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Supporting sequences of pure states on JB algebras
by
JAN HAMHALTER (Praha)

Abstract. We show that any sequence (i,,) of mutually orthogonal pure states on a
JB algebra A such that (p,,) forms an almost discrete sequence in the relative topology
induced by the primitive ideal space of A admits a sequence (an) consisting of positive,
norm one, elements of A with pairwise orthogonal supports which is supporting for (,,)
in the sense of ¢, (an) = 1 for all n. Moreover, if A is separable then (an) can be taken
such that (i,) is uniquely determined by the biorthogonality condition @, (an) = 1.
Consequences of this result improving hitherto known extension theorems for C*-algebras
and descriptions of dual JB algebras are given.

1. Introduction and preliminaries. Let (z,) be a sequence of points
in a metrizable compact Hausdorff space X such that (z,,) is a discrete space
in its relative topology. It is well known that there is a “dual” supporting
sequence (f,) consisting of positive, norm one, contintous functions on X
with pairwise orthogonal supports and such that () is the only sequence in
X with fn(z,) =1 for all n. The aim of this note is to study possible exten-
sions of this fact to the “non-associative™ generalization of compact spaces
given by the Jordan operator algebras and to explore their consequences.
In this context the question concerning existence of supporting sequence
translates as follows. Let (i,) be a sequence of pure states on a separable
JB algebra A which are pairwise orthogonal, L.e. |lp, ~ ¢,,| = 2 whenever
n % m. Is there a sequence (a,) of pairwise orthogonal, norm one, positive
elements of A such that () is the only sequence of states on A satisfy-
ing @, (an) = 1 for all n? We show that the answer is affirmative under an
obvious restriction on the position of states.

The concept of supporting sequence is relevant to the question of the
relationship between pure states and abelian subalgebras. This problem has
been deeply studied in the setting of C*-algebras so far [1-6, 9, 10, 12]. In
particular, it has been proved in [2] that for any fnite family »q,..., 0,
of orthogonal pure states on a separable C*-algebra A there is a maximal
abelian subalgebra B of A such that all the states ¢;,...,p, are unigue
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extensions of pure states on B. By using our technique of biorthogonal de-
termining sequences we generalize this result, both by proving its validity for
JB algebras and by showing that B can be taken finitely generated. More-
over, a stronger version of this result involving infinitely many pure states
is obtained (compare [3, 5]). In the case of infinitely many states we have to
assume that the given states are separated as points in the primitive ideal
space. The necessity of this assumption iz illustrated in the concluding part
of the paper, where the dual JB algebras are characterized as heing pre-
cisely those for which any system of pairwise orthogonal pure states admits
a determining supporting system. It follows e.g. that a separable JB algebra
is dual if and only if it is closed with respect to decreasing sequences of
operator commuting positive elements. This, together with other results ob-
tained, extends hitherto known characterizations of dual algebras by means
of their intrinsic properties [7].

The problems studied in this paper stem also naturally from the operator-
algebraic approach to quantum theory, where observables of a quantum sys-
tems are given by JB algebras and “phase spaces” are modelled by their pure
state spaces (see e.g. [13]). In this framework our results can be expressed
briefly by saying that any sequence of mutually exclusive states of the quan-
tum system is uniquely determined by some (smallest possible) classical (i.e.
associative) subsystem. This contributes to the theory of hidden variables
(see e.g. [8]).

Let us now recall a few notions and fix the notation. A JB algebra {A, o)
is a real Banach algebra for which the norm obeys

laobll < llall-fBll, [la® — 82| < max([lal® IB]*),  {la®|| = flalt”.

(For all unmentioned details on JB algebras we refer to [11].}) Throughout
the paper A will always stand for a JB algebra and A™ for its positive part
(i.e. AT = {a® | a € A}). The order on A is given by the positive cone AT.
For a fixed ¢ € A the mappings T,,, U, : A — A are defined by putting

T,(b) =aob, U,b)=2ac(aob)—a?cb.

The elements a,b € A are said to be operator commuting if T,T, = T,T,.
A subspace I C A is called a quadratic (resp. Jordan) ideal if U,(A) C 1
(vesp. Tu(A) ¢ I) for all a € I. A JB algebra is said to be a JBW algebra if
it has a predual. The second dual A** of 4 is a JBW algebra whose product
is separately weak*-continuous and extends the original product of A.

In the sequel A will always be considered as a weak*-dense subalgebra of
A**, For any set § € A** the symbol § denotes its weak*-closure. If I is a
Jordan ideal in A then T = ¢(I)A**, where ¢(I) is the uniquely determined
central projection in A*™*. A projection in 4™ is said to be open if it is the
supremum of some increasing net of elements of A. The range projection r(a)
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of an element a € A** is defined as the infimum of the set of all projections
p € A™ for which poa = a. Recall that r(a) is open whenever ¢ € A.
Elements a,b € A are said to be orthogonal if @ o b = 0, or equivalently, if
r{a)or(b) = 0.

Any representation « of A into some JBW algebra M extends uniquely to
a normal representation (denoted again by m) of A** into M. We denote by
c{m) the central projection in A** uniquely given by Ker7 = (1 — c{m))A**.
The representation 7 is a factor representation if and only if ¢(7) is a minimal
projection in the center of A**. Recall that two factor representations n; and
g are equivalent if and only if e{71) = ¢(m2). The state on A is a positive,
norm one, linear functional. The state apace S(A) of A is the convex set
consisting of all states on A, and the pure state space P{A) is the set of all
extreme points of S{A). The elements of P{A) are called pure states. For
each pure state ¢ on A there is a uniguely determined minimal projection
s(ip) in A** such that Uy (a) = p(a)s(yp) for all ¢ € A. We call s{p)} the
support projection of . For the left kernel £, = {a € A | ¢{a?) = 0}
of a pure state ¢ we then have L, = U;_,,){A*") N A. Two pure states
v and p are called orthogonal if s{¢) o s(p) = 0 or, what is the same, if
o — ol] == 2. Further, let ¢{¢) denote the minimal projection in the center of
A** majorizing the support projection s{i) of a pure state . Then c(p)A4**
is a JBW factor of type I and the mapping 7, : A — c{@)A** :ar c(p)oa
is a representation of A onto a weak*-dense subalgebra of c{)A™. We call
7, the representation corresponding to . Recall that c(m,) = c(¢). Pure
states  and g are called equivalent if e(ip) = (o).

Finally, the primitive ideal space of A is defined to be the set Prim(A4) =
{Kermy, | ¢ &€ P(A}}. The set Prim({A) is topologized by the Jacobson
topology which is given by the closure operation § — § = {t € Prim{4) |t D
Mses 5} The symbol 7 will always stand for the canonical mapping 7 : ¢ —
Kerm, of P(A)} onto Prim(A).

2. Supporting systems. In this section we deal with the existence of
supporting sequences. Let (p,) be a system of mutually orthogonal pure
states on A. We say that a system {a.) of positive, norm one, pairwise
orthogonal elements of A is supporting for (¢g) if ¢,(ae) = 1 for all a. Our
first goal is to establish the existence of supporting systers for finitely many
pure states. For this we need the following auxiliary lemmas. We write M3
for the algebra of all hermitian 3 x 3 matrices over Cayley numbers.

2.1. LevMmMa. Suppose m and mp are non-zero representations of A
with w1 (A*) = Mi and m(A™) = M, where My is o finite sum of
copies of M and My is o JC algebra. Then neither Kerm C Kerms nor
Kerny ¢ Kermy.



40 J. Hamhalter

Proof. Suppose, for a contradiction, that Kerm, C Kermy. Then
gives rise to a representation of the quotient A/Kermy ~ my(A4) C M, onto
M. This means that the JO algebra w3(A) has a representation onto MS
contradicting the fact that any quotient of a JC algebra has to be a JC
algebra again {11, Prop. 4.7.4, p. 118].

Similarly, if Ker m; were contained in Ker mp then My would admit a quo-
tient isomorphic to a non-zere JC algebra, which is a contradiction because
M, is purely exceptional. The proof is complete,

2.2. LEMMA. Let m =71 & ... @ ™, where 1, ..., m, are inequivalent
factor representations of A. Let I' be a Jordan ideol in A such that each
15 non-zero on I. Then

(A} = n(I).
Proof. Without loss of generality, we can assume that m;(a) = c(m) oa

for each o € A. As m|I # 0 and ¢(m;) is a minimal central projection in A**
we have c(7;) < ¢(I). Since

) =m(A) ®...0m(d)

by inequivalence we get

m(A) =

i=1 =1 i=1

The proof is complete.

2.3. PROPOSITION. Any finite sequence @y, ..., @, of mutually orthogo-
nal pure states on A admits a supporting sequence.

Proof. Denote by m; the type I factor representation corresponding to
;- By the structure theory of JBW algebras, 7;{4) = c(¢p;)A** is isomorphic
either to M§ or to a JW algebra acting irreducibly on some Hilbert space
[11]. Suppose that c(p, )A*™, ..., c(p, ) A** are exceptional while c(ppyq)A™,
.- e(p, ) A are JW factors. We denote by 1) and ), the sum of inequiva-
lent representations, one from each equivalence class of the sets {my,..., 75}

and {mx+1,...,7Ta}, respectively. By Lemmas 2.1 and 2.2,

m= 1/11( ﬁ Kerfrj).
J=k+1

Since ¥1(A} = 41(A4) (1(A) has finite dimension) we can always find an
element z € ({_, ., Ker7; such that

icm

Supporting sequences of pure states 41

Each state ¢; (i = 1,..., k) is multiplicative on the algebra generated by .
Indeed, fix 1 < i < k, and an integer m. Since s(y;) < c(1) we get

k
. | 1
Usten (&™) = Uy (e(¥1) 0 2™) = Uy, (Z 5{;55(%)) - %‘9(‘!’1)5
=1

and, in turn,
pi{a™) = ()™
Every representation 7, where { > k, acts irreducibly on some Hilbert space
H;. {Equivalent representations will have the same Hilbert space.) Take unit
vectors Ex41, .. ,E&n from the corresponding Hilbert spaces such that
&€ s(p)(H) foralli=k+1,...,n.

Applying now arguments in the proof of the transitivity theorem for JC
algebras [14, Th. 5.2} on each Hilbert space H;, we infer that there is an
element y € A such that

1
oyt = E{& foralli=k+1,...,n

Moreover, in view of Lemmas 2.1 and 2.2, we can take y to be an element
of the Jordan ideal ﬂ;;l Kerm;. As
(mi(a)ei, &) = w;(a) foralloa€ Aandi=k+1,...,n,
for any integer m we get
1 1
Pi0") = ()60 6) = (mtinks) = g7 = el

In other words, the states i, are multiplicative on the algebra generated
by y. Put now a = z 4-y. By the previous reasoning all the states ¢,...,¢,
are multiplicative on the subalgebra generated by a, and

pi(a) = 1/2"
Choose continuous functions 0 < fi <1 (i=1,...
mutually digjeint supports and satisfying

fi(1/2) =1
By putting a; = f;(a) we get norm one, pairwise orthogonal elements satis-
fying ;{a;) = 1 for all ¢ = 1,...,n. The proof is complete.

foralli=1,...,n.

,n) on the real line with

foralli=1,...,n.

Let us remark that Proposition 2.3 does not hold for infinitely many
orthogonal pure states in general. This can be demonstrated by the follow-
ing examples. Let A = Cp(X) be the algebra of all continuous real-valued
functions on a compact Hausdorff space X. Then a sequence of pure states
corresponding to point evaluations at distinct points x, z1, T2, ..., where z
is a limit point of (z,), has no supporting sequence. On the other hand,
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an essentially non-associative counterexample can be given by considering
the self-adjoint part A of a C*-algebra A acting irreducibly on a separable
Hilbert space H and having zero intersection with the algebra of compact
operators on H. Then a sequence (we, ) of vector states corresponding to an
orthonormal basis (£,,) of H has no supporting sequence for otherwise this
sequence would consist of one-dimensional projections.

The stated examples indicate the necessity of assuming that the given
states are separated in some topological way. For that reason, we introduce
the following notion. Let 7 : P(A) — Prim(A) : ¢ — Ker 7, be the canonical
mapping. We say that the set P C P(4) is almost separated if there is a
disjoint open covering (U,) of 7(P) in Prim(A) such that each open set
771 (Uqy) contains at most finitely many elements of P. Observe that almost
separated families of pure states have finite equivalence classes.

2.4. THROREM. Any sequence (w,) of almost separated mutually orthog-
onal pure states on A has a supporting sequence.

Proof. Let ¢, = 7(¢,,). Suppose that (U,) is a covering of (t,,) obeying
the conditions stated in the definition of almost separated sets. Consider the
finite set I3 = (¢, ) N7~ (Uy). By rearranging the sequence (¢, ) appropri-
ately we can assume that It = {¢,,..., ¢, }. The set 7(I7) is disjoint from
the closure of 7((¢, )n>x), whence

o0
Kerm; 7 ﬂ Kerm; foralli=1,...,k,
J=k-+1
where 7; is the representation corresponding to ;. Applying now Proposi-
tion 2.3 for the hereditary subalgebra ﬂ;‘;k 41 Kerm;, we can find positive,
norm one, pairwise orthogonal elements a4, ..., a; such that

w;(a;)=1 foralli=1,... k%,
mi(a) =0 foralli=1,...,kand j> k.

It follows that @;(a;) = 6;; forall i = 1,...,k and 5 = 1,2,... Proceeding

analogously for the sets 771(Us) N (,), 77XU3) N (w,),..., we complete
the proof.

A sequence (p,) of orthogenal pure states on the associative algebra
Cr(X) has a supporting sequence if and only if the states @,, viewed as
points in the primitive ideal space X of Cgr{X), can be separated by open
sets. Led by this example, we can state the following characterization of

orthogonal pure states with supporting systems which will be useful in the
sequel.

2.5. PROPOSITION. Let (i) be a system of pairwise orthogonal pure
states on A. Then {i,) admils o supporting system if and only if there is
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a system (pa) of open, pairwise orthogonal, projections in A™ such that
s{pa) < pa for all a.

Proof. Suppose {a,) supports (¢, }. Then we can set p, = r(aq) to get
the desired orthogonal system of separating open projections.

Conversely, let (p,) be a system of orthogonal open projections in A**
with s(,) € pa. Each state ¢, restricts to a pure state on the hereditary
algebra A, = Up, (A**) N A. Therefore we can find a positive, norm one,
element go € Aq with ,(a,) = 1. (This can be seen e.g. as a very special
case of Proposition 2.3.) Since ¢, < p, the system {a,) is orthogonal and
the implication follows.

3. Determining systems. In the previous section we proved the ex-
istence of a supporting sequence (a,) of a family (i, ) of almost separated
orthogonal pure states. In this part we concentrate on the question whether,
in addition, (a,) can be taken as being determining for (i, }. Closely related
to this question is the problem of the existence of an associative subalgebra
B such that cach ¢, is a unique extension of some pure state on B. For
studying these problems the following concept appears to be useful. We say
that a norm one element o in A is a determining element for a given pure
state ¢ on A if ¢ is the only (pure) state on A attaining value one at a.
Note that in that case @(a o b} = ¢(a)p(b) for all b € A. In particular, ¢ is
a unique extension of a pure state on the subalgebra generated by its de-
termining element. A supporting system (a,) of a system (¢, ) of mutually
orthogonal pure states is called determining if each a, is determining for
@, 1t turns out that for separable algebras, any supporting sequence can
be modified to be determining,

3.1. PROPOSITION. Let A be separable. Any sequence of mutually orthog-
onal pure states on A admitting a supporting sequence hes o determining
supporting sequence.

Proof. Assume (i, ) is a sequence of mutually orthogonal pure states
on A with a supporting sequence {(u,). Since the open projections r(u,)
and 1 — s{y,) operator commute (s(ip,) < r(up)) their products r(un) ©
(1 - s(ip,)) are open. As A is separable, each hereditary subalgebra A, =
Un(un)o(i—s(wa)) (A**) M A contains a strictly positive element 0 < z, < 1.
Our goal is to prove that the elements ap = un — U, (un) are orthogo-
nal and determining for the states ¢,. The orthogonality of (an) follows
from the orthogonality of the projections r(un). Also, an < up < 1 and
tn 2 —Us (un) > ~Up, (1) = ~2 > —1 gives |lan| < 1. Since L,, =
Ui—stpn) (A™)NA is a quadratic ideal containing z, we have Us, (un) € LY,
whence o, (Us. (un)) = 0. Consequently, ¢, (an) = 1 for each n.
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It remains to prove that o, is determining for ¢,. For this, first ob-
serve that r(zn) = r(un) o (1 — s{i,)). Indeed, suppose that r(z,) <
r{un) o (1 — s(¢,)). Then there exists a normal state ¢ on the algebra
Ur(unyo(1-sten)) (A™) with ¢(r(z,)) = 0. By the Schwarz inequality (z,)
= (0 and the strict positivity of z,, entail that 1 vanishes on A,. Since
r(un) o (1 — s(i,)) is in A, we get 9(r(us) o (1 — s{,))) = 0, a contradic-
tion.

Take now a pure state g on A with g(a») = 1. The inequalities

0< Q(un)q Q(Umn (un)) <1
yield p(un) = 1 and p(Uy,, (4n)) = 0. The functional (U (-)) being normal

on A**, we find that also o(Us, (7(un))) = 0. As zn, 2% € Upy,)(4*) we
have U, {v(un)) = 22 o r{u,) = #2. In other words, p(z2) = 0 and so
o{zn) = 0. Therefore p(r(zn)) = o(r(un) o (1 — s(g,.))} =0 (¢ is normal on
A**), which implies o(r(un)) = o(s(i0,)). But o(un) = 1 and immediately
o(r(u,)) = 1. Hence p(s{i,)) = 1, implying ¢ = ¢, It can be observed
easily that the positive part of a determining element is again determining
for a given state. Thus, passing to the positive parts, we can assume all a,’s
to be positive, which concludes the proof.

Combining now Theorem 2.4 and Proposition 3.1, we get the following
result:

3.2. THEOREM. Let () be a sequence of almost separated, mutually
orthogonal pure states on a separable algebra A. Then (ip,)) admits a deter-
mining supporting sequence. In particular, there is o mazimel associative
subalgebra B of A such that each restriction @,|B is a pure state of B
which extends uniquely to a state of A.

Proof. Take a determining supporting sequence (a,) of (¢,) whose
existence is guaranteed by Theorem 2.4 and Proposition 3.1. Let € be the
subalgebra generated by the elements (a,). Then C is associative and any
state ¢, is uniquely determined by its pure restriction to C. Since any pure
state extends from C to a pure state on an arbitrary larger algebra, it can
be easily seen that any maximal associative subalgebra B of A containing
C will satisfy the statement of the theorem. The proof is complete.

As a corollary of the previous theorem, we deduce that any finite family
®1y.. 54, of pairwise orthogonal pure states on a separable algebra A is
uniquely determined by the pure state restrictions ¢,|C, ..., ¢,|C, where G
is some associative subalgebra generated by n orthogonal elements. As every
algebra generated by two orthogonal elements is generated by their sum, we
can add that every pair of orthogonal pure states on a separable algebra
is uniquely given by their values on some singly generated (i.e. smallest
possible) subalgebra. This generalizes [2, Theorem).
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4. Supporting sequences and dual algebras. In this section we
characterize dual JB algebras in terms of determining supporting systems
and answer the question: For what algebras does every orthogonal system
of states have a determining supporting system?

Recall that a JB algebra 4 is called dual if {I®)° = I for every norm
closed quadratic ideal of A, where the annihilator of a set § C A is defined
tobe 89 ={a e d|acs=_0foralse S}t Itis well known that dual
C*-algebras are nothing but algebras of compact operators. The structure
theory of dual JB algebras has been developed in [7]. We say that A is s-
manotone closed if it is closed with respect to infima of decreasing sequences
of positive operator commuting elements.

4.1. TueoreM. Let A be a JB algebra. The following statements are
equivalent:

(i) A is dual.
(ii) For every pure state @ on A there is a projection p € A which is
determining for @.
(iii} A4 is s-monotone closed and every pure state on A has o determining
element.
(iv) Buery system of mutually orthogonal pure states on A has a deter-
mining supporting system.

Proof. (i)=(ii). If 4 is dual, then A contains all minimal projections
in A** (see [7]). Thus, s(¢) € A is a determining projection for each pure
state p.

{it)={i). Assume p is a determining projection for . Then p = s{¢)}.
Indeed, it is clear that s{) < p. If the projection p—s(ip) were non-zero, then
there would be a normal state 3 on A** with ¥(p — s{p)) = 1. Therefore, 1
would give a state on A different from ¢ such that ¢(p) = 1, a contradiction.
In other words, A contains all minimal projections in A** and is therefore
dual by [7].

(i)=>(iii). This follows from the implication (i)=(ii) and the fact that
each maximal associative subalgebra of a dual algebra has discrete spectrum,
and it is therefore monotone closed.

(iii)=+(i). It sufBices to prove that any pure state ¢ on A has a projection
as a determining element, and to apply the implication (ii)=>(i). Suppose
0 <z <1isa determining element for a state . The sequence (z™) of
its powers is decreasing, and so it has a limit a € A Asa <z, we haw.'e
o(a) < 1 for any state ¢ different from ¢. Since {a) = 1, it follows that o is
a determining element for ¢. Consider now the associative subalgel?ra O_ of
A generated by z. For any pure state ¢ on C' which does not coincide vs‘rlth
the restriction of ¢ to C, we have g(z) < 1 and so g{a) = 0. Thus, a is a
projection by spectral theory.
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(i)=>{iv). This is an immediate consequence of the fact that any pro-
jection in the double dual of a JB algebra is open {7], and of Proposition
2.5,

(iv)=>(i). Let (p,) be a system of mutually orthogonal pure states such
that >, 5(¢,) = Zat, where zu; is the projection in A** which is the supre-
mum of all minimal projections in A**. Assume that (a,) is its determining
supporting system. Then a,z. = s(ip,} for all . Since a v azy is a
faithful representation of A, we see that each o, has to be a projection.
Finally, employing the fact that a. is determining for ¢, we conclude that
Y{aq} < 1 for any normal state 1 on A** concentrated at 1 — za. In other
words, (1 — zas)an = 0 and 80 a, = s(¢p,). Hence, A containg all minimal
projections in its second dual and it is therefore dual by [7]. The proof is
complete.

Every pure state on a separable algebra has automatically a determining
element by Theorem 3.2. Thus, by Theorem 4.1 we see e.p. that a separable
JB algebra is dual if and only if it is s-monotone closed.
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