also called typical elements of M.

As usual, N stands for the set of the integers n > 1, and Q% for the set
of rationals » > 0. .
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For any nonempty bounded set X C E and e € E, the metric antiprojec-
tion gx(e) from e to X is defined by

(2.1) ax{e) = {z € X |||z —e|| = 6(X,€)},

where §(X, e) = sup{|lz — ¢|| | z € X}. Furthermore, for fixed X, gx stands
for the metric antiprojection mapping given by (2.1). Clearly, gx (e} € KX (E)
for each e € E, provided X € K(E).

For X € K(E) and n € N, the sets

Mni1(X)={e€E|cardgx(e)=n+1},
Mopi(X)={e € E| cardgx(e) > n+1}

are called, respectively, the multivalued locus of qx of cardinality n+ 1, and
the multivalued locus of gx of cardinality at least n -+ 1.

Analogously, for any nonempty set X C F and ¢ € I, we define the
metric projection px(e) from e to X by

px(e)={z e X ||z —ef =~(X,e)},

where y(X, e) = inf{||z —e|| | z € X'}, and we denote by px the correspond-
ing metric projection mapping. For X € X(E) and n € N, the multivalued
locus of px of cordinality n+1 (resp. of cardinality at least n + 1) is defined
as in the case of ¢gx.

For a nonempty subset X of E and n € N, set

Pn(X) ={A| A is a set of n distinct points ai,...,a, € X}

If {a1,...,a,) and (e1,...,en) arve ordered n-tuples of points a;,e; € K,
i=1,...,n, we put for brevity
(al,el) ((11,62) (al,en)
cor fan, e
det(al,...,an;el,...,en) = det <a‘2’el) <a'2’e2> ( 2-’”“) s
(ﬂmel> (a'm 62> (amen>

where det stands for determinant.

3. Auxiliary results. In this section we prove some elementary geo-
metric propositions that we shall need later.

PROPOSITION 3.1. Let H,, n € N, be a linear subspace of E of dimen-
sion n. Let V = {z € E | {z,a0 — eg) = 0}, where ey € Hy, and ag & Hy.
Let K,, be the metric projection of Hy, onto V, that is,

K, = {pV(e) 1 ec Hn}‘
Then K, is a linear subspace of V of dimension n and if (€1,...,€,) and
(f1, -5 fn) are arbitrary bases for H, and K, respectively,

(3.1) det(f1,..., fnj€1, - sn) # 0.
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Proof. Let (e1,...,€,) be an arbitrary basis for H,. Every e € H,, is
given by e = 37 ¢; e; for some (t3,...,t,) € R", thus

pvie) =3 tipv(e),
i=1

which implies dim K, < n. Suppose dim K, < n. Then for some (1,...,t,)
e R™ \ {0} we have } I, % py(e;) = 0. Clearly, e = 3.7, ¢; e; is nonzero
and pyle) = 0. As e € V<, the orthogonal complement of V, we have
e = Mag —eg) for some A € Ry {0} andso ag = e/A + ey &€ Hy, a
contradiction. It follows that {py(e1),...,pv (en)} is a basis for K,,, proving
that K, is n-dimensional.

Let (e1,...,¢€q) and (fi,..., fn) be arbitrary bases for H, and K, re-
spectively. If (3.1) does not hold, there exists (¢1,...,t,) € R* \ {0} such
that

k]
(fi.,e)=...={(fn,e)=0 wheree= Ztiei,

thus px., () = 0. Moreover, py (e} = px, (e}, because py(e) € K,,. Since
> tipv(e) =pv(e) = px, (¢) = 0,
=1 :

and (py(e1),...,py(en)) is linearly independent, it follows that (F15 05 tn)
= (0,...,0), a contradiction. Hence (3.1} holds true, completing the proof.

PROPOSITION 3.2. Let {e1,...,e,) C K, n € N, be any linearly inde-
pendent set, and let A € Ppy1{(E), A = (a1,...,an41), and € > 0. Then
there exists a set B € Ppyi(E), B = (by,...,bn41), with b; € Ugl(ay,¢),
i=1,...,n+1, such that

(32) det(b1 **bn.|.1,...,bn-bn+1;61,...,en) #0

Proof The statement is obvious for » = 1. Assume that it holds
for n. Let (e1,...,ent1) C E be any linearly independent set, and let
(@1,...,Gns2) € Pnya(E) and € > 0. By the induction hypothesis, corre-
sponding to (e1,.-.,&p),{a1,...,ane1) and £ there is a set (bi,... byy1) €
Pri1(E), with b; € Ug(as,€), 3= 1,...,n+ 1, such that (3.2) is satisfied.

For z € Ug(any2,€) we have

(3.3)  det(br —=m,... . bnys ~ zse1,. .., E0q1)
= det(bl - bn+1: v -sb'n. - bﬂ.+1ab'ﬂ-+1 — Zi€1,-. ':e'ﬂ-)

n+1
= Z(bn+1 - m=€i>Dn+l,i = (bn+1 — &, e),

i=1
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where D1 is the cofactor of the element (by1) — 2, €;) in the last deter-
minant, and e = E?:ll Dy 1465 Observe that e # 0, because

Dn+l,n~|—1 = det(b, — brtlseeesbn — bni1i€1,.--56n) #0,

and (e1,...,ep) is linearly independent.

Take now any T € Ug(an2,€) so that (b, 1—T, ) # 0, and set by =
Put B = (b1,...,bp+2). Cleatly, B € Pnya(E) and b; € Ugles, &), 4
1,...,n+2. As b0 = 7, (3.3) implies

T.

det(bl - bn+2, Crey bn+1 — bn+2; Elyeny en_|_1) ?é 0,
completing the proof,
PRrOPOSITION 3.3. Let Hy, = lin(ey,...,e,), n € N, where (e1,...,6,) C

E is a linearly independent set, and let B € Ppiy(E), B = (by,...,bns1).
Then the following are equivalent:

(i) there is one and only one sphere Sy, _»
tng the points by, ..., bpy1;

(11) det(bl - bn+1: - ':bn - bn-!—l;ela e )en) # 0.

i1 With center in H,, contain-

Proof. Suppose (i). From the assumption, there is a unique point ¢ € H,
satisfying

(3.4) lle =85l =lle=bagall, F=1,...,n
As (e1,...,ep) is linearly independent there is a unique point {z1,...,2,) €

R" such that ¢ = 3 ., @;e;. If we insert the latter expression in (3.4} and
square both sides, we have

- B 11 = bn g ®

Z(bj — bny1, €)% = 5

i=1

=1,...,n,

" which implies (ii), by the uniqueness of ¢. The reverse implication can be

proved analogously. This completes the proof.

PrOPOSITION 3.4. Let (e1,...,en) C E, n € N, be a linearly independent
set. Let B € ,Pn.|_1(E), B = (bl, s ,bn+1), be such that

(35) det(b1 '—bn+1,...,bn —bn+1;61,...,en) %0
Then for every z € B and g > 0 there exists a point T € Ug(z,&) such that
(3.6) det(b1 — %,...,bp ~ Fi€1,...,0) #F 0.



148 F. 8. De Blasi

Proof. For z € Ug(z,&) we have

(3.7)  det(by —m,...,by — T;€1,...,6n)
= det(by —bn,.. ., bne1 — bn, bn — Tie1, ..., E)

T
= Z(bn -, ei)-D'n,i = (bn - T 6),
i=1
where D, ; is the cofactor of the element (b, - =, e;} in the last determinant,
and e = 3 1 ; Dy ie;. Observe that e # 0 because, for i = 1,...,n, Dy,;
coincides with the cofactor of the element (b, — bn11,e:) of the determinant
(3.5), which is nonzerc. Take now F € Ug(z,£) so that (b, — Z, e} # 0. With
this cheice of Z, (3.6} follows from (3.7), completing the proof.

ProproSITION 3.5. Let Hy, n € N, be a linear subspace of E of dimen-
sion n. Then, for each k € N, the following statement (Pg) holds true:

(Pr) For each A € Ppyi(E), A = (a1,...,ansk), and & > 0 there evists
B € Pnyu(B), B = (b1,...,bnsx), with h(B, A) < e, such that for
every set (biy,..., b, ) € Pny1(B) both properties (i) and (ii) below
are satisfied:

(i} there is one and only one sphere Sy, ..
containing by,,...,b

(i) Sp,,..6

Proof. Let (e1,...,e,) be a basis for Hy, thus H,, = lin(ey,...,e,).
We shall prove (P} by induction. Clearly, (P;) is satisfied by virtue of
Propositions 3.2 and 3.1. Assuming now (Py), we shall prove (Py..,).

Let A € Pn+k+1(E), A= {ay,... ,an+k+1), and £ > 0. Set A’ = (al, N
v @nig)y thus A = A"U{anyg41} and A’ € P, (E). By virtue of (Py)
there exists B’ € Pryp(E), B' = (b,...,buyx), with h(B', A") < &, such
that for every set (byy,...,bi,,,) € Pni1(B') properties (i) and (i) are both
satisfied.

Fix now z € E and o > 0 so that

(38) UE(Z1 G) C UE(an+k+1: E’) \ Sb':l"‘bln+1 3

for every (bi,,...,bi,,,) € Pprya(B'). This is certainly possible for, in view
of (i}, the spheres A‘S'bil,_,bi“+1 with center in H,, are uniquely determined by
(bizy .-, bs,,, ), and so there are a finite number of them.

Denote by {B;}}L,, B; = {bi,... b5}, the finite family of all subsets of
B’ of cardinality n. :

Consider B; = (b],...,bL). Take a point, say b%y1, in the set B'\ By.
Since (bf,...,b541) € Pny1(B’), by (ii) there is one and only one sphere

fpt? with center in H,,

Tnt1d

ﬂB:(bh,...,b

a1 in-}-l)'
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Spr.et, o with center in Hy, containing bi,...,bL,,. By Propoesition 3.3,

det(b% - bv%u+1" c by — bviz+13 €1y-.- 6n) # 0
and hence, by Proposition 3.4, there exists T; € Ug(z,0) such that
det(b] — Tl by —T1j€1,...,e,) £ 0.
By continuity, there exists a ball Ug{Z,0;) € Uglz, o) so that
det(bt —x,...,b} — ey, cosen) £ 0 for every z € Ug(Zh, 01).
Consider By = (b%,...,b2). By a similar argument, also for By one can
construct a ball Ug(#s,¢2) C Ug(F1,01) such that
det(b? — ,...,b% —zj€e1,...,e,) #0 for every = € Ug (2, o2)-
By this procedure one cati construct a finite sequence of balls Ug(&1, o1), - - -,
Ug(Z v, on) corresponding to By, .. ., By, respectively, with
(3.9) Ug(z,0) 2 Up(Z1,01) 2 Up(Z2,02) D ... D Ur(TN, on),
guch that, for 1= 1,... N,
det(bl —z,...,bL —zse1,...,en) #0  for every z € Ug(Zi, 01).

Thus, by Proposition 3.3, for every z € Up(Z;,04), 4 =1,..., N, there is one
and only one sphere Sb{ B with center in H,, satisfying
Sb’ib;m 2 ( li? R b:u ).
Fix now a point # € Ug(Zn,on), and set
B={(b1,-..:bntk; f)

Clearly, B € Ppig+1({E). Furthermore, (B, A) < g, since A{B', A’) < ¢ and
T € Upanig+1,€), by virtue of (3.8) and (3.9). It remains to show that each
set (biy,. .., binp ) € Pnr1(B) satisfies (i) and (ii). _

To this end, consider a (bi,,...,bi ;) € Pnya(B). Suppose‘ tha.t z ¢
(Bigy -« -+ Birys )y thus (Biy, .. biyy;) € Prua{B'). In this case (i) is trivially
satisfied. As Sbil"'bin+1 NB = (b, ..b,.,)and T ¢ Sbhwbinﬂ’ by (3.8)
and (3.9), also (ii) is satisfied. Suppose now T € (biy, ..., bipy); Sy T =
by, Forsomel < r < N, we have (bs,,-... bi,) = Br.Since T € UE(ET‘, cr.,.),
there is one and only one sphere Sbil...binfg with center in H,,, containing
(biyy .-+ bi,, %), and hence (i) is satisfied. Suppose that (ii} does not hold.
Then there is a point b € B\ (b, , ..., bi,, F) such that

be Sbil...bin'ﬁ'

But (b;,,...,bi,,b) € Pui1(B’), and so there is one and only one sphere
Sbyy b, by With center in H,, containing (by,...,bi,,0). As Sp, _p, 7 has
this property, it follows that

Sb, ..bi T = Obyy . big by
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which implies T € Sp; ..4,,5- On the other hand, T € Ug(z,0) and, by (3.8),
T & Sh,,..b:,b, & contradiction. Hence also (i) is satisfied. It follows that
(Pr41) holds true, completing the proof.

4. Two lemmas on the antiprojection mapping for compact con-
vex sets. In this section we prove two technical lemmas concerning the
antiprojection mapping gx : E — K(E), where X € C(E). The construction
follows closely a pattern already used in [6] and [7]. Both lemmas play a
fundamental role in the proof of the main results, discussed in the following
sections.

Recall that, for X € C(E), MHH(X ) denotes the multivalued locus of
cardinality at least =+ 1 for the antiprojection mapping gx.

LeMMA 4.1. Let H,, n € N, be a linear subspace of E of dimension n.
Let Ag € C(E), ey € Hy, X >0 and r > 0. Then there exist B € C(E) and
o > 0, with Ug(r) (B,0) C Ugg (Ao, A), such that for every X € Uy (B, o)
we have

M1 (X) N Usr, (eo,7) # 0.

Proof. Let ag € Ap be such that |jag — eo|| = §(Aqg,en). It is sufficient
to prove the lemma under the additional assumptions
(4.1) 8(Ag,e0) >0 and ~y(H,,ag) >0
because, arbitrarily close to any set A € C(E), there is some 4y € C(E)
satisfying (4.1).

STEP 1: Construction of B. Let (e1,...,€,) be an orthonormal basis for
H,. Let V ={z € E| (z,a0 —eg) = 0}, and let K, be the metric projection
of H, onte V, that is,

Kn={pv(e) | e € Hu}.
By Proposition 3.1, K, is a linear subspace of ¥V with dimK,, = n. Let

{ui,...,un) be an orthonormal basis for K, and observe that, by Proposi-
tion 3.1,
(4.2) D =det(u1,...,unj€1,...,82) #0.

Furthermore, set

ag — &
Dy = det (ul—una---aun-—l_u.n:H_az":"‘%H;ela'”aen)s

and take £p > 0 such that
(4.3) V& D] < |DI.
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Fix now v and 5 satisfying

1<y < min{z,l—’r——)\ },
4”&.0 —60”

2
’}'>ﬁ>max{1, R —— ms},
T Bdag — e | 50

Let bg, b1, ..., by be given by
bo = eg + v(ao — eo),
br = en + B(ag — eo) + v,

vp = /72 — B llao —eollur, k=1,...,n.

Clearly, we have

(45)  ||bg — bol| = +/2v(7 — B) |lao — e,

(4.6)  |Ibx —ball = V2(v* - B*) lao —eoll, k,h=1,...,n, kFh,

(A7) lbx — ol = vllao — eoll, k=0,1,...,n

Set now B = T{bp, by, ...,bn, Ao}, and observe that B € C(E), by Mazur’s
theorem. From (4.5)-(4.7) it follows that the paints by, b1, ..., b, are dis-

tinct and lie on the sphere Sg(eo,¥|lao — eo]|). Since Ag is contained in the
corresponding open ball Ug{ep, v|lao — eol]), it follows that

QB(ED) = (boubll .- -7bn)-

(44)

where

E=1,...,n,

Furthermore,

(4.8) h(B, Ag) < A/2.

In fact, from (4.5), as v < 2 and v — 8 < N2/ (64[lag — eol|?), we have
b — boll < M4, k = 1,...,n. Moreover, ||by — aql| < A/4, for |bg ~ aoll =
(1= 1)llao — ol and 7 — 1 < 3/(4llac — eol}). Thus [lbx — asl < [lbx = bol| +
bg — aql| < A/2, k=0,1,...,n, and (4.8) is proved.

STEP 2: A = det(bg — b1,. .-, bo ~ bnjer, .- < en) # 0.
In fact, by virtue of (4.4), we have
A= det((y~ 8)(ap — &) +v1,..., (v~ B)(ao — €0) + Un}€1,-- -, €n)
= det(vy — Vps - -, Un1 — Uny (7 — B)(a0 — €0) +¥njen, .- .€n)
= deb(vy = VUny - Un-1— Un, (¥ — B)(ao — ep)i€1,- -+ €n)
+ det(vy — Vny .- vy Un—1 — Up,Un} €Ly s €n)
= (V72 = Bllac — eol)" ™
x det{ug — Un, .- Un—1 — Un, (v — B)(ao — €0); €1,---,€n)
+ det(v1,.-.,Uni €11 €n)

1l
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= (V7? = B*llao — eo|)”

_ ag — €p
X [ 3+gdet (ulﬁun:..‘,unﬁl_qum; el,...,en)

+ det(ua, ..., unier, . . ,en)]

= (VAT o — a5 0+ D]

But vy — § < &g and v+ 5 > 2, thus

which is strictly positive, by (4.3). Hence A #£ 0, and Step 2 is proved.
For X € C(E) and 5 > 0, set

D1+D z |D| - |D1|> D] = V&0 | D1l

n
(4'9) XE:XmﬁE(bkﬁn)i k:[}!l::ﬂ'i XU:X\ UUE(b’mn)'
k=0

STEP 3: There exist 7 > 0 and 0 < p < min{n, 7} such that:
(i) the balls ﬁE(bk,n), k=0,1,...,n, are pairwise digjoint;
(ii) qpn (e) = by, for every e € Ug(ep,n), k=0,1,...,n;

(iit) for every X € Uy (B, o) the sets X7, X7,..., X7, X" are compact
nonempty and satisfy

5(X7,e) > 8(X"e) for every e € Ur(eg, 0}, k=0,1,...,n.

The proof is as in [6] (see Steps 2 and 3 of the Lemma) and so it is
omitted.

By Step 2, the n X n matrix (a:;)F;~,, where ai = (by — bi, €}, i8
nonsingular, hence it has inverse A~1, say A~! = (@)% j=1- Fix now
(4.10) 0<b<—2
n|| A1
where ¢ is as in Step 3 and ||A™Y| = 307, _, |af|. Furthermore, set

=[-8, 6] x ><[ 8,8] (n times),
Lﬂ' {(tl, ) Q% |y = +6}.

For any t € Q8 ¢ = (t1,..., tn), consider the following n x n linear system

icm

Some geometric properties of compact conver sets 153

in the unknown (Aq,...,Ap):

r T

3 by — by, ey =ta,
i=1
n

(4'11) Z(bZ - b{), 33)/\_1 = t2,
Jj=1
TR TR EPI PR
> (bn ~ bo,e5)Xy =ty

By Step 2, det A = (—1)"A 4 0. Tt follows that for each t € Q% the system
{(4.11) has one and only one solution, say (A1(t),..., A.{t)), and

(4.12) P <8lA™Y, i=1,...,m
Define now a map w : Q9 — E by

(t) =eg -+ i)\i(t)ei.

i=1
Observe that, from (4.10) and (4.12), o0, [M(t)| < nf|l A7 < o, thus
(4.13) w(t) € Uglep, o) forevery t € QP.

STEP 4: Let n and p be as in Step 3, and let § satisfy {4.10); then there
exists 0 < o < g such that, for every X € Uggy(B,c)and k=1,...,n, we
have

{4.14) S(XT,w(t)) — (X7, w(t)) <0 for every t € Li?,
(4.15) S(XJ,w(t)) — (X;’,w(t)) >0 for every t € L}P.

Let 1 < k < n. We first prove that (4.14) holds when X = B. Let
te L% Since |w(t) — eol| < ¢ < m, by Step 3(ii) we have

8(BY,w(t)) — 6(By,w(t)) = {lbo — w(){| — [|be — w ()]
On the other hand,
1o — w(t){? w{t)|?

= H(bo —eq) — 3 Ailt)es :
f=]
= 2(5;c - bg,i,\i(t)ei> = 22 (brc — bo, es)(t) = 2ty = —26,
i=1

by virtue of (4.11). This shows that §(Bg,w(t)) — (Bz,w(t)) < 0 for every
¢ € L ®. Analogously one can prove that §(Bg,w(t)) — §(BY,w(t)) > 0 for

— i A; (t)ei :
i=1
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every t € L}?. As 1 < k < n is arbitrary, both (4.14) and (4.15) are satisfied
whenever X = B.

Consider now the general case. For k = 1,...,n the sets L,;G, Lﬁo are
compact, thus by a property of continuous functions, there is & > 0 (inde-
pendent of k) such that for k= 1,...,n we have

(4.16) §(Bg,w(t)) - 6(B,w(t)) < —u foreveryte L8
(417)  §(BF,w(t)} - §(BY,w(t)) > p
But for k= 0,1,...,n also the maps X — X}}, X € C(E), are continuous at
X = B. Hence there exists ¢ {independent of k), where

(4.18) 0 < o < min{p, \/2},

such that for all X € Up(m) (B, o) we have h(X], BY) < p/2, k=0,1,...,n.
With this choice of o, Step 4 is satisfled. In fact, let X € Up(gy (B, o)
and let 1 € k < n. For every £ € Lk'a, we have

8(Xg,w(t)) < 8(Bg,w(t)) + h(Xg, By) < 8(B, w(t)) + n/2,
8(Xy, w(t)) 2 6(BY, w(t)) — h(XY, BY) > 8(BY, w(t)) — p/2,
thus, in view of (4.16),
§(Xg,w(t)) — (X7, w(t)) < 8(Bg,w(t)) —§(B,w(t) +u<0

and (4.14) is proved. By a similar argument, using (4.17), one can show
(4.15), completing the proof of Step 4.

STEP 5: With B as in Step 1 and o as in Step 4, satisfying (4.18), the
statement of the lemma holds true. Clearly, Upg) (B, o) C Uery (Ao, A) as
h(B, Ao) < A/2 by (4.8), and ¢ < A/2 by (4.18). Let X € Uer (B, o).

We claim that

for every t € L}®.

Mn+1(X) NUg, (60, 7") # @.
By Step 4, for each k = 1,...,n, the continuous function ¢ — §(X{, w(t)) —
§(Xy,w(t)) defined for ¢ € QF satisfies (4.14) and (4.15). By a theorem of
Brouwer-Miranda ([2], [12]) there exists € QP such that, setting @ = w(t),
we have

(4.19) (XY, W) =6(X7, %) k=1,...,n.
Observe that % € Hy and || - eq|| < ¢, by (4.13). As g < r, it follows that
(4.20) @ € Un, (¢0,7).

It remains to show that @ € Mp41(X). Clearly, X = XJU...U X7 U X",
thus

(X, ) = max{J(Xg, {B): T 7‘5(ngﬂ?): 5(52177{5)}
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Since h(X,B) <o < ¢ and ||@ — || < g, by Step 3(iii) we have §(X}, D) >
§{X", @), k=0,1,...,n. The latter inequality and {4.19) imply
§(X, W) =8N, @), k=0,1,...,n.

Consequently, gx (@) N X} # 6, k=0,1,...,n, hence in each ball Ug(bg, ),
k=0,1,...,n, there are points of ¢x (%). By Step 3(i), these n+ 1 balls are
pairwise disjoint, therefore card ¢x (&) > n+ 1, proving that % € M, 1(X).
By (4.20), we have M,.1(X) N Ug(eo,r) # 0. Since X € U (B, o) is
arbitrary, the proof of Lemma 4.1 is complete.

For the next lemma we need to introduce some further notation.
Let X be a _nonerpty subset of E and let n € N. Following [7], for any
(®1,- .., &n) € Pa(X), where Pp(X) =X x ... x X (n times), define

m(x1,.. ., &n) = inf{||lz; — ;]| |4, =1,...,n, 1 # j}

Observe that card X < n if and only if m(z1,...,2n41) = 0 for every

(1, -, Tnt1) € Priz(X).
Let Hy,, n € N, be linear subspaces of E of dimension n. For e € H,,
r>0and p €N, set

NHw = (X e C(E) | X satisfies (j) and (ij)},

e?”‘?p
where (j) and (jj) are given by:
(j) there exists ¢’ € Up, (e,) with card gx(e/) > n+2;
(jj) there exists (21,...,Zn42) € Patalgx (') such that

m(m17.‘ o 5$n+2) > 1/p

LEMMA 4.2. The set N is nowhere dense in C(E).

&P
Proof The argument is adapted from [7].
Let Ag € C(E) and A > 0. Tt suffices to show that there exist C € C(E)

and o > 0 so that
(4.21) UC(JE)(C, 0) C Uc([ﬁ;) (Ao, )\) \Nﬁ::p
Ap is compact, thus there is A € Prin(E), for some k € N,' such that
h(4, Ag) < A/4. By Proposition 3.5, there exists B € Pﬂ.Hc{IE])3 Wlt.h h(B, A)
< A/4, such that for every (b, ..., biny.) € Pny1(B) properties (i) and (ii)
of Proposition 3.5 are satisfied. As a consequence we have
(4.22) cardgg(u) En-+1 for every u € Hy.
Set C' = to B, and observe that

R(C, Ag) < h(T5 B, 50 A) + h(to 4, Ao) < (B, A} + h(A, Ag) < /2.
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On the other hand, the map (1, X) — gx(u) from Hn x C(E) to K(E) is
upper semicontinious. Thus, for every u € Upg, (e,r) there is §(u) > 0 such
that

(423) v € Uk, (u,5(0)) & X € Ugey (C,0(w) = ax(v) C ao(u) + 5.V,

2p
where U = Ug(0,1). Since Ug, (e,r) is compact, there is a finite family of
balls, {Ugr, (u4,8(u;))}5.; say, with centers u; € Hp, j = 1,...,n, whose
union covers Ug, (e, ). Fix now

0 < o < min{d(u),...,8(us), A/2}.

With C and o defined above, (4.21) is satisfled. In fact, it is evident that
UC(JE) (C,o) C UC(IE) {Ag, A}, for A{C, Ag) < A/2 and ¢ < A/2. Further, let
X € Ugmy(C,0). If cardgx(e) < n+ 1 for every €' € UH (e,r), then (j)
fails and hence X ¢ N . Suppose that there is ¢/ € Uy, (e,r) such that

cardgx(e’) > n+ 2, and let ¢’ € Un, (e;, 6{u;)) for some ¢ < j < s. Since
MX,C) < o < §(u;), by virtue of (4.23) we have

1
(4.24) ax{€) C go{ui) + 50
As ¢ =To B and B is a finite subset of the Hilbert space [, we have
go{us) = s (uy)-

In view of (4.22), there is a subset (b;,,...,b;,) of B of cardinality 1 < d <
7+ 1 such that go(u;) = (bs,,...,bi,). Hence, by (4.24),

? 1
N U UIE(biT, —)

. r=1 2p
Let (x1,...,%n42) € Pasalgx(e’)). Since there are at most » + 1 balls
Ug(b;,., 1/ (2p)) at least one of them must contain two of the ;_'s. This 1m—
plies m(z1,...,Tnq2) < 1/p, hence (jj) fails and X ¢ Nﬁﬂp Thus Ue gy (C, o)
AN =0 for every X € Ugm (C,0), and (4.21) is satisfied. This completes

the proof.

5. Typical compact convex sets. In this section we prove a geometric
property of some compact convex subsets of E. Namely, if E is separable,
then for a typical X € C(E) the multivalued locus My y1(X) of gx of cardi-
nality n+ 1 is dense in E, for every n € N.

THEOREM 5.1. Let E be a resl infinite-dimensional separable Hilbert
space. Let n € N. Then the set

Crt1={X € C(E) | Mp11(X) is dense in E}
is restdual in C(E).
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Proof. Let » € N. Denote by F, a countable family of n-dimensional
linear subspaces H C E whose union is dense in E. For H € F,,, set

ME L ={X € CE) | Mps1(X)N H is dense in H},
MH H1={X €C(B) | Myy1(X)N H is dense in H}.
Denote by E a countable subset of H dense in H.
Cramm 1. The set Mn-H. is regidual in C(E).
Forec Fandr e Q" set
={X € C(E) | Mpny1(X)NUgle,r) =0}
By Lemma 4.1, ﬁf{, is nowhere dense in C(E). Since

IE)\ U UNHCMnJ,-I:

reQT e€E
the set Hf+1 is residual in C(E}), proving Claim 1.
CLAIM 2. The set ME, | is residual in C(E).
Tt suffices to show that

(5.) FE (@ U UNE,) c ME,

pEN reQt ecE
because ME 1 is residual in C(E), by Claim 1, and M}, , is nowhere dense

in C(E), by Lemma 4.2,
Let X be in the set on the left side of (5.1). Let u € H and s > 0. Take

e € E and r > 0 so that Ug(e,r) C Ug(u,s). Since X € ﬂfﬂ, there is
¢ € Ugl(e,r) such that cardgx(e') > n - 1. We have

(5.2 card gx(e') =n+ 1.

Suppose otherwise, that is, cardqx( N> n+ 2 Let (x1,...,%n42) €

ng(qx( ). Let p € N. As X € N, ”p we have m{z1,...,Znt2) < 1/,
which implies card(ml, .oy @qe2) € 1+ 1, a contradiction. Therefore (5.2)

is satisfied, and so &' € Mn+1(X) NnH. Since ¢’ € Ug(u,s),u € Hand s >0
are arbitrary, the set Mp41(X) N H is dense in K. Hence X € ME . Thus

(5.1) holds, and Claim 2 is proved.
CLAIM 3. The set Cpyy is residual in C(E).
It suffices to show that

(5.3) () M € Cata,
HeFn

because F, is countable and MZ, , is residual in C(E), by Claim 2.
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Let X be in the set on the left side of (5.3). Let v € E and s > 0. Take
an H &€ F, which meets the open ball Ug(u, s}. Since X € MIE ), the set
M 1(X)NUg(y, s) is nonempty. It follows that My 1{X) is dense in E and
X € Cpy1, proving {5.3). Thus Claim 3 is satisfied, completing the proof of
Theorem 5.1.

For X € C(E) denote by S(X) the single-valued locus of gx, that is,
S(X)={e € E|cardgx(e) =1}.
By results proved, in a more general setting, by Asplund [1] and Edelstein
[10] (see Lau [15] and De Ville and Zizler [8] for generalizations), it follows

that each X € C(E) has a single-valued locus S(X) which is residual in E.
From Theorem 5.1 one has:

COROLLARY 5.1. Let I be as in Theorem 5.1. A typical X € C(E) has the
following property. For every e € B there is a sequence {e,} C E, converging
to e, such that

cardgx(en)=n+1. foreveryneN
Ife € §(X), then limy_ o0 A{gx(en), ax () = 0.

Now we want to discuss some properties of the range of the metric an-
tiprojection mapping gx, with X a typical compact convex subset of E.
For X ¢ K(E) and 7 € N, n > 2, the sets

Ri(X)= |J ax(e), Bu(}= |J ax(e
e€S(X) eEMn(X)

are called, respectively, the single-valued range of gx and multivalued range
of qx of cardinality n.

THEOREM 5.2. Let B be a reol infinite-dimensional separable Hilbert
space. Let n € N. Then the set

Rn={X € C(E) | Rn(X) 4s dense in X}
is residual n C(E).
Proof. Consider n = 1. For k'c N, set
Ar = {X € CB) | M{(B1(X), X) < 1/k}.

Here h is the Hausdorff pseudometric in the space of nonempty bounded
subsets of E. :

CraM. The set int Ay is dense in C(E).

Let A € C(F) and A > 0. It suffices to prove that there exist B € C(E)
and o > 0, with UC(JE) (B,o) C UC(]E) (A, )\), s_uch that :

(5.4) hR1(X),X) < 1/k
for every X € Upg) (B, o).

icm

Some geometric properties of compact conves sets 159

To prove this, let N = (a;,...,a,) be a finite subset of E satisfying
(5.5) h(N,A) <@ where 0 <8 < 1/(4k).

Since dim E = 400, we can suppose that N is also linearly independent. Set
B = To N and ohserve that N = exp B, by the Krein-Milman theorem. It
follows that for each 1 =1,...,n there is e; € F such that

gn(e;) = aj,

Since the map (e, X) — gx (e), from Ex C(E) to K(E), is upper semicontin-
uous there is 0 < ¢ < 6 (o independent of ) such that, foreachi = 1,...,n,

e € Ugle, o) & X € Ugmy (B, o) = gx(e) C Uglai, 8).

Let X & Uy (B, ). Foreach i =1,...,n take a point & e Ugle,, o) N
S(X), which certainly exists, for S(X) is dense in E. Thus

(5.6) gx (€} € Ug(ai, 8),

As o < 0 and h(B, A) < 6, we have X ¢ B+ 60U C A+ 20U and, by (5.5),
X ¢ N +30U. In view of (5.6), it follows that

X € Ry(X) + 460,

which yields (5.4), because § < 1/(4k) and Ri(X) C X. Since X €
Uer) (B, o) is arbitrary, the Claim is proved.

t=1,...,n

i=1,...,n.

We are ready to complete the proof of the theorem. For n = 1 the
statement of the theorem is satisfied since
+o0
ﬂ Ak C Rl,
k=1
and the set on the left side is residual in C(E}, by the Claim.
Consider n > 2. Let C,, be as in Theorem 5.1. It suffices to show that

(57) cn M Rl C Rn:

since R is residual in C(E) and so is Cy,, by Theorem 5.1. To prove (5.7), let
X € CaNRy. Let z @ X and e > 0. As X € Ry, there exists eg € S(X) such
that gx (e0) € Ug(®, €)- But gx is upper semicontinuous at gg and X € Cy,
hence close to ¢g there is & € My (X) such that gx (€) C Ug(z, £). Therefore
Rp(X) is dense in X, thus X € Ry, proving (5.7). This completes the proof.

From Theorem 5.2 one has:

COROLLARY 5.2. Let B be as in Theorem 5.2. A typical X € C(E) has
the following property. For every @ € X there 35 o sequence {en} C E such
that

cardgx{en) =n+1 and Hm h{gx (ex), &) = 0.
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Observe that for every n € N we have R, (X) C exp X C ext X, where
the inclusions can be strict. In view of that, Theorem 5.2 is a slightly stronger
formulation (in a separable Hilbert space) of a well-known result of Klee [14]
stating that, for a typical compact convex set X in an infinite-dimensional
Banach space, the set ext X is dense in X. Examples of sets X with this
property can be found in Bohnenblust and Karlin [3] and in Poulsen [8].

6. Typical compact sets. It is evident that Theorem 5.1 fails for the
metric projection mapping px, with X € C(E), since in this case px is
always single-valued. But if we let X € X(E) then one can prove for py
a result similar to Theorem 3.1. The proof is as in the case of the metric
antiprojection mapping gx.

For X € K(E} and n € N, let

My1(X)={e €E|cardpx(e) =n+ 1},
Moi1(X)={e €E|cardpx(e) > n+ 1}
be the multivalued locus of px of cardinality n+1 and of cardinality at least
n + 1, respectively.
Lemmas 6.1 and 6.2 below are proved as the corresponding Lemmas 4.1
and 4.2.
LEMMaA. 6.1, The statement of Lemma 4.1 remains valid with C(E) re-
placed by K(E) and with M, 11(X) defined abouve.
Define N'E{I,::-p as In Section 4, replacing C(E) by X(E) and ¢x by px.
LemMa 6.2. NfIn s nowhere dense in K(E).

By virtue of Lemmas 6.1 and 6.2, using the argument of Theorem 5.1
one can prove the following

THEOREM 6.1. Let E be o real infinite-dimensional separable Hilbert
space. Let n € N. Then the set

Koni1 ={X € K(E) | Mpy1(X) is dense in E}
15 residual in IC(IE).
For X € K(E) let S(X) be the single-valued locus of py, that is,
5(X) = {ec E| cardpx(e) = 1}.

By a classical theorem proved (in a more general setting) by Stechkin [22] it
follows that each X & K(E) has a single-valued locus S(X ) which is residual
in E.

From Theorem 6.1 one has:

CQROLLARY 6.1. Let E be as in Theorem 6.1. A typical X € K(E) has the
following property. For every e € E there is a sequence {en} C E, converging
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to e, such that
cardpx(en)=n+1  for everyn € N,
Ifec 5(X) then limy o0 A(px (en), px (e)) = 0.

An account of the properties of single-valued loci for metric projection
mappings and optimization problems can be found in Singer [21], Dontchev
and Zolezzi [9] and Borwein and Fitzpatrick [4]. The first result concerning
dense multivalued loci of metric projection mappings on compact subsets
of R4, d > 2, is due to Zamfirescu [25). Infinite-dimensional generalizations
have recently been obtained by Zhivkov [27], [28] who also investigates dense
multivalued loci with two-valued projections. Further topological properties
of multivalued loci of metric projection mappings can be found in Bartke
and Berens [2].
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Spectrum for a solvable Lie algebra of operators
by
DANIEL BELTITA (Bucuregti)

Abstract. A new concept of spectrum for a solvable Lie algebra of operators is in-
troduced, extending the Taylor spectrum for commuting tuples. This spectrum has the
projection property on any Lie subalgebra and, for algebras of compact operators, it may
be computed by means of a variant of the classical Ringrose theorem.

0. Introduction. A first non-commutative version of the Taylor spec-
trum of commuting tuples of operators {[17]) was studied in {7} for families of
operators generating nilpotent Lie algebras. Independently, a spectral the-
ory for solvable Lie algebras of operators was introduced in [3], [2]. Some
complements to this theory are made in [10], [11] using the (Taylor type)
spectrum o(g), where ¢ : E — B(X) is a representation of a Lie algebra E
on a Banach space X

One of the main results of [3] is the projection property of the spectrum
on Lie ideals. As remarked in [3], this projection property does not hold on
any subalgebra of the given solvable Lie algebra. However, {7] shows that in
the case of nilpotent Lie algebras we have:

0.1. PROPOSITION. If ¢ : E — B(X) is a representation of a nilpotent
Lie algebra F and F is o Lie subolgebra of E, then
a(alr) = o(e)|r-
0.2. CORGLLARY. In the situation of Proposition 0.1, if we fake an ar-
bitrary element ¢ of B and set T = p(e) then
o(T) ={A(e) | A € o(a)}-

In the present paper we introduce a new concept of spectrum for a solv-
able Lie algebra of operators, which agrees in the case of a nilpotent Lie
algebra with the spectrum from [7], [8]. Our specirum has the projection
property on any Lie subalgebra, exactly as in the nilpotent case (see Propo-
sition 0.1 above), not only on Lie ideals. As a consequence, the spectrum of
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