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On Bell’s duality theorem for harmonic functions
by

JOAQUIN MOTOS (Valencia)
and SALVADOR PEREZ-ESTEVA (Cuernavaca)

Abstract. Define h°°(E) as the subspace of C°*(B, E} consisting of all harmonic
functions in B, where B is the ball in the n-dimensional Fuclidean space and E is any
Banach space. Consider also the space A~ "°(E*) cousisting of all harmonic E*-valued
functions g such that (1 — |x|)"* f is bounded for some m > 0. Then the dual hR®(EY is
represented by h7°° (") through (f, g}0 = limp..; SB(f(rm),g(m)) dz, f EL™®(B"), g€
h*(E). This extends the results of S. Bell in the scalar case.

1. Introduction and notation. Denote by A (12) the subspace of
the Fréchet space C°°(f2) consisting of all harmonic functions in {2, where
{2 C K" is a bounded open region with smooth boundary. Also consider for
every m € N the space h™™({2) of all harmonic functions f in W~™()
and let h™°(£2) = (U, h™"(£2). In [2], S. Bell constructed for every m €
N a linear differential operator L™ of order N(m} = (m/2)(m + 3) with
C>(£2) coefficients mapping the Sobolev space W™V () into W™ (£2) and
such that PL™ = P, where P is the orthogonal projection on the space of
harmonic functions in L?(42). Then for all f € h*(2) and g € A=°(12) the
expression

(1.1) (Fr@)o={L"f,0)m, g&h™(2),

is well defined and makes h*({2) and h~*(f2) a dual pair. A harmonic
function f is in h~°°(£2) if and only if d(z)* f(=) is bounded for some s € N,
where d(z) is the distance to 812, We refer the reader to [13-15] for the use
of Bell’s operators to calculate duals of spaces of harmonic functions.

The purpose of this paper is to calculate the dual space of the Banach-
valued version of the space h%°(f2) when 2 is the unit ball. We prove that
in this case, Bell’s result can be extended with no restriction on the Banach
space, and moreover, the duality (1.1) can be written as a limit of integrals,
without the need of using Bell's operators L™. In Section 2, we collect some
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50 J. Motos and S. Pérez-Esteva

basic facts on the Banach-valued Sobolev spaces, including an easy proof of
Sobolev’s lemma for Banach-valued functions defined in the ball.

We set e(y) = 1 — |y| and let N be the set of nonnegative integers. E
always denotes a complex Banach space. L?({E) is the space of Bochner mea-
surable functions f in the unit ball B in R™ with || f(-)|| square integrable.
L?Harm(E) is the space of all harmonic functions belonging to L2(E). The
Poisson kernel in the ball is given by

1~ (rR)*
(I1—2rRa’ -y + r2R2)/2’

where ¢ = Rz', y = ry/, R = |z| and » = |y|. The reproducing kernel for
the space L% Harm = L? Harm(C) is

Plz,y) =cp

bz, y) = |o' ™™ 9

aga P(Rz', *y') ,

o=+/7

that is, the operator Pf(x) = {5 b(z,¥)f(y) dy is the orthogonal projection
of L? onto L? Harm (see [6]). P also defines a continuous projection of L2(F)
onto L2 Harm(E) for any Banach space F, in fact the integral operator with
kernel |b(x, y)| is continuous in L? (see for example [5, 10, 16]).

Let m be a finitely additive function on the Borel sets of B with values
in E. Define the 2-variation of m as

1/2
“m”z = sup ( Z ||m A)“z) ’

AEm

where the supremum is taken over all finite {measurable) partitions « of B
and ) is the Lebesgue measure. We denote by V2(E) the space of measures
with ||m||z < co. All the measures in V?(E) are countably additive, )-
continuous and have bounded variation. For f € L2(E) and m € V?(E*) we
can give sense to the duality

(1.2) (fym) = | fdm

B
proceeding in the obvious way in the case of simple functions. We have
L*{(E)* = V2(E*) (isometrically) through (1.2). If such an rn has a density
g, then g € L*(E*) and we write {f,m) = {,(f, g) dz (see the argument in
the proof of {3, Proposition 3] and [7, Theorem I1.1.4}). The reader is referred
to [7, 9] for detailed expositions on vector measures. In [3] the following is

proved: For any m € VZ(E), there exists a positive function g € L? such
that '

| 6 dm| < | l6(@la(@) da
B B

icm

Bell’s duclity theorem 51

for any ¢ € L?. It follows that

Pm(z) = | b(z,y) dm(y)
B

gives a continuous extension P : V*(E) — L?Harm(E) ().
LemMMmA 1.1, For f € L*(E) and m € V2(E*), we have
§ Pf(2)dm = {(#(z), Pm(z)) da.
B B
Proof. It suffices to prove this for f = ¢®@e € C>*(B)®E. Since d{e, m)
has an L? density and b(z,y) is bounded on supp ¢ x B,

(), Pr(e)) de = | (¢(@) ® &, | bl v) dm(y)) du
B

B
¢(z) S (z,y) d{e, m(y)) do

g
(e
|

$(a) da ) dle, mly))
Pf(z)dm. =

Given g : B — E, define g.(z) = g(rz) for r € (0,1) and = € B. If
m € V2(E) and r € (0,1) we define m,. by m,.(4) = r~"m(rA) for every
Borel set in B. We have m, € V2(E), |m,/s = 7~™/2||m||; and

| ¢dm, = 2 i ¢(3’5) dm
rh r
B rB .

for every ¢ € L2

D'(B, E) denotes the space of E-valued distributions in B, that is, the
space of all continuous linear operators f : C°(B) — E. For f € D'(B, E}),
8%f € D'(B, E) is defined exactly as in the scalar case. Also L], (B, E) and
V2(E) are embedded in D'(B, E).

2. Duality on vector-valued Sobolev spaces. Let m be a nonneg-
ative integer. We denote by W™(E) the Sobolev space consisting of all
distributions f € D'(B, E} such that 8°f € L*(E) for every |a| < m. The
norm in W™ (E) is given by

| Fllm = {1(8% Fiajcmll a2 »
where L is the cardinality of {& € N™ : |a| < m}. Define Wj*(E) =

Cee (B,E)WM(E) and its dual space W™ (E*) = W{"(E)*, provided with

(*Y We thank Oscar Blasco for this remark,
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the dual norm that we denote by || - || -rn. Now we shall use the duality {1.2)
to give a representation of W~ (E*}):

As in the scalar case, there exists an embedding W™(E) — L?(E)*
given by f — (8°f)jaj<m- By (1.2), (I*(E)Y)* = V(E")E, thus every
¢ € W™(E)* may be written as

a(f)= > (o fdmy,
|| <m
Since C°(B) @ E is dense in Wi*(E), two elements (my), (na) € V2(E*)L
represent the same @ in W{*(E)* if and only if

Y jeveeim.= Y {(*¢®e)dna

f e W™(E).

|| <m laj<m
for every e € K and ¢ € CZ°(B). This is true if and only if
(2.1) Yo (-nllem, = 3 (-1)l8n,
e <m laj<m

in D'(B, E*). Let M be the subspace of V2(E*)* consisting of (mg) such
that E|a|5m(—1)mlaam°¢ = 0. Then as in scalar Sobolev spaces we have

THEOREM 2.1. (1) For every & € W™ (E"), there exists n = (n,) €
V2(E*) representing & such that |B||_pm = 7l yzimeye -

(2} M is closed in VE(E*): and W (E)* = V2(E*)./M, where in
particular [|P||-m = min{]|m|lye g : m represents }.

Proof. The proof is the same as in the scalar case. m

REMARK 2.2. (a) W™™(E") may be identified with the space of E*-
valued distributions of the form 3, | ,, (~1)/#18%m, with (m.) € V2(E*)E,
and provided with the norm | - ||_,. _

(b} If 2oal Sm(wl)if"'(_’)"*m,,E is represented by a locally integrable func-
tion g, then (f,g)m = {5(f(2),9(z)) dx for all f € C®(B) ® B, where
(,*)m denotes the duality in W™(E). By density, the same is true for every
f € Wi(E), provided g € L?(E*).

() ¥ g = Elalgm(——l)h"@“ma € W~™(E*) is locally integrable,
then an easy calculation shows that g, = Eja|gm(”1)ialr—lalaa(ma)r'
Since ||{ma)rfla = r~/2|lma||s, it follows that (g,)ocregr<1 is bounded in
W=™(E"). Then using (b) above and the density of C*(B)® E in WI(E),
we see that lim. 1 (f, gr)m = (f, g)m for every f € W(E).

We will need the Banach-valued Sobolev lemma; for completeness we
include an easy. proof in the case of the ball:
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THEOREM 2.3. For any Banach space E and k,m € N such that 2m > n,
there exists a continuous embedding

WmH(B) — Cf(B),

where Cf (E) is the space of functions u: B — B such that 8% s bounded
and continuous for |a| < k.

Proof. Notice that the restrictions of functions from CP(R™, E) are
dense in W™ (E): let w € W™(E) and ¢ > 0; then there exists 0 < r < 1
such that [lu — up|m < e. Since u, € W™(r~1B, E), we can assume from
the beginning that © € W™ (2, E) with B C £2. Then a standard argument
using an approximate identity ¢.(z) = e "¢(e~'z) with a nonnegative ¢ €
C2°(R™) shows that {|e #u—||m — 0 as e — 0 (see [1, Lemma 3.15]). Hence
it suffices to prove the Sobolev lemma for the restriction of v & CE (R, B)
to B. Let e* € E* with ||e*|| = 1. Then by the scalar Sobolev lemma

[(0%u(z), e} < Cll{ul-), ") imir < Cllulms
for |o| < k£ and z € B, since (§%u(-), e*) € W™, This proves that H““c',';(E) <
Cllullms-

LEMMA 2.4, The Bergman projection P maps W (E) continuously into
W™(E).

Proof Let y + 0 and § = |y|~%y. Then writing
(1—2rRz' -y + P’ RHV2 = |z — 7|
and
L=goy= H{(L- R + (1-2rRe’ -y +r2RA),

we see after an easy calculation that for y # 0,
4r2 R? n(l —r2R?)?
bz, y) = Cn{ - ( 2L

'r"[m — mn 7‘“"'2':12 — mn-;—z
Using the Leibniz rule and the estimate 1 —rR < |z~ on B x (B\ 1B),
it follows that

(2:2) |85b(=, y)| < C(a)|a - F~'
in this set. Now, for ¢ € C(B, E) and |a < m,
0Pl < | lozbtm )l lell dv+cte) § it 1l g,

iR e
Let Py and P, be the integral operators with kernels [82b(z, y}|xyp and
e(y)™z ~ §|'“"|"!x13\%3. Both operators are bounded in L% P; has a
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bounded kernel and P» can be treated as in [6, Lemma 3.3]. Finally, the
Banach-valued version of Taylor's theorem (see [8]) implies that

le/e™ 2z < Clldllm.
Thus we have | Pl < C|@||m. =

3. The dual of h*{E)

DErFINITION 3.1. Define h°(E) to be the subspace of C*°(B, E) con-
sisting of harmonic functions in .B.

We provide it with the topology of ¢ (B, E), namely, with the system
of norms

0% f ().

pm(f) =  sup
la|<m, zeB

h°(E) is a Fréchet space with this topology.

DEFINITION 3.2. {a) We define h~™(E*} as the subspace of W~™(E")
consisting of harmonic functions.

(b) Denote by h~°°(E) the space of all harmonic functions w : B — E
such that e(z)*u(z) is a bounded function for some s € N.

Now we prove that as in the scalar case (see [2, Lemma 2|), we can
represent h™°(E*) = |J,,,en A T(E")-

LEMMA 3.3. Let 3 > n. Then there exist C,Ca > 0 such that for any
harmonic u : B — BE*,

Crlul] —s—n < Slél;ﬁ(»’ﬂ)”1|u($)|!E* < Caflufl—s4n-
Proof. Let ¢ € C(B, E). By the Sobolev lemma and Taylor’s theorem
(see [8]),
lp(=)f < C sup 0% ¢()lie(z)’ < Ollpllntaelz).

loj=
Then .
[ 1(4,u)| dz S Ho(z)e(z) ™", u(z)e(@)®) dz < Cll@lln+s sup e(x)’ulz)lle-,
B xgR
that is,

Jull—s—n < O sup ()’ |ulz)l| v
zE B

The other inequality follows as in the scalar case, if we bear in mind that
the mean value theorem for harmonic functions is valid for Banach-valued
functions, m

icm

Bell’s duality theorem, 55

PROPOSITION 3.4. h™"™(E") is weak*-closed (and hence closed) in
W (E").

Proof Let (gx) be a net in A~™(E*) converging pointwise to T &
W—™(E"). For fixed e € E, eog) converges to eoT € D'(B). Since o g is
harmonic for every A, we have A(e e T) = 0, hence e o T is represented
by a harmonic functmn ge- Let @ € C(B) be a radial function with
§50(z)de = 1. For every o € B, define ©,(y) = e "0((y — z)/e), where
g = (1 - |z[)/2. Define g(z) = T'(B,). Since the mapping & — €, is =, it
follows that g € C°(B, E*). We have

(e, 9(x)) = (e, T(O:)) =

= ge(z) =eoT(x),

whence it follows at once that T = g and g is weak*-harmonic. Since g is
also C™, it is harmonic and 7' € h~™(E*). u

(eoT,04) = | g:(1)Ox(y) dy

B

COROLLARY 3.5. h™°(B*) = ) ery ™™ (E*).
THEOREM 3.6. (a) For every g € h™™(E*), the limit

(3.1) (u,9)o = limy | u(a)gs (z) da
B

exists and defines a continuous linear functional on h™(E). Moreover,
(u, g0 = (L*u,g)s for every s > m (the product in the integrand should
be interpreted as the duality (B, B*)).

(b) Every T € h™®(E)* can be represented as in (3.1) by a unique g €
h™=(E").

Proof. Let g € h~™(E*) and s > m. Consider the operators L* men-
tioned in the first section. Then L* maps continuously C*(B, E) into W§(E)
when we equip C*°(B, E) with the norm || |s+N(s), hence PL*f = Pf also
holds for smooth Banach-valued functions on B. Then by Lemma 1.1 and
Remark 2.2 we get

| u(@)gp(z) do = | Pu(z)g,(z) de = | PLou(x)ge(x) da

B B B
S LPu(z)Pgp(z)dz = (L°u, gr)s — (L’u,g)s asr— 1.
B

Since

I{w, gl < Il L] lg ]l = < GH“Hm%—N(m)”g“—m < CPmtn m)(“)”ﬂ“ —my

the functional (., g)¢ is continuous and the proof of (a) is complete.
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To prove (b), let T' € A*°(£)*. Then the continuity of T" and Sobolev’s
lemma imply that there exist C > 0 and m € N such that

(6, T < Clidlim: &€ h™(E).

By Hahn-Banach’s theorem we can extend T continuously to W™ (E). Hence
there exists (mq)ja<m € VE(E*)¥ such that

T(f)= Y 8%fdma,

lol<m

f e W™ (E).

Define, for 0 < r <1,
g = P( Y (—1)[“|3“L8(Pma),).

| <m
Then {g(")} € L*Harm(E*) and we claim that it is a bounded set in -
W-m(E*):
Let ¢ € C*(B) ® E. Since PL™ = P on C*(B) ® E and L™(Pmy,),
vanishes to order m — 1 on the unit sphere, we have

‘ S $()g" () dm‘ §P¢‘ (2) Z g2 L™ Py ), () de
B al<m
=|\ > &Py m)Lm(Pma)r(-??)dw’
Blal<m
=|§ 3 0°Po(a)(Pma)n(s) ds|
B |al<m

< C|@llmll(Pma)llz2¢z-)z
< Cliglmll(matlvagenye.
Hence ¢ is bounded and limy..,y §5 o(x) "} () dz converges pointwise to
15 Zjaj<m 0°Po(2)(Pmy)(z) dz on C°(B) ® E. Then by Proposition 3.4,
¢'") converges to & in h™™(E*) in the weak*-topology, where
B(u) = S Z 0% Pu(z)(Pmg)(zx) dw, u e W{(E),

B la|<m

(Lemma 2.4}

and @ is represented by a harmonic function g. Finally, for any u € h*°(E),

S Lou(z)g"Ne) de = S u(z)g"™ () dz
B B
= {u(z) > (-1)8°L™(Pmy)(2) de
B la|sm
= S Z *u(z)(Pmg ), (2) dz
B |a|<m
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Taking the limit as » — 1, we obtain

(W gho = L, ghm = | 3 9*u(z)(Prq)(z) da
B |a|l<m
= 3" o%u(z)dma(z) = (u, .

Blal<m
The uniqueness of ¢ can be proved as in the scalar case [2].

REMARK 3.7. (a) For smooth bounded regions 2, P is a continuous
projection in the scalar W™ (£2). The proof is based on the fact that P = J -
AGA, where G(v) Is the solution operator of 4%¢ = v, with ¢ = dgp/dn = 0
on §12. Lemma 2.4 is a weak version of this result for vector-valued functions
in the case of the ball, which is proved directly, since an explicit formula
for the kernel is available in this case. The proof of Theorem 3.6 would be
the same for any star shaped region for which Lemma 2.4 holds true. In
[17], Straube proves that the duality of A°°(§2) and h~(£2) may be written
as lime—o {p, fodz, where f € h™°(§2), g € h*°(), and D, = {z € 2 :
dist(z,842) < e}. Here the existence of the boundary value (distribution) of
[ plays a role in the proof. This opens the possibility of calculating the dual
of h*°(2, E) for general regions 2.

(b) In the the proof of Theorem 3.6 it is shown. that h™(E)* can be
identified with h~™(E") for any Banach space E. Here A™(E) is the space
of all harmonic functions in W™(E). This might be the same for every
smooth region 2, as in [13] for scalar spaces.

4. Some tensor product considerations. Given a locally convex
space F' we denote by F) its topological dual equipped with the topology
of uniform convergence on bounded subsets of F.

From Bell’s paper [2] and having in mind that h(B) is a nuclear space
(C*(8B} is nuclear [L1, Ch. II, p. 55] and the Poisson integral transform
is an isomorphism of C*°(8B) onto h°°(B)), it follows that the mapping
®(g) = (-, g)o is a topological isomorphism of h~°°(B) onto A% (B)}, when
h=%°(B) is the inductive limit of the Banach spaces h~™(B). We claim that
it is also true in the vector-valued case.

ProrosITION 4.1. The mapping @ above is o topological isomorphism of
h=°(E*) onto h*®(E)}, when h=°°(E*) is the inductive limit of the Banach
spaces h™™(E*).

Proof The proof is a consequence of the following considerations:

(1) R*(B) ® E is dense in h*(E).

(2) The projective topology, the e-topology and the h*(E)-topology
coincide on h*(B) @ E:
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(1) follows from Theorem 3.6 and Hahn-Banach’s theorem. Due to the

nuclearity of h°°(B}), to prove (2) it suffices to show that the identity
hw(g) Bpes (1) FE — hm(E) ®: F

is continuous. Let (gm)nr—o be the norms defining the topology of A*(B),

and denote by by the absolute polar in h**(B)* of the ball {u : gy (u) < 1}.
Then

(02 |12 (Y 9e) = aup Hf;Tmi)ei} .
i=1 =

TEbS
By Grothendieck’s localization theorem (see [12, I, p. 225, (5)]), we can find
s = 1 such that #71(b7 ) < h™*(B) and sup{|lgl|-. : ¢ € $71(b3_ )} < oo
Moreaver, if g = $7HT) = ¥, <, (~1)!*18%v, with v, € L2, then

. X i
H gT(w)ei = H ;(ui,g)gei 5= H ;(Lsui,g}ei

Fol

AL S frvmind,
i=1 |a|<s B

k
/
(3 balt) (T | Lo rutere] ),
|| <s || < B i=1
thus
k k 2 1/2
HZT(ui)e@ L <lal- (> SH 9° L*ui(s)e; de)
i=1 le|<s B i=1
so that

(gm ®: H'”E)(iui‘gei) < C'|

Ls(iui ge)| < Gpsm(iui ®es),
t=1 i=1

which proves the required continuity. As a consequence, it follows that
h*°(E) is a distinguished Fréchet space, that is, h*(E) is barreled or
equivalently it is ultrabornological (see [12, I, p. 400, (3)]). Now we are
in a position to conclude the proof of the proposition. Fix m > 1 and let A
be a bounded subset of h°°(E). Then for every g € A~™(E*),

sup |(u, gho| = sup [(L™w, g)m| < C'sup [[ul|ms |g]|-m
ucA ucA

< Osup ot () [1gll-m < Cllgl|—rn-

Since m was arbitrarily chosen, this proves the continuity of h™%{E*)
into 2°°(E)y, and since A*°(E)} is ultrabornological, we conclude from
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Grothendieck’s closed graph theorem (see [12, II, p. 44, (6)]) that & is a
topological isomorphism.

REMARK 4.2, Using Bell’s results [2] and the theory of tensor products
and nuclear spaces we have the following chain of natural isomorphisms:

W2 (B)y, ~ h®(B) & E* = h™°(B)* § E* = (ind(h~™(B)* &, E*))".

It remains open to prove directly, without using Theorem 3.6, that
(ind(h~™(B)* 8 E"))" = ind h~™(E*). Notice that in general ™™ (E*)
is not topologically isomorphic to A~™(B)* &, E*, for example, if F = L2,
then A~ ™(E*} = L* but h~™(B)* &, B* ~ L? &, L? which is not reflexive.

Acknowledgements. The authors wish to thank the referee for his
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Geometry of obligque projections
by

E. ANDRUCHOW (San Miguel), GUSTAVO CORACH (Buenos Aires)
and D. STOJANOFF (Buenos Aires)

Abstract. Let A be a unital C*-algebra. Denote by P the space of selfadjoint pro-
jections of 4. We study the relationship between P and the spaces of projections Pa
determined by the different involutions #. induced by positive invertible elements ¢ € A.
The maps yp : P —+ P, sending p to the unique g € P, with the same range as p and
2, : P — P sending g to the unitary part of the polar decomposition of the symmetry
2g -1 are shown to be diffeomorphisms. We characterize the pairs of idempotents g,r € A4
with |ig — 7|} < 1 such that there existe a positive element a € A satisfying ¢,r € F,. In
this case g and r can be joined by a unique short geodesic along the space of idempotents

@ of A

1. Introduction. Let H be a Hilbert space with scalar product {, ). For
every bounded positive invertible operator ¢ : H — H consider the scalar
product {, ). given by

(&a"‘?)a: (éo"?)p g;TIEH.

It is clear that {, ), induces a norm equivalent to the norm induced by (,).
With respect to the scalar product (,),, the adjoint of a bounded linear

operator © : H — M is

¥ = g lz*a.

Thus, x is #,-selfadjoint if and only if
az = x*a.

Given a closed subspace § of M, denote by p = Pgs the orthogonal
projection from H onto S and, for any positive operator a, denote by
pp{a) the unique #,-selfadjoint projection with range S. In a recent paper,
Z. Pasternak-Winiarski [20] proves the analyticity of the map o — ¢p(a) and
calculates its Taylor expansion. This study is relevant for understanding re-
producing kernels of Hilbert spaces of holomorphic L? sections of complex
vector bundles and the way they change when the measures and hermitian
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