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Spectrum for a solvable Lie algebra of operators
by
DANIEL BELTITA (Bucuregti)

Abstract. A new concept of spectrum for a solvable Lie algebra of operators is in-
troduced, extending the Taylor spectrum for commuting tuples. This spectrum has the
projection property on any Lie subalgebra and, for algebras of compact operators, it may
be computed by means of a variant of the classical Ringrose theorem.

0. Introduction. A first non-commutative version of the Taylor spec-
trum of commuting tuples of operators {[17]) was studied in {7} for families of
operators generating nilpotent Lie algebras. Independently, a spectral the-
ory for solvable Lie algebras of operators was introduced in [3], [2]. Some
complements to this theory are made in [10], [11] using the (Taylor type)
spectrum o(g), where ¢ : E — B(X) is a representation of a Lie algebra E
on a Banach space X

One of the main results of [3] is the projection property of the spectrum
on Lie ideals. As remarked in [3], this projection property does not hold on
any subalgebra of the given solvable Lie algebra. However, {7] shows that in
the case of nilpotent Lie algebras we have:

0.1. PROPOSITION. If ¢ : E — B(X) is a representation of a nilpotent
Lie algebra F and F is o Lie subolgebra of E, then
a(alr) = o(e)|r-
0.2. CORGLLARY. In the situation of Proposition 0.1, if we fake an ar-
bitrary element ¢ of B and set T = p(e) then
o(T) ={A(e) | A € o(a)}-

In the present paper we introduce a new concept of spectrum for a solv-
able Lie algebra of operators, which agrees in the case of a nilpotent Lie
algebra with the spectrum from [7], [8]. Our specirum has the projection
property on any Lie subalgebra, exactly as in the nilpotent case (see Propo-
sition 0.1 above), not only on Lie ideals. As a consequence, the spectrum of
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the present paper is distinct, in general, from the spectrum of [3]. Another
difference of these spectra is that our construction is not based on a Koszul
complex; instead, we use Cartan subalgebras to reduce the study of solvable
Lie algebras to that of nilpotent Lie algebras made in [7].

The structure of the present paper is the following.

§1 contains some simple facts needed in the sequel. They are concerned
mainly with some features of the Cartan decompositions, which are specific
to the case of solvable Lie algebras.

In §2 the new spectrum of a solvable Lie algebra of operators is con-
structed. Then we prove the basic properties of the spectrum: projection
property, compactness, non-emptieness, a variant of Corollary (1.2 above. We
show that any welght in the sense of [9] belongs to the spectrum. As an ap-
plication we show that if the operators T, @ generate a solvable Lie algebra
and ¢} is quasinilpotent then o{T'+@Q) = o(T). At the end of §2 we construct
a spectrum for an arbitrary locally solvable Lie algebra of operators.

The aim of §3 is to show that the spectrum of a quasisolvable Lie algebra
of compact operators can be computed by means of a maximal nest of invari-
ant subspaces. (This fact can be viewed as a variant of the classical Ringrose
theorem [5, Theorem 2.32].) To this end we first extend, to the framework
of our spectral theory for Lie algebras, the classical Riesz-Schauder theory
of the spectrum of a compact operator.

Finally, I wish to thank Professor Mihai Sabac for the suggestion to
extend results of [7] to the case of solvable Lie algebras. Also, I acknowledge
the kindness of Professor Stefan Frunz#, who indicated to me the papers
0], [11].

1. Preliminaries. First let us introduce some conventions and nota-
tions. In all what follows we use only complex Lie algebras and by a solvable
or nilpotent Lie algebra we mean a complex finite-dimensional solvable, re-
spectively nilpotent, Lie algebra. By a quasisoluable Lie algebra we mean a
Lie algebra which is generated as a vector space by its family of solvable Lie
ideals (cf. e.g. [13]). We denote by A an arbitrary (unless otherwise stated)
complex Banach space. For a Lie algebra G we denote by r(G) the set of
regular elements of G (see [14, Chapter 9, Definition 2]) and by £(G) the
group of automorphisms of ¢ generated by the set

{99 |G eGandadC: ¢ —Cis a nilpotent operator}.

For Cartan subalgebras, Cartan decompositions, roots and related topics we
refer to [14, Chapters 8 and 12]. We denote by G the set of all characters of
G (i.e. linear functionals on G which vanish on [G, G]). For Koszul complexes
and related topics we refer to [7]. If o : G — B(X) is a representation then
we denote by o(g) the Taylor spectrum of g (see [10], [11]). If moreover G
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is a Lie subalgebra of B(X)} then we denote by idg : G — B(&X) the identity
representation of § (idg(G) = G for any G in G) and by Qg the set of all
quasinilpotent operators which belong to G. Finally, if A, B are arbitrary
sets such that A C B and if F is a set of functions defined on B then F|4
denotes the set of restrictions to 4 of the functions from F.

Except for the conjugation theorem for Cartan subalgebras of a finite-
dimensional Lie algebra we need just the properties of the group £(G) as-
serted in the following lemma.

1.1. LEMMA. Let G be a Lie algebra, H € G and p € £(G).

(1) We have H — o(H) € [4,G)].
(ii) If moreover G is a Lie subalgebra of B(X) then the operators H and
@(H) are similar and hence they have the same spectrum.

Proof. (i) It suffices to verify the assertion for ¢ = ¢34 €, where G € G
and ad G is nilpotent. We have

(X°)H = H + (G, H + 31G,[G, H)] + ... € H +1,]
(i) For any A, B € B(X) we have (see [12, Theorem 4.1])

(*4)B =e 4 Be?. u

1.2. PROPOSITION. Let H be a Cartan subalgebra of a finite-dimensional
Lie algebra G. Let n = dimH and

(1) G=H@Cy

be the Cartan decomposition determined by H (see [13, Chapter 8, remarks
preceding Lemma 2]).

(1) If H e HNr(G) then (ad H)"G = Cy.
(ii) If K is another Cartan subalgebra of G and p is an automorphism
of G such that o(H) = K then o(Cy) = Cx.
(i) Cr. € 0,0].
(iv) If T is an ideal of G such that dim(G/T) = 1 then Cyy C T and
I=(HNT)BCxy.

Proof. (i) One uses the decomposition (1) and the following remarks:

(a) (ad H)™(H) = 0 because H € H and M is a nilpotent Lie algebra.
(b) ad H : Cyy — Cyy is bijective because H € r{§) (see the proof of the
main theorem of [14, Chapter 12]).

(ii) One uses (i) and the fact that r(§) is invariant for every automor-
phism of G.
(iii) One uses {i).
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(iv) One easily checks that [G,G] C T, hence Cx C I by (iif). Now, using
the decomposition (1) and the inclusion just proved, it is straightforward to
deduce the last equality stated in (iv). =

1.3. COROLLARY. If G is a solvable Lie subalgebra of B(X) and M is
a Cartan subalgebra of G then Cyy contains only quasinilpotents. (With the
above notations, C1; C Qg.)

Proof. One applies Proposition 1.2(iii) and [3, Proposition 8] (see also
[10, Corollary 2.8]).

1.4. PROPOSITION. Let G be a soluable Lie algebra.

(i) If C is an element of G such thatad C : G — G is o nilpotent operator
then C +r(G) = r(G).
(ii) (G, G] +7(G) =r(G).
(ili) If G is moreover a Lie subalgebra of B(X) then Qg + r(G) = r(G).

Proof By the Lie theorem, we choose a basis of G such that any operator
adG: G — G (G € G) is represented by an upper triangular matrix. For G
in G, the number of zeros on the diagonal of ad G equals the multiplicity of 0
as a root of the characteristic polynomial of ad G, hence it finally equals the
dimension of the kernel of {ad G)4™¥¢ {[14, Chapter 9, the proof of Theorem
1]). We now prove the assertions (i)—(iii).

(i) For any H in G the matrices of ad H and ad(H + C) have the same
number of zeros on the diagonal (because the diagonal of ad C consists only
of zeros}. Hence, by the remark from the beginning of the proof and the
definition of r(G), H € r(G} if and only if H + C € r(G).

To prove (ii), (iii), one applies (i) for C' € [G, G|, respectively C € Qg. (In
the last case one also uses the Rosenblum theorem [12, Corollary 3.3(i}].) =

1.5. COROLLARY. Let Gg be a nilpotent Lie subalgebra of the solvable Lie
algebra G.

() If Go N7 (G) # B then Gy is contained in o Cartan subalgebra of G.
(1) If GaNr(G) = 0 then Gy is contained in an ideal T of G such that
T # G (more exactly TNr(G) = @).

Proof. If Gonr(G) # @ then one uses [14, Chapter 8, Theorem 2]. If
Go Nr(G) = § then one considers the ideal Z = Gy + [, §] of G. One has
T 2 Go and, if TNr(G) # 0, then it easily follows by Proposition 1.4(ii) that
Go Nr(G) # 0, a contradiction. m

2. Construction and the general properties of the spectrum

2.1. PROPOSITION. Let G be o solvable Lie subalgebra of B{X). Let H
be & Cartan subalgebra of G and G = H @ Cy be the corvesponding Cartan
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decomposition. Define
(2) I ={f:G—C| fly € o(idw) and f vanishes on Cnt.
Then for any Cartan subalgebras H,K of G we have Tn =5 C4.

Proof. STeP 1. We show that Sy C §. We denote by «,3,... the
non-zero roots of G with respect to H, and by G*,G?, ... the corresponding
roct spaces. We have Cyy = @, G* and G = H @ Cx, so

6,01 =[HH]+ Y _[M,6°]+ 3 10%, 6% < [, H])+ 5 (6%, 67} + Y g=.
o a,B o x

Now let f be in Ty;. By (2) the functional f vanishes on 3_ G* (= Cy).
Then by [14, Chapter 8, Lemma 1] the set [H, H]+ 3. [6%, G~°] is contained
in [G,G]NH, so it consists only of quasiniipotent operators from H (see [3,
Proposition 8]). Since f|y € o(idy), by Corollary 0.2 it then follows that f
also vanishes on [, H] + 37 _[G%, ¢~*|. Hence f vanishes on all [G, G].

STEP 2. Now we show that Xy = Zx. By the conjugation theorem for
Cartan subalgebras of G ([14, Chapter 12]), there exists © & £(G) such
that ©(H) = K. This obviously implies that idx op = idss, hence by [7,
Proposition 2.6] one gets o(idn) = {f o | f € o(idk)}. Since (Cp) = Cxc
(Proposition 1.2(ii)) we have even

In={fop|feZx}

Moreover for any f in Xx and G in G, by Lemma 1.1(i) and Step 1 of
the present proof we get f(G — ©(G)) = 0. It follows that f o = f for any
f in E;c, 80 E’H = 2}(;. [ ]

Now Proposition 2.1 ensures the correctness of the following definition.

2.2. DEFINITION. If G is a solvable Lie subalgebra of B(X) then using
an arbitrary Cartan subalgebra H of G we define the spectrum of G by

(G) = 2.
Let us remark that by Proposition 2.1 we have Z{G) C G. Moreaver, if
G is a nilpotent Lie algebra then X(G) = o(idg).
Now we establish a sequence of auxiliary results and finally we prove

that the spectram X(G) has the projection property on any Lie subalgebra
of G (Theorem 2.6).

2.3. LEMMA. If G is a finite-dimensional Lie subalgebro of B(X) then G
18 solvable if and only if Qg s a Lie ideal of G containing (G, G].

Proof. Necessity. If G is a solvable Lie subalgebra then [G,G] C Qg
by [3, Proposition 8], hence it remains to prove that Qg is a vector space.
Suppose that @1, Q2 € Qg and set L := CQq + CQ3 + [G,G]; then L is an
ideal of G. By the Lie theorem, choose a basis in G such that any operator
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ad @ : ¢ — G (G € §) is represented by an upper triangular matrix. Then,
by the Rosenblum theorem [12, Corollary 3.3(i)], any operator ad & (G € G)
will be represented by the sum of three upper triangular matrices whose
diagonals consist only of zercs. So ad G : § — § is a nilpotent operator
for any G in £. Since (ad G)(£) € £ for any G in £, the Engel theorem
shows that £ is a nilpotent Lie algebra. Then, by an application of either
the spectral mapping theorem [7, Theorem 5.1] or Corollary 0.1, one gets
o(@1+ Q) ={0}, te. h+Q2€ Lo

Sufficiency. Since Qg is a finite-dimensional Lie algebra containing only
quasinilpotent operators, it is nilpotent by the above cited Rosenblam the-
orem (see [20]). But [G,G] € Qg, hence [¢, G] is also a nilpotent Lie algebra;
s0 G is a golvable Lie algebra. m

2.4, COROLLARY. If G is a solvable Lie subalgebra of B{(X') then for any
Q in Q¢ and fin D(G) one has f(Q) =0.

Proof. Let H be a Cartan subalgebra of G. By (1), there exist Q' in
H and Q" in Gy such that Q' + Q" = @. By Corollary 1.3, @" € Qg. So
Q' =Q—-Q" € Qg by Lemma 2.3. Since H is a nilpotent Lie algebra and @’
is a quasinilpotent operator belonging to H one gets fo(Q') = 0 for any fo in
o(idy). Then by (2) one gets f(Q’) = 0= f(Q") for any f in Xy (= X(G))
and the conclusion follows. w

2.5. LEMMA. Let G be o solvable Lie subalgebra of B(X). If 7 is a Lie
ideal of G then X(Q)]lz = B(T).

Proof. Since G is a solvable Lie algebra we may suppose that dim(G/T)
= 1. Let ‘H be a Cartan subalgebra of G. It follows that HNT is contained in a
certain Cartan subalgebra K of T (see [19]). Since HNZ C K C (HNI) $Cx,
it is easy to see that

(3) K= (HnNI)® (KNCx).

Let T = K & Cx be the Cartan decomposition of 7 with respect to K and
set X = Z{(G)|z. To prove that ¥ = I(Z) we must check that

{4) DHEM =0 and Yl = o(idx).

The first equality is a consequence of Corollaries 1.3 and 2.4. To prove
the second equality we use the decomposition (3). First, using (2) we get

mnz = o(idn) |xnz-

Now let us remark that HNT is a subalgebra of the nilpotent Lie algebras
H and K (see (3)), so by Proposition 0.1 we get

o(ide)|nnz = o(idwnz) = o(idw) 1z
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Hence X|ynz = o(idx)|nnz. Moreover the functionals from X vanish on
K N Cy (by Corollaries 1.3 and 2.4) as do those from o(idx) (by Corollary
1.3 and Proposition 0.1). Hence ¥ = ¢(idx) in view of (3). w

Now we are ready to prove a variant of Proposition 0.1 for solvable Lie
algebras.

2.6. THEOREM. If G is a solvable Lie subalgebra of B(X) and L is a Lie
subalgebra of G then X(G)|z = Z(L).

Proof. We proceed by induction on the dimension of §. The conclusion
is obvious if dim G = 1. Now suppose that the assertion holds for solvable Lie
algebras of dimension strictly less than dim G. Let K be a Cartan subalgebra
of £ and L = K & Cx be the corresponding Cartan decomposition. By
Corollaries 1.3 and 2.4, the elements of £(G) vanish on Cx. Hence we only
have to check that Z(G){x = o(idg). By Corollary 1.5 only the following
situations can occur.

(i) K is contained in a certain Cartan subalgebra H of G. Using (2) and
Proposition 0.1 we deduce that

LGk = (Z(D)|n)lx = olidn) |k = o(idk).

(ii) K is contained in a certain Lie ideal Z of G such that 7 # G. Then
dimZ < dim§, so Y(I)|x = Z(K) = o(idg) by the induction hypothesis.
Then an application of Lemma 2.5 shows that Z(G)|x = o(idx). =

Now we state the variant of Corollary 0.2.

2.7. COROLLARY. If G is o solvable Lie subalgebra of B(X') then for any
element G of G we have
o(G) = {f(&) | f € (G)}-

More generally, if G = (G1,...,Gn) is ¢ commuting tuple of elements of G
then one con compute the Taylor spectrum of G in the following way:

a(G) ={{f(G1),...,f(Gu)} | f € Z(G}}-

Proof. It suffices to consider the nilpotent (actually abelian} Lie subal-
gebra of G generated by & and to apply Theorem 2.6 and then [5, Theorem
2.3 =

A straightforward consequence of Corollary 2.7 is the following,.

2.8. CorROLLARY. If G s a solvable Lie subalgebra of B{X) then 2(G)
is a compact non-empty set of characters of G.

Next we give an application of Corollary 2.7 in perturbation theory.

2.9. COROLLARY. Let T', @ € B(X) be operators generating a solvable Lie
subalgebra of B(X). If Q is a quasinilpotent operator then o(T'+ @) = o(T').
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Proof. Let G be the solvable Lie subalgebra of B(X'} generated by T
and Q. Computing the spectra as shown in Corcllary 2.7, we get

o(T+Q)={f{T+Q) | Fe @)} ={fT)+ Q)| f < Z(G)}
={f(T)| f € (@G} =0o(T) n

In connection with Corollary 2.9 let us remark that, even if there exists
v in C* such that [T, Q] = @, there exist simple examples of operators
on finite-dimensional spaces which show that the operators T and T" + @
need not be quasinilpotent equivalent. Hence Corollary 2.9 above and {4,
Chapter 1, Theorem 2.2] are distinct generalizations of [6, Chapter XV, §4,
Lemma 4] (where [T, @] = 0}.

Next we show a connection between the spectrum X(e) introduced above
and certain linear functionals whose existence was established in [9]. With
the notation of [10, Definition 2.1] we actually show that oap(ids) C Z(e).

2.10. COROLLARY. Let G be a solvable Lie subalgebra of B(X). If {2 tn>1
is a sequence of unit vectors from X and f : G — C is a functional such that

nlinéo(Gmn - f(Gzy) =0
for any G in G, then f € X(G).

Proof Let H be a Cartan subalgebra of G. We have f(F) € o(Q) for
any G in G so, by Corollary 1.3, f vanishes on Cy. Moreover fly € o{idy)
(see [7, Remarks 2.9(2)]) hence f € Xy = X(G). n

Qur next result is concerned with the notion of spectrum for a locally
solvable Lie algebra of operators (see [16]). The extension of the concept
introduced in Definition 2.2 above is obtained by means of projective limits
(a method used in [15, Theorem 2.5} and [16]).

2.11. THEOREM. Let § be a locally solvable Lie subalgebra of B(X). There
exists a unigue map X(e) which associates with any Lie subalgebra L of G a

compact non-empty subset Z(L) of L such that the Jollowing conditions are
satisfied.

(a) If £ is o nilpotent Lie subalgebra of G then (L) = o(idy).
(b) If £ and M are Lie subalgebras of G such that L C M then
Z(M)ie = 2(L).

Proof. Exzistence. Let {L;};cr be the local system of all solvable Lie
subalgebras of G, partially ordered by inclusion. For each 4 in I, X (L4)
(introduced in Definition 2.2) is a compact non-empty subset of the finite-
dimensional vector space ft-, as follows from Corollary 2.8. Hence, endowing
{Z(£Li)}ier with the restriction maps p;; : Z(L;) — L(L;) (i < ), we get

icm

Spectrum for o solvable Lie algebra i71

a projective limit system of compact spaces whose maps are onto (cf. The-
orem 2.6). In these conditions it is well known that the corresponding pro-
jective limit proj lim X(£;) is a compact topological space and the natural
projections p; : proj lim £(L;) — Z(L;) are onto. Obviously, projlim X(£;)
can be identified with a subset $(G) of G, and Z(@)z, = X(L;) for any j
in I. Moreover if £ is an arbitrary Lie subalgebra of G then {LNLiYier is
the local system of all solvable Lie subalgebras of £. Define, as above,

(5) 2(L) = projlim T(L N Ly).

Then condition (a) is obviously satisfied (see the remark after Definition
2.2). To check (b), we remark that £NL; C MnL; so, by Theorem 2.6, we
have Z(L N Li) = Z(MN L;)|cng,. This fact together with (5) (applied for
L and M) easily implies that 2(L) = Z(M)|z.

Uniqueness. Let X'(e) be another map with the stated properties. The
property (b) of L'(e) easily implies a formula similar to (5), so Z'(e) is
uniquely determined by its restriction to the set of all solvable Lie subalge-
bras of §. Hence it suffices to suppose that G is solvable. Let H be a Cartan
subalgebra of G. In view of the properties (a) and (b) of £’ {e) we have

(6) F(G)ln = Z'(H) = o (idy).

Now let ) be arbitrary in Cj; and denote by & the one-dimensional Lie alge-
bra generated by Q. Then § is an abelian (hence nilpotent) Lie subalgebra
of G, so Z'(G)|s = Z'(8) = ofids). But Q € Jg (cf. Corollary 1.3) so,
obviously, o{idg) = {0}. Hence

(7) & (@les = {0}

Now in view of (6), (7) and (2) we get X'(G) = Ty = Z(G). This fact,
together with the property (b) enjoyed by both X’(e) and 3(s), implies
that Z'(£) = X(£) for any Lie subalgebra £ of G. w

3. Lie algebras of compact operators. We begin with some simple
facts about tuples of arbitrary operators generating nilpotent Lie algebras.

3.1, LemMa. If C, P € B(X), P2 = P and {[C, P}, P] = 0 then [C, P]
=0,

Proof. The relation [[C, P], P] = 0 is equivalent to CP + PC = 2PCP.
If we multiply this last equality on the left, respectively on the right, by P
then we get PC = PCP, respectively CP = PCP. Hence PC = CP. n

The following result may be viewed as a complerment to [8, Corollary 4.5)].

3.2. PROPOSITION. Suppose that A € B(X) and B = (By,...,By) is a
commuting tuple from B(X). Assume thai there exists a positive integer N
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such that for any iy,...,in € {1,...,q} we have
(2d By,) ... (ad Biy)A = 0.

Then for every function f holomorphic on a neighbourhood of o(B) and such
that f2 = f, we have (4, f(B)]=0.

Proof. We show by descending induction that for k = N, N —1,...,0
the property P(k) holds, where

P{k): For any 41,...,% € {1,...,¢} we have
[(ad B;,) ... (ad By, )4, f(B)] = 0.

(Here P(0) denotes just [A, f(B)] = 0.) The assertion P(N) immediately
follows from the hypothesis. Now suppose that P(k) holds for a certain k in
{N,...,1}. To prove P(k—1) we fix for the moment the indices i,...,45_1
from {1,...,¢} and define C := (ad B;,_,) ... (ad B;, ) A. (Of course, if k = 1
we do not fix anything and set C := A.) From P(k) it follows that for any
iin {1,...,¢} we have [[B;,C], f(B)] = 0, hence {[C, f(B)], B;] = 0. It then
follows that [[C, f(B)], f(B)] = 0 because f(B) belongs to the bicommutant
of the tuple B. The last equality shows (in view of the assumption about f
and of Lemma 3.1) that [C, f(B)] = 0. Remembering the definition of C' we
get P(k—1). m

3.3.COROLLARY. Suppose that C' = (A1,..., Ay, B1,...,By) € B(X)PTe,
the Lie algebra generated by C is nilpotent and B = (B1,...,By) is a com-
muting tuple. Denote by 7 : o(C) — C? the projection on the last ¢ co-
ordinates and assume that o(B) = Fy U Iy, where Fy and By are closed
non-empty and disjoint subsets of C?. Moreover, denote by Vi an open neigh-
bourhood of I’y whose closure does not intersect Fy, and by f the character-
istic function of Vi. Then f is holomorphic on a neighbourhood of o(B).
Set X1 := f(B}X and Xy := (1 — f(B))X. Then we have:

(i) X, Az e LatC and X = X1 @ As;
(@) o(C, X;) = nH(£y) for j=1,2.

Proof. Since C generates a nilpotent Lie algebra E(C), by Proposi-
tion 3.2 we get [A;, f(B)] = 0 for any 4 in {1,...,p} and the assertion (i)
follows.

Then from (i) we deduce

Kos(C — A, A7)
KOS(G'ei A, A2)
(Here we use the notations of [7, Definition 2.1].) Hence
(9) o(C,X) = o(C, 37) Uo(C, ).

{8) Kos(C — X, X) = for any A in CP*9,
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From the projection property [7, Consequence 5.5] and the classical result
about commuting tuples (see e.g. [18, Chapter II, Theorem 9.6]) it follows
that 7{a(C, X;)) = o(B, X;) = F}, so

(10) o(C, ) Cn M Fy) (5 =1,2).
We deduce #(c(C)) = o(B) = Fy UF, by the projection property again, so
(11) o(C) =" HF) Ur 1 (F).

Now we can deduce (i) from (9)~(11). w

The above corollary is a weak non-commutative variant of the classical
result about commuting tuples of operators with the Taylor spectrum con-
sisting of two closed, non-empty and disjoint sets. However, it suffices to
get the geometric properties of the Taylor spectrum for a tuple of compact
operators generating a nilpotent Lie algebra. (See Theorem 3.7 below.)

3.4. LEMMA. Let K = (Ky,...,Ky,) be a tuple of operators on a finite-
dimensional space Y. If K generates-o nilpotent Lie algebra and X =
(ALs--,An) € o(K) then one can find a vector y in Y\ {0} such that
Kjy= Ny for1 <j < m.

Proof. See e.g. [1, Theorem 1]. u

3.5. COROLLARY. Let K = (Ki,...,K,) be a tuple of compact oper-
ators on a Banach space X. If K generates o nilpotent Lie algebra and
A= (A1, ) € o(K) \ {0} then X is an isolated point of oK) and a
Jjoint etgenvalue of the tuple K, i.e. one can find a vector = in A\{0} such
that Kjz = Mz for 1 < j < n.

Proof. If the dimension of X is finite then the conclusion follows im-
mediately from the projection property {7, Consequence 5.5] and from Lem-
ma 3.4. Now we assume that X is an infinite-dimensional space; moreover
we can assume that A, # 0, because X\ # 0. Setting F, = {An} and
Fy = o(K,)\{A.} we get two closed, non-empty and disjoint sets such
that o(K,) = Fy U Fy. Let us remark that we can apply Corollary 3.3 for
C = (Ky,...,Ky) and B = K,,. With the notations of Corollary 3.3 we
remark that A} is a finite-dimensional subspace because K, is a compact
operator. Since o(K) = n~ (F;) Ux~Y(F), it easily follows that

o(K)N{C 1 'xW) =n1"HF) = o(K, X))

But this final set is finite because dim A} is finite. Since C""1xV; is a
neighbourhood of A, it follows that A is an isolated point of o(K). We also
get A € o(K, A1) s0 A is a joint eigenvalue for K, as a consequence of
Lemma 3.4. w
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3.6. LEMMA. Let K = (K1,...,K,) be a tuple of compact operators on
a Banach space X . If K generates a nilpotent Lie algebra and 0 & o(K) then
X is finite-dimensional.

Proof If n = 1 then the result is well known. Assume now that the
conclusion holds for n — 1. The set o(K) is compact (see [7, Theorem 2.3
and [3, Theorem 2]) and has no accumulation points (by Corollary 3.5),
hence it is finite. If 0 € o(K,) then X is finite-dimensicnal in view of the
case n = 1. Assume now that 0 € o(K,). The set o(K,) is finite by the
projection property, hence Corollary 3.3 applied for C = (K3,...,K,), B =
K Fy = {O}, = J(K'n) \ {0} gives

X=X0X, oKX= F) ({H=12).
(If o(K,,) = {0} then we take F; = ) and A, = {0}.) From Corollary 3.3(ii)
it follows that 0 & o(Kp, X2), so A, is finite-dimensional.

On the other hand, since ¢(K,,X;) = F; = {0}, from the projection
property it follows that

O'(K, (Yl) = O’((Kl, ey Kn—l)a Xl) x {0}

But 0 ¢ o(K, X) and o(K, X1) C o(K,X) (cf. Corollary 3.3(i1))), so 0 ¢
o{(Ky,...,Kn-1), X1). Then we deduce, by the induction hypothesis, that
A3 is finite-dimensional. Since X» is also finite-dimensional, it follows that
sois X. m

From the above facts one can deduce the following result,

3.7. THEOREM. Let K in B(X)™ be a tuple of compact operators gener-
ating o nilpotent Lie olgebra. Then o(K)\ {0} is an at most countable set
of joint eigenvalues for K, whose only possible accumulation point is 0. If
X is infinite-dimensional then 0 € o(K).

3.8. COROLLARY. Lef o : E — B(X) be o representation of the nilpotent
Lie algebra E by compact operators. Let f be in o(0) and assume that either
f #0 or X is finite-dimensional. Then one can find o vector z in X \ {0}
such that o{a)z = f(a)z for any e in E.

Proof. We use [7, Theorem 2.3] and either Corollary 3.5 or Lem-
ma 3.4. m

'The following theorem is a variant of Theorem 3.7 for solvable Lie alge-
bras.

3.9. THEOREM. Let G be a solvable Lie subalgebra of B(X) containing
only compact operators. Then X(G) is a compact, at most countable subset of

é, whose only possible accumulation point is 0. If X is infinite-dimensional
then 0 € 2(G).
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Proof. First we remark that, if G is nilpotent, then the conclusion fol-
lows from Theorem 3.7 and |7, Theorem 2.3].

Returning to the general case, consider a Cartan subalgebra H of G. We
have 3(G) = Dy and from (2) it follows that the map

Iy —o(idy), e flu,

is a homeomorphism which takes 0 to 0. This fact immediately implies the

conclusion, in view of the remark from the beginning and the fact that
o(idy) = Z(H). w

In the following we shall need a few facts about nests of invariant sub-
spaces. Let G be a Lie algebra of operators, Lat G be the lattice of all closed
subspaces which are invariant for ¢ and A be a nest in Lat §. For M in N we
denote by M~ the closed subspace spanned by those elements of A" which
are contained in M. Then M~ € Lat G and, if M~ is distinct from M we say
that M determines ithe atom M/M ™. There exists a natural representation
©: G — B(M/M™) constructed by restriction and then factorization of op-
erators. If moreover dim(M/M ™) = 1 then ¢ can be viewed as a character
of G; in this case ¢ is called the character determined by the atom M JM
and it has the property

(12) (T = o(T))M C M~
for any T in G.

We shall need the following result which is a. straightforward consequence
of {13, Section 3, Theorem 7’].

3.10. LEMMA, Let R be a quasisolvable Lie subalgebra of B(X) consisting
only of compact operators. If N is a mazimel nest in the lattice Lat R then
any atom of N has dimension 1.

We shall also need the following fact, which is used in the proof of the
Ringrose theorem about the spectrum of a compact operator (see [5, Chap-
ter 2, Lemma 2,29]).

3.11. LemMA. Let T be o compact operator, T € B(X), and N be a
mazimal nest in LatT. Let ¢ in o(T)\{0} and 2 in X\{0} be such that
Tz = px. If M denotes the intersection of those L in N with the property
ze€Lthen MeN, M=Cod M and (T - )M C M.

The fellowing result is a first step towards a variant (concerning solvable
Lie algebras) of the Ringrose theorem.

3.12. LEMMA. Let L be o nilpotent Lie subolgebra of B(X) consisting
only of compact operators. Let N be a mazimal nest in Lat £ and {@, |
o € A} be the set of characters of L determined by the atoms of . Then

oide) \ {0} = {pa | @ € A} \ {0}
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Proof For o in A let Y, be the element of A~ which determines the
character @o. Assume that ¢, 7 0 and for the representation g5 : £ —
B(Va), 0a(L) := L]y, consider the Koszul complex

. 8
KOS(‘C:QG'MW&;J)&): 0*‘_3)0:‘—5"5_3)&®£<—2

The relation (12) (applied for @, instead of ) shows that Randy # Va,
so the above complex is not exact. Hence p, € 0(gq). But ¢q # 0 so, by
Corollary 3.8, we can find an 2 in Y, \ {0} such that Lz = @ (L)x for any
L in £. This implies g, € ¢(idg) (see Corollary 2.9).

Conversely, let ¢ be in o(idz) \ {0}. By Corollary 2.9 there exists = in
X \ {0} such that

(13) Lz =@(L)z forany Lin L.

Let M be the intersection of those L in A with £ € L. An application of
Lemma 3.11 (for any T in £ such that (1) # 0) shows that

(14) MeN, M=CzoM”
and moreover
(15) (T —pT)M S M.

If T is an element of £ such that ¢(T") = 0 then (15) also holds (by (13) and
(14)). Now (14) shows that M is an element of A which generates an atom
and (15) shows that ¢ is the character determined by the atom M/M~. =

3.13. COROLLARY. In the situation of Lemma 3.12 the following asser-
tions hold.

(i) If X is finite-dimensional then o(idg) = {p. | @ € A}.
(i) If X s infinite-dimensional then o(idz) = {ps | @ € A} U {0}-

Proof (ii) immediately follows from Lemma 3.12 and from the last
sentence of Theorem 3.9.

In view of Lemma 3.12, to prove (i) it suffices to show that 0 € &(id.)
if and only if there exists an o in A4 such that ¢, = 0. If such an o exists
then, as in the first part of the proof of Lemma 3.12, we get an z in Y, \
{0} such that Lz = 0 for any L in £. So, by Corollary 2.9, we have 0 &
o(idz). Conversely, suppose that 0 € o(id.). First we remark that, if I
is a nilpotent Lie algebra on the finite-dimensional space Z such that the
complex Kos(i4,idy, Z) is not exact, then this corplex is not exact at the
first term. (See e.g. {1, Theorem 1].) We apply this remark for the nilpotent
Lie algebra Uy 1= {Lly, | L € L}, where ain {1,..., N} is the lowest index
with 0 € o(idy, ). (Here N := dim X and, obviously, 4 = {1,...,N}.) Then
0 & o{idy,_,} and hence

yaﬂl :'.oc\ya-l c £ya '7'1: ya-
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But dim(V,/Va-1) = 1, s0 LY, = Ya—1. It follows that LY, C ¥, for
any L in £, hence ¢, = 0. w

‘ 3.14. THEOREM. Let G be a quasisolvable Lie subalgebra of B(X) con-
susting only of compact operators. Let N be a mazimal nest in Lat Gand I
be the set of characters of G determined by the atoms of N'. Then

(i} If X is finite-dimensional then 26 =r.
(i) If X is infinite-dimensional then X(G) = I' U {0}.

Proof. For any Lie subalgebra £ of G define &V (£} := I'|z, respec-
tively £'(L) := I'|z U {0}, if X is finite-, respectively infinite-dimensional.
Then the map X'(s) obviously satisfies condition (b) of Theorem 2.11:
moreover, condition (a) of the same theorem is satisfied by Corollary 3.13.
Hence in view of the uniqueness assertion of Theorem 2.11 we deduce that
x I(EC))= 3'(L) for any Lic subalgebra £ of G. In particular we have (G =
ZNG). =
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Free interpolation in Hardy—Orlicz spaces
by
ANDRFEAS HARTMANN (Bordeaux)

Abstract. We show that the Carleson conditicn is necessary and sufficient for free
interpolation in Hardy—Onrlicz spaces Hp on the unit disk I under certain conditions on

w, and we give a characterization of the trace space Hla if Ais a finite union of Carleson
sequences.

Introduction. Let Hol(ID} be the space of holomorphic funetions on the
unit disk D = {z € C: |2{ < 1} and T = &D. A sequence A = {An}nz1 CD
is called of free interpolation for a subspace X C Hol(I) if the trace space

t=Xla={fla:fe X}

is an ideal space, ie. if @ € l and b € €4 are such that [B(A) < |a(A},
A € 4, then b € [ (cf. for example {14] or [6)). We will also use the following
notation for the associated sequence space:

1) : X(4) ={(Ffa)nz1 - f € X}

The description of free interpolation sequences for the space H* = {f &
Hol(D) : sup,ep |f(2)| < 0o} was given by L. Carleson [1] and it was shown
by H. 8. Shapiro and A. L. Shields [19] that the free interpolation gequences
for H® are exactly the same as for the Hardy spaces

17 ;
HP(D) = {feHol(ID)) Dosup — S |f(re“)]-"dt<oo}, l1<p<oo
0<rel 27

(cf. also [10] for the case 0 < p < 1). Tt is well known that we may identify
HP() and HP(T) = {f € L*(T) : f(n) = (2m)71 S’:Wf(e"")e"‘i“‘ dt = 0,
n <0}

In the first section we give the definition of Hardy-Orlicz spaces H, and
various conditions that one may impose on the defining function ¢ to get

1991 Mathematics Subject Classification: 30E05, 46E30.
Key words ond phrases: free interpolation, Hardy-Orlicz spaces, interpolating se-
quences, Carleson condition.
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